svyset — Declare survey design for dataset

Description

svyset manages the survey analysis settings of a dataset. You use svyset to designate variables that contain information about the survey design, such as the sampling units and weights. svyset is also used to specify other design characteristics, such as the number of sampling stages and the sampling method, and analysis defaults, such as the method for variance estimation. You must svyset your data before using any svy command; see [SVY] svy estimation.

svyset without arguments reports the current settings. svyset, clear removes the current survey settings.

Quick start

One-stage design with sampling weight wvar1, strata defined by levels of svar, and sampling units identified by su1

svyset su1 [pweight=wvar1], strata(svar)

Two-stage design with finite population correction fpc and _n indicating second-stage sampling units are the sampled individuals

svyset su1 [pweight=wvar1], strata(svar) fpc(fpc) || _n

Two-stage design with second-stage clustering defined by su2

svyset su1 [pweight=wvar1], strata(svar) fpc(fpc) || su2

Jackknife variance estimation as the default for svy commands, with sampling weight wvar2, and replicate-weight variables rwvar*

svyset [pweight=wvar2], vce(jackknife) jkrweight(rwvar*)

As above, but use the MSE formula

svyset [pweight=wvar2], vce(jackknife) jkrweight(rwvar*) mse

Display current survey settings

svyset

Clear current survey settings

svyset, clear

Menu

Statistics > Survey data analysis > Setup and utilities > Declare survey design for dataset
Syntax

Single-stage design

```
svyset [psu] [weight] [ , design_options options]
```

Multiple-stage design

```
svyset psu [weight] [ , design_options] [ || ssu, design_options] . . . [ options]
```

Clear the current settings

```
svyset, clear
```

Report the current settings

```
svyset
```

`psu` identifies the primary sampling units and may be `_n` or `varname`. In the single-stage syntax, `psu` is optional and defaults to `_n`. `_n` indicates that individuals were randomly sampled if the design does not involve clustered sampling.

`varname` contains identifiers for the clusters in a clustered sampling design.

`ssu` is `_n` or `varname` containing identifiers for sampling units (clusters) in subsequent stages of the survey design. `_n` indicates that individuals were randomly sampled within the last sampling stage.

<table>
<thead>
<tr>
<th><code>design_options</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>strata(varname)</code></td>
<td>variable identifying strata</td>
</tr>
<tr>
<td><code>fpc(varname)</code></td>
<td>finite population correction</td>
</tr>
<tr>
<td><code>weight(varname)</code></td>
<td>stage-level sampling weight</td>
</tr>
</tbody>
</table>
svyset — Declare survey design for dataset

Description

Weights

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brrweight(varlist)</td>
<td>balanced repeated replicate (BRR) weights</td>
</tr>
<tr>
<td>fay(#)</td>
<td>Fay’s adjustment</td>
</tr>
<tr>
<td>bsrweight(varlist)</td>
<td>bootstrap replicate weights</td>
</tr>
<tr>
<td>bsn(#)</td>
<td>bootstrap mean-weight adjustment</td>
</tr>
<tr>
<td>jkrweight(varlist, jkropts)</td>
<td>jackknife replicate weights</td>
</tr>
<tr>
<td>sdrweight(varlist, sdropts)</td>
<td>successive difference replicate (SDR) weights</td>
</tr>
</tbody>
</table>

SE

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vce(linearized)</td>
<td>Taylor linearized variance estimation</td>
</tr>
<tr>
<td>vce(bootstrap)</td>
<td>bootstrap variance estimation</td>
</tr>
<tr>
<td>vce(brr)</td>
<td>BRR variance estimation</td>
</tr>
<tr>
<td>vce(jackknife)</td>
<td>jackknife variance estimation</td>
</tr>
<tr>
<td>vce(sdr)</td>
<td>SDR variance estimation</td>
</tr>
<tr>
<td>dof(#)</td>
<td>design degrees of freedom</td>
</tr>
<tr>
<td>mse</td>
<td>use the MSE formula with vce(bootstrap), vce(brr), vce(jackknife), or vce(sdr)</td>
</tr>
<tr>
<td>singleunit(method)</td>
<td>strata with a single sampling unit; method may be missing, certainty, scaled, or centered</td>
</tr>
</tbody>
</table>

Poststratification

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poststrata(varname)</td>
<td>variable identifying poststrata</td>
</tr>
<tr>
<td>postweight(varname)</td>
<td>poststratum population sizes</td>
</tr>
</tbody>
</table>

Calibration

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rake(varlist, calopts)</td>
<td>adjust weights using the raking-ratio method</td>
</tr>
<tr>
<td>regress(varlist, calopts)</td>
<td>adjust weights using linear regression calibration</td>
</tr>
<tr>
<td>clear</td>
<td>clear all settings from the data</td>
</tr>
<tr>
<td>noclear</td>
<td>change some of the settings without clearing the others; opnames may be one or more of weight, vce, dof, mse, bsrweight, brrweight, jkrweight, sdrweight, poststrata, rake, or regress</td>
</tr>
<tr>
<td>clear(opnames)</td>
<td>clear specified settings without clearing all others; opnames may be one or more of weight, vce, dof, mse, bsrweight, brrweight, jkrweight, sdrweight, poststrata, rake, or regress</td>
</tr>
</tbody>
</table>

pweights and iweights are allowed; see [U] 11.1.6 weight.

clear, noclear, and clear() are not shown in the dialog box.

jkropts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stratum(# [# ...])</td>
<td>stratum identifier for each jackknife replicate weight</td>
</tr>
<tr>
<td>fpc(#) [# ...]</td>
<td>finite population correction for each jackknife replicate weight</td>
</tr>
<tr>
<td>multiplier(#) [# ...]</td>
<td>variance multiplier for each jackknife replicate weight</td>
</tr>
<tr>
<td>reset</td>
<td>reset characteristics for each jackknife replicate weight</td>
</tr>
</tbody>
</table>

sdropts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpc(#) [# ...]</td>
<td>finite population correction for each SDR weight</td>
</tr>
</tbody>
</table>
calopts

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*totals(spec)</td>
<td>population totals</td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress constant term</td>
</tr>
<tr>
<td>ll(#)</td>
<td>lower limit for weight ratios</td>
</tr>
<tr>
<td>ul(#)</td>
<td>upper limit for weight ratios</td>
</tr>
<tr>
<td>iterate(#)</td>
<td>maximum number of iterations</td>
</tr>
<tr>
<td>tolerance(#)</td>
<td>convergence tolerance</td>
</tr>
<tr>
<td>force</td>
<td>allow calibration adjustments that failed to converge</td>
</tr>
</tbody>
</table>

*totals() is required.

Options

Main

- **strata(varname)** specifies the name of a variable (numeric or string) that contains stratum identifiers.

- **fpc(varname)** requests a finite population correction for the variance estimates. If varname has values less than or equal to 1, it is interpreted as a stratum sampling rate \(f_h = n_h/N_h \), where \(n_h \) = number of units sampled from stratum \(h \) and \(N_h \) = total number of units in the population belonging to stratum \(h \). If varname has values greater than or equal to \(n_h \), it is interpreted as containing \(N_h \). It is an error for varname to have values between 1 and \(n_h \) or to have a mixture of sampling rates and stratum sizes.

- **weight(varname)** specifies a stage-level sampling weight variable. For most models, stage-level sampling weights are multiplied together to create a single observation-level sampling weight variable used for weighted estimation. For commands such as `gsem` and `meglm`, each stage-level weight variable is assumed to correspond with a hierarchical group level in the model and is used to compute the pseudolikelihood at that associated group level. Stage-level sampling weights are required to be constant within their corresponding group level. For examples of fitting a multilevel model with stage-level sampling weights, see example 5 and example 6 in \[ME\] `meglm`.

Weights

- **brrweight(varlist)** specifies the replicate-weight variables to be used with `vce(brr)` or with `svy brr`.

- **fay(#)** specifies Fay’s adjustment (Judkins 1990). The value specified in `fay(#)` is used to adjust the BRR weights and is present in the BRR variance formulas.

 The sampling weight of the selected PSUs for a given replicate is multiplied by \(2^{-#} \), where the sampling weight for the unselected PSUs is multiplied by \(# \). When `brrweight(varlist)` is specified, the replicate-weight variables in `varlist` are assumed to be adjusted using \(# \).

 fay(0) is the default and is equivalent to the original BRR method. \(# \) must be between 0 and 2, inclusive, and excluding 1. **fay(1)** is not allowed because this results in unadjusted weights.

- **bsrweight(varlist)** specifies the replicate-weight variables to be used with `vce(bootstrap)` or with `svy bootstrap`.

- **bsn(#)** specifies that \(# \) bootstrap replicate-weight variables were used to generate each bootstrap mean-weight variable specified in the `bsrweight()` option. The default is `bsn(1)`. The value specified in `bsn(#)` is used to adjust the variance estimate to account for mean bootstrap weights.

- **jkrweight(varlist, jkropts)** specifies the replicate-weight variables to be used with `vce(jackknife)` or with `svy jackknife`.

The following *jkropts* set characteristics on the jackknife replicate-weight variables. If one value is specified, all the specified jackknife replicate-weight variables will be supplied with the same characteristic. If multiple values are specified, each replicate-weight variable will be supplied with the corresponding value according to the order specified. *jkropts* are not shown in the dialog box.

stratum(# [# ...]) specifies an identifier for the stratum in which the sampling weights have been adjusted.

fpc(# [# ...]) specifies the FPC value to be added as a characteristic of the jackknife replicate-weight variables. The values set by this suboption have the same interpretation as the *fpc(varname)* option.

multiplier(# [# ...]) specifies the value of a jackknife multiplier to be added as a characteristic of the jackknife replicate-weight variables.

reset indicates that the characteristics for the replicate-weight variables may be overwritten or reset to the default, if they exist.

sdrweight(varlist, sdropts) specifies the replicate-weight variables to be used with *vce(sdr)* or with *svy sdr*. The following *sdropts* is available:

fpc(#) specifies the FPC value associated with the SDR weights. The value set by this suboption has the same interpretation as the *fpc(varname)* option. This option is not shown in the dialog box.

Poststratification

poststrata(varname) specifies the name of the variable (numeric or string) that contains poststratum identifiers. See [SVY] Poststratification for more information.
postweight(varname) specifies the name of the numeric variable that contains poststratum population totals (or sizes), that is, the number of elementary sampling units in the population within each poststratum. See [SVY] Poststratification for more information.

rake(varlist, calopts) and regress(varlist, calopts) specify that the sampling weights be adjusted using a calibration adjustment. See [SVY] Calibration for more information.

rake() specifies that the weights be adjusted by the raking-ratio method.
regress() specifies that the weights be adjusted by linear regression.

The following calopts are available:

- totals(spec) is required. It specifies the population totals corresponding to the variables specified in varlist. spec is one of

 matname [, skip copy]
 {
 [eqname:]name = # | /eqname = # } [...]
 # [# ...], copy

That is, spec may be a matrix name, for example, totals(poptotals); a list of variable names in varlist with their population totals, for example, totals(_cons=1300 dogs=850 cats=450); or a list of values, for example, totals(850 450 1300).

- skip specifies that any parameters found in the specified totals vector that are not also found in the model be ignored. The default action is to issue an error message.

- copy specifies that the list of values or the totals vector be copied into the population-totals vector by position rather than by name.

- noconstant suppresses the intercept in the linear regression adjustment.

- ll(#) specifies a lower limit for the weight ratios for truncated linear calibration.

- ul(#) specifies an upper limit for the weight ratios for truncated linear calibration.

- iterate(#) specifies the maximum number of iterations. When the number of iterations equals iterate(), the calibration adjustment stops and presents a note. The default is iterate(1000).

- tolerance(#) specifies the tolerance for the Lagrange multiplier in the calibration equations. Convergence is achieved when the relative change in the Lagrange multiplier from one iteration to the next is less than or equal to tolerance(). The default is tolerance(1e-7).

- force prevents svy estimation from exiting with an error if the calibration adjustment fails to converge.

The following options are available with svyset but are not shown in the dialog box:

- clear clears all the settings from the data. Typing

 . svyset, clear

 clears the survey design characteristics from the data in memory. Although this option may be specified with some of the other svyset options, it is redundant because svyset automatically clears the previous settings before setting new survey design characteristics.

- noclear allows some of the options in options to be changed without clearing all the other settings. This option is not allowed with psu, ssu, design_options, or clear.
clear(opnames) allows some of the options in options to be cleared without clearing all the other settings. opnames refers to an option name and may be one or more of the following: weight, vce, dof, mse, brrweight, bsrweight, jkrweight, sdrweight, poststrata, rake, or regress. This option implies the noclear option.

Remarks and examples

Remarks are presented under the following headings:

Introduction to survey design characteristics
Finite population correction (FPC)
Multiple-stage designs and with-replacement sampling
Replication-weight variables
Combining datasets from multiple surveys
Video example

Introduction to survey design characteristics

Stata’s suite of commands for survey data analysis relies on properly identified survey design characteristics for point estimation, model fitting, and variance estimation. In fact, the svy prefix will report an error if no survey design characteristics have been identified using svyset. Settings made by svyset are saved with a dataset. So, if a dataset is saved after it has been svyset, it does not have to be set again.

Typical survey design characteristics include sampling weights, one or more stages of clustered sampling, and stratification. O’Donnell et al. (2008, 26–27) show four survey sample designs with the corresponding svyset specification. Use svyset to declare your dataset to be complex survey data by specifying the survey design variables. We will use the following contrived dataset for the examples in this section.

. use https://www.stata-press.com/data/r16/stage5a

Example 1: Simple random sampling with replacement

Use _n for psu to specify that the primary sampling units (PSUs) are the sampled individuals.

. svyset _n
 pweight: <none>
 VCE: linearized
 Single unit: missing
 Strata 1: <one>
 SU 1: <observations>
 FPC 1: <zero>

The output from svyset states that there are no sampling weights (each observation is given a sampling weight of 1), there is only one stratum (which is the same as no stratification), and the PSUs are the observed individuals.
Example 2: One-stage clustered design with stratification

The most commonly specified design, one-stage clustered design with stratification, can be used to approximate multiple-stage designs when only the first-stage information is available. In this design, the population is partitioned into strata and the PSUs are sampled independently within each stratum. A dataset from this design will have a variable that identifies the strata, another variable that identifies the PSUs, and a variable containing the sampling weights. Let’s assume that these variables are, respectively, strata, su1, and pw.

```stata
.svysel su1 [pweight=pw], strata(strata)
pweight: pw
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: su1
FPC 1: <zero>
```

Example 3: Two-stage designs

In two-stage designs, the PSUs are sampled without replacement and then collections of individuals are sampled within the selected PSUs. `svysel` uses `||` (double “or” bars) to separate the stage-specific design specifications. The first-stage information is specified before `||`, and the second-stage information is specified afterward. We will assume that the variables containing the finite population correction (FPC) information for the two stages are named fpc1 and fpc2; see Finite population correction (FPC) for a discussion about the FPC.

Use `_n` for `ssu` to specify that the second-stage sampling units are the sampled individuals.

```stata
.svysel su1 [pweight=pw], fpc(fpc1) || _n, fpc(fpc2)
pweight: pw
VCE: linearized
Single unit: missing
Strata 1: <one>
SU 1: su1
FPC 1: fpc1
Strata 2: <one>
SU 2: <observations>
FPC 2: fpc2
```

Suppose that `su2` identifies the clusters of individuals sampled in the second stage.

```stata
.svysel su1 [pweight=pw], fpc(fpc1) || su2, fpc(fpc2)
pweight: pw
VCE: linearized
Single unit: missing
Strata 1: <one>
SU 1: su1
FPC 1: fpc1
Strata 2: <one>
SU 2: su2
FPC 2: fpc2
```
Stratification can take place in one or both of the sampling stages. Suppose that `strata` identifies the second-stage strata and the first stage was not stratified.

```
. svyset su1 [pweight=pw], fpc(fpc1) || su2, fpc(fpc2) strata(strata)
  pweight: pw
  VCE: linearized
  Single unit: missing
  Strata 1: <one>
      SU 1: su1
      FPC 1: fpc1
  Strata 2: strata
      SU 2: su2
      FPC 2: fpc2
```

Example 4: Multiple-stage designs

Specifying designs with three or more stages is not much more difficult than specifying two-stage designs. Each stage will have its own variables for identifying strata, sampling units, and the FPC. Not all stages will be stratified and some will be sampled with replacement; thus some stages may not have a variable for identifying strata or the FPC.

Suppose that we have a three-stage design with variables `su#` and `fpc#` for the sampling unit and FPC information in stage `#`. Also assume that the design called for stratification in the first stage only.

```
. svyset su1 [pweight=pw], fpc(fpc1) strata(strata)
   > || su2, fpc(fpc2)
   > || su3, fpc(fpc3)
  pweight: pw
  VCE: linearized
  Single unit: missing
  Strata 1: strata
      SU 1: su1
      FPC 1: fpc1
  Strata 2: <one>
      SU 2: su2
      FPC 2: fpc2
  Strata 3: <one>
      SU 3: su3
      FPC 3: fpc3
```
Use _n for ssu in the last stage if the individuals are sampled within the third stage of clustered sampling.

```
. svyset sul [pweight=pw], fpc(fpc1) strata(strata)
> || su2, fpc(fpc2)
> || su3, fpc(fpc3)
> || \_n
  pweight: pw
  VCE: linearized
  Single unit: missing
  Strata 1: strata
    SU 1: sul
    FPC 1: fpc1
  Strata 2: <one>
    SU 2: su2
    FPC 2: fpc2
  Strata 3: <one>
    SU 3: su3
    FPC 3: fpc3
  Strata 4: <one>
    SU 4: <observations>
    FPC 4: <zero>
```

Finite population correction (FPC)

An FPC accounts for the reduction in variance that occurs when sampling without replacement from a finite population compared to sampling with replacement from the same population. Specifying an FPC variable for stage \(i\) indicates that the sampling units in that stage were sampled without replacement. See Cochran (1977) for an introduction to variance estimation and sampling without replacement.

Example 5

Consider the following dataset:

```
. use https://www.stata-press.com/data/r16/fpc
. list
```

<table>
<thead>
<tr>
<th>stratid</th>
<th>psuid</th>
<th>weight</th>
<th>nh</th>
<th>Nh</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>9.2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Here the variable \(nh\) is the number of PSUs per stratum that were sampled, \(Nh\) is the total number of PSUs per stratum in the sampling frame (that is, the population), and \(x\) is our survey item of interest.

If we wish to use a finite population correction in our computations, we must svyset an FPC variable when we specify the variables for sampling weights, PSUs, and strata. The FPC variable typically contains the number of sampling units per stratum in the population; \(Nh\) is our FPC variable. Here we estimate the population mean of \(x\) assuming sampling without replacement.
. svyset psuid [pweight=weight], strata(stratid) fpc(Nh)
 pweight: weight
 VCE: linearized
 Single unit: missing
 Strata 1: stratid
 SU 1: psuid
 FPC 1: Nh

. svy: mean x
(running mean on estimation sample)

Survey: Mean estimation
Number of strata = 2 Number of obs = 8
Number of PSUs = 8 Population size = 27
Design df = 6

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>x</td>
<td>5.448148</td>
</tr>
</tbody>
</table>

We must respecify the survey design before estimating the population mean of x assuming sampling with replacement.

. svyset psuid [pweight=weight], strata(stratid)
 pweight: weight
 VCE: linearized
 Single unit: missing
 Strata 1: stratid
 SU 1: psuid
 FPC 1: <zero>

. svy: mean x
(running mean on estimation sample)

Survey: Mean estimation
Number of strata = 2 Number of obs = 8
Number of PSUs = 8 Population size = 27
Design df = 6

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>x</td>
<td>5.448148</td>
</tr>
</tbody>
</table>

Including an FPC always reduces the variance estimate. However, the reduction in the variance estimates will be small when the N_h are large relative to the n_h.

Rather than having a variable that represents the total number of PSUs per stratum in the sampling frame, we sometimes have a variable that represents a sampling rate $f_h = n_h/N_h$. The syntax for `svyset` is the same whether the FPC variable contains N_h or f_h. The survey variance-estimation routines in Stata are smart enough to identify what type of FPC information has been specified. If the FPC variable is less than or equal to 1, it is interpreted as a sampling rate; if it is greater than or equal to n_h, it is interpreted as containing N_h. It is an error for the FPC variable to have values between 1 and n_h or to have a mixture of sampling rates and stratum sizes.
Multiple-stage designs and with-replacement sampling

Although survey data are seldom collected using with-replacement sampling, dropping the FPC information when the sampling fractions are small is common. In either case, \texttt{svyset} ignores the design variables specified in later sampling stages because this information is not necessary for variance estimation. In the following, we describe why this is true.

\textbf{Example 6}

Consider the two-stage design where PSUs are sampled with replacement and individuals are sampled without replacement within the selected PSUs. Sampling the individuals with replacement would change some of the details in the following discussion, but the result would be the same.

Our population contains 100 PSUs, with five individuals in each, so our population size is 500. We will sample 10 PSUs with replacement and then sample two individuals without replacement from within each selected PSU. This results in a dataset with 10 PSUs, each with 2 observations, for a total of 20 observations. If our dataset contained the PSU information in variable \texttt{su1} and the second-stage FPC information in variable \texttt{fpc2}, our \texttt{svyset} command would be as follows.

\begin{verbatim}
. use https://www.stata-press.com/data/r16/svyset_wr
. svyset su1 || _n, fpc(fpc2)
Note: Stage 1 is sampled with replacement; further stages will be ignored for variance estimation.
 pweight: <none>
 VCE: linearized
 Single unit: missing
 Strata 1: <one>
 SU 1: su1
 FPC 1: <zero>
\end{verbatim}

As expected, \texttt{svyset} tells us that it is ignoring the second-stage information because the first-stage units were sampled with replacement. Because we do not have an FPC variable for the first stage, we can regard the sampling of PSUs as a series of independently and identically distributed draws. The second-sampled PSU is drawn independently from the first and has the same sampling distribution because the first-sampled PSU is eligible to be sampled again.

Consider the following alternative scenario. Because there are 10 ways to pick two people of five, let’s expand the 100 PSUs to form $100 \times 10 = 1,000$ “new PSUs” (\texttt{NPSUs}), each of size 2, representing all possible two-person groups that can be sampled from the original 100 groups of five people. We now have a population of $1,000 \times 2 = 2,000$ “new people”; each original person was replicated four times. We can select 10 \texttt{NPSUs} with replacement to end up with a dataset consisting of 10 groups of two to form samples of 20 people. If our “new” dataset contained the PSU information in variable \texttt{nsu1}, our \texttt{svyset} command would be as follows:

\begin{verbatim}
. svyset nsu1
 pweight: <none>
 VCE: linearized
 Single unit: missing
 Strata 1: <one>
 SU 1: nsu1
 FPC 1: <zero>
\end{verbatim}

There is nothing from a sampling standpoint to distinguish between our two scenarios. The information contained in the variables \texttt{su1} and \texttt{nsu1} is equivalent; thus \texttt{svyset} can behave as if our dataset came from the second scenario.
The following questions may spring to mind after reading the above:

- The population in the first scenario has 500 people; the second has 2,000. Does that not invalidate the comparison between the two scenarios?

 Although the populations are different, the sampling schemes described for each scenario result in the same sampling space. By construction, each possible sample from the first scenario is also a possible sample from the second scenario. For the first scenario, the number of possible samples of 10 of 100 PSU's sampled with replacement, where two of five individuals are sampled without replacement, is

 \[100^{10} \times \binom{5}{2}^{10} = 10^{30}\]

 For the second scenario, the number of possible samples of 10 of 1,000 NPSU's sampled with replacement, where each NPSU is sampled as a whole, is

 \[1,000^{10} = 10^{30}\]

- Does the probability of being in the sample not depend on what happens in the first sampling stage?

 Not when the first stage is sampled with replacement. Sampling with replacement means that all PSU's have the same chance of being selected even after one of the PSU's has been selected. Thus each of the two-person groups that can possibly be sampled has the same chance of being sampled even after a specific two-person group has been selected.

- Is it valid to have replicated people in the population like the one in the second scenario?

 Yes, because each person in the population can be sampled more than once. Sampling with replacement allows us to construct the replicated people.

Replication-weight variables

Many groups that collect survey data for public use have taken steps to protect the privacy of the survey participants. This may result in datasets that have replicate-weight variables instead of variables that identify the strata and sampling units from the sampling stages. These datasets require replication methods for variance estimation.

The brrweight(), jkrweight(), bsrweight(), and sdrweight() options allow svyset to identify the set of replication weights for use with BRR, jackknife, bootstrap, and SDR variance estimation (svy brr, svy jackknife, svy bootstrap, and svy sdr), respectively. In addition to the weight variables, svyset also allows you to change the default variance estimation method from linearization to BRR, jackknife, bootstrap, or SDR.
Example 7

Here are two simple examples using jackknife replication weights.

1. Data containing only sampling weights and jackknife replication weights, and we set the default variance estimator to the jackknife:

   ```
   . use https://www.stata-press.com/data/r16/stage6a_jkw
   . svyset [pweight=pw], jkrweight(jkw_*) vce(jackknife)
   pweight: pw
   VCE: jackknife
   MSE: off
   jkrweight: jkw_1 .. jkw_9
   Single unit: missing
   Strata 1: <one>
   SU 1: <observations>
   FPC 1: <zero>
   ```

2. Data containing only sampling weights and jackknife replication weights, and we set the default variance estimator to the jackknife by using the MSE formula:

   ```
   . svyset [pweight=pw], jkrweight(jkw_*) vce(jackknife) mse
   pweight: pw
   VCE: jackknife
   MSE: on
   jkrweight: jkw_1 .. jkw_9
   Single unit: missing
   Strata 1: <one>
   SU 1: <observations>
   FPC 1: <zero>
   ```

Example 8: Characteristics for jackknife replicate-weight variables

The `jkrweight()` option has suboptions that allow you to identify certain characteristics of the jackknife replicate-weight variables. These characteristics include the following:

- An identifier for the stratum in which the sampling weights have been adjusted because one of its PSUs was dropped. We use the `stratum()` suboption to set these values. The default is one stratum for all the replicate-weight variables.

- The FPC value. We use the `fpc()` suboption to set these values. The default value is zero. This characteristic is ignored when the `mse` option is supplied to `svy jackknife`.

- A jackknife multiplier used in the formula for variance estimation. The multiplier for the standard leave-one-out jackknife method is

 \[
 \frac{n_h - 1}{n_h}
 \]

 where \(n_h \) is the number of PSUs sampled from stratum \(h \). We use the `multiplier()` suboption to set these values. The default is derived from the above formula, assuming that \(n_h \) is equal to the number of replicate-weight variables for stratum \(h \).

Because of privacy concerns, public survey datasets may not contain stratum-specific information. However, the population size and an overall jackknife multiplier will probably be provided. You must then supply this information to `svyset` for the jackknife replicate-weight variables. We will use the 1999–2000 NHANES data to illustrate how to set these characteristics.
The NHANES datasets for years 1999–2000 are available for download from the Centers for Disease Control and Prevention (CDC) website, https://www.cdc.gov. This particular release of the NHANES data contains jackknife replication weights in addition to the usual PSU and stratum information. These variables are contained in the demographic dataset. In our web browser, we saved the demographic data from the CDC website https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/DEMO.XPT. We suggest that you rename the data to demo.xpt.

The 1999–2000 NHANES datasets are distributed in SAS Transport format, so we use Stata’s import sasxport8 command to read the data into memory. Because of the nature of the survey design, the demographic dataset demo.xpt has two sampling-weight variables. wtint2yr contains the sampling weights appropriate for the interview data, and wtmec2yr contains the sampling weights appropriate for the Mobile Examination Center (MEC) exam data. Consequently, there are two sets of jackknife replicate-weight variables. The jackknife replicate-weight variables for the interview data are named wtirep01, wtirep02, ..., wtirep52. The jackknife replicate-weight variables for the MEC exam data are named wtmrep01, wtmrep02, ..., wtmrep52. The documentation published with the NHANES data gives guidance on which weight variables to use.

```
.import sasxport5 demo.xpt
.describe wtint2yr wtmec2yr wtirep01 wtmrep01
```

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage type</th>
<th>display format</th>
<th>label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtint2yr</td>
<td>double</td>
<td>%10.0g</td>
<td>Full Sample 2 Year Interview Weight</td>
<td></td>
</tr>
<tr>
<td>wtmec2yr</td>
<td>double</td>
<td>%10.0g</td>
<td>Full Sample 2 Year MEC Exam Weight</td>
<td></td>
</tr>
<tr>
<td>wtirep01</td>
<td>double</td>
<td>%10.0g</td>
<td>Interview Weight Jack Knife Replicate 01</td>
<td></td>
</tr>
<tr>
<td>wtmrep01</td>
<td>double</td>
<td>%10.0g</td>
<td>MEC Exam Weight Jack Knife Replicate 01</td>
<td></td>
</tr>
</tbody>
</table>

The number of PSUs in the NHANES population is not apparent, so we will not set an FPC value, but we can set the standard jackknife multiplier for the 52 replicate-weight variables and save the results as a Stata dataset for future use. Also the NHANES datasets all contain a variable called seqn. This variable has a respondent sequence number that allows the dataset users to merge the demographic dataset with other 1999–2000 NHANES datasets, so we sort on seqn before saving demo99_00.dta.

```
.local mult = 51/52
.svyset, jkrweight(wtmrep*, multiplier('mult'))
(output omitted)
.svyset, jkrweight(wtirep*, multiplier('mult'))
(output omitted)
.svyset, clear
.sort seqn
.save demo99_00
```

To complete this example, we will perform a simple analysis using the blood pressure data; however, before we can perform any analysis, we have to merge the blood pressure dataset, bpx.xpt, with our demographic dataset, demo99_00.dta. In our web browser, we saved the blood pressure data from the CDC website https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/BPX.XPT. We suggest that you rename the data to bpx.xpt.

We can then use import sasxport8 to read in the blood pressure data, sort on seqn, and save the resulting dataset to bpx99_00.dta. We read in our copy of the demographic data, drop the irrelevant weight variables, and merge in the blood pressure data from bpx99_00.dta. A quick call to tabulate on the _merge variable generated by merge indicates that 683 observations in the
demographic data are not present in the blood pressure data. We do not drop these observations; otherwise, the estimate of the population size will be incorrect. Finally, we set the appropriate sampling and replicate-weight variables with svyset before replacing bpx99_00.dta with a more complete copy of the blood pressure data.

```
.import sasxport5 bpx.xpt, clear
.sort seqn
.save bpx99_00
.file bpx99_00.dta saved
.use demo99_00
.drop wtint?yr wtirep*
.merge 1:1 seqn using bpx99_00

Result # of obs.
not matched 683
 from master 683 (_merge==1)
 from using 0 (_merge==2)
matched 9,282 (_merge==3)
```

Having saved our merged dataset (with svysettings), we estimate the mean systolic blood pressure for the population, using the MEC exam replication weights for jackknife variance estimation.

```
.svy: mean bpxsar
(running mean on estimation sample)
Jackknife replications (52)
.................................................. 50
Survey: Mean estimation
Number of strata = 1
Number of obs = 7,898
Population size = 231,756,417
Replications = 52
Design df = 51

        Jackknife
Mean Std. Err. [95% Conf. Interval]
 bpxsar 119.7056 .5109122 118.6799 120.7313
```

Combining datasets from multiple surveys

The 2001–2002 NHANES datasets are also available from the CDC website, https://www.cdc.gov. The guidelines that are published with these datasets recommend that the 1999–2000 and 2001–2002 NHANES datasets be combined to increase the accuracy of results. Combining datasets from multiple surveys is a complicated process, and Stata has no specific tools for this task. However, the distributors of the NHANES datasets provide sampling-weight variables for the 1999–2002 combined data in the respective demographic datasets. They also provide some simple instructions on how to combine the datasets from these two surveys.
In the previous example, we worked with the 1999–2000 NHANES data. The 2001–2002 NHANES demographics data are contained in `demo_b.xpt`, and the blood pressure data are contained in `bpx_b.xpt`. We follow the same steps as in the previous example to merge the blood pressure data with the demographic data for 2001–2002.

Visit the following CDC websites and save the data:

We suggest that you rename the data to `bpx_b.xpt` and `demo_b.xpt`. We can then continue with our example:

```
. import sasxport5 bpx_b.xpt, clear
. sort seqn
. save bpx01_02
file bpx01_02.dta saved
. import sasxport5 demo_b.xpt, clear
. drop wtint?yr
. sort seqn
. merge 1:1 seqn using bpx01_02
Result # of obs.
not matched 562
  from master 562 (_merge==1)
  from using 0 (_merge==2)
matched 10,477 (_merge==3)
. drop _merge
. svyset sdmvpsu [pw=wtmec2yr], strata(sdmvstra)
  pweight: wtmec2yr
  VCE: linearized
  Single unit: missing
  Strata 1: sdmvstra
  SU 1: sdmvpsu
  FPC 1: <zero>
. save bpx01_02, replace
file bpx01_02.dta saved
```

The demographic dataset for 2001–2002 does not contain replicate-weight variables, but there are variables that provide information on PSUs and strata for variance estimation. The PSU information is contained in `sdmvpsu`, and the stratum information is in `sdmvstra`. See the documentation that comes with the NHANES datasets for the details regarding these variables.

This new blood pressure dataset (`bpx01_02.dta`) is all we need if we are interested in analyzing blood pressure data only for 2001–2002. However, we want to use the 1999–2002 combined data, so we will follow the advice in the guidelines and just combine the datasets from the two surveys.

For those concerned about overlapping stratum identifiers between the two survey datasets, it is a simple exercise to check that `sdmvstra` ranges from 1 to 13 for 1999–2000 but ranges from 14 to 28 for 2001–2002. Thus the stratum identifiers do not overlap, so we can simply append the data.

The 2001–2002 NHANES demographic dataset has no jackknife replicate-weight variables, so we drop the replicate-weight variables from the 1999–2000 dataset. The sampling-weight variable `wtmec2yr` is no longer appropriate for use with the combined data because its values are based on the survey designs individually, so we drop it from the combined dataset. Finally, we use `svyset` to identify the design variables for the combined surveys. `wtmec4yr` is the sampling-weight variable for the MEC exam data developed by the data producers for the combined 1999–2002 NHANES data.
. use bpx99_00
. drop wt?rep*
. append using bpx01_02
. drop wtmec2yr
. svyset sdmvpsu [pw=wtmec4yr], strata(sdmvstra)
 pweight: wtmec4yr
 VCE: linearized
 Single unit: missing
 Strata 1: sdmvstra
 SU 1: sdmvpsu
 FPC 1: <zero>
. save bpx99_02
file bpx99_02.dta saved

Now we can estimate the mean systolic blood pressure for our population by using the combined surveys and jackknife variance estimation.

. svy jackknife: mean bpxsar
 (running mean on estimation sample)
Jackknife replications (57)

.. 50
.......
Survey: Mean estimation
Number of strata = 28 Number of obs = 16,297
Number of PSUs = 57 Population size = 237,466,080
Replications = 57
Design df = 29

<table>
<thead>
<tr>
<th></th>
<th>Jackknife</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Std. Err. [95% Conf. Interval]</td>
</tr>
<tr>
<td>bpxsar</td>
<td>119.8914 .3828434 119.1084 120.6744</td>
</tr>
</tbody>
</table>

Video example

Specifying the design of your survey data to Stata
Stored results

svyset stores the following in \(r() \):

Scalars
- \(r(\text{stages}) \) number of sampling stages
- \(r(\text{stages wt}) \) last stage containing stage-level weights
- \(r(\text{bsn}) \) bootstrap mean-weight adjustment
- \(r(\text{fay}) \) Fay’s adjustment
- \(r(\text{dof}) \) \(\text{dof}() \) value

Macros
- \(r(\text{wtype}) \) weight type
- \(r(\text{wexp}) \) weight expression
- \(r(\text{wvar}) \) weight variable name
- \(r(\text{weight #}) \) variable identifying weight for stage #
- \(r(\text{su #}) \) variable identifying sampling units for stage #
- \(r(\text{strata #}) \) variable identifying strata for stage #
- \(r(\text{fpc #}) \) FPC for stage #
- \(r(\text{bsrweight}) \) \(\text{bsrweight}() \) variable list
- \(r(\text{brrweight}) \) \(\text{brrweight}() \) variable list
- \(r(\text{jkrweight}) \) \(\text{jkrweight}() \) variable list
- \(r(\text{sdweight}) \) \(\text{sdweight}() \) variable list
- \(r(\text{sdrfpc}) \) \(\text{fpc}() \) value from within \(\text{sdweight}() \)
- \(r(\text{vce}) \) \(\text{vce}() \) specified in \(\text{vce}() \)
- \(r(\text{mse}) \) \(\text{mse} \), if specified
- \(r(\text{poststrata}) \) \(\text{poststrata}() \) variable
- \(r(\text{postweight}) \) \(\text{postweight}() \) variable
- \(r(\text{rake}) \) \(\text{rake}() \) specification
- \(r(\text{regress}) \) \(\text{regress}() \) specification
- \(r(\text{settings}) \) svyset arguments to reproduce the current settings
- \(r(\text{singleunit}) \) \(\text{singleunit}() \) setting

References

Also see

[SVY] **Survey** — Introduction to survey commands
[SVY] **svy** — The survey prefix command
[SVY] **svydesc** — Describe survey data
[SVY] **Calibration** — Calibration for survey data
[SVY] **Poststratification** — Poststratification for survey data
[SVY] **Subpopulation estimation** — Subpopulation estimation for survey data
[SVY] **Variance estimation** — Variance estimation for survey data