Description

`estat svyset` reports the survey design characteristics associated with the current estimation results.

`estat effects` displays a table of design and misspecification effects for each estimated parameter.

`estat lceffects` displays a table of design and misspecification effects for a user-specified linear combination of the parameter estimates.

`estat size` displays a table of sample and subpopulation sizes for each estimated subpopulation mean, proportion, ratio, or total. This command is available only after `svy: mean`, `svy: proportion`, `svy: ratio`, and `svy: total`; see `[R] mean`, `[R] proportion`, `[R] ratio`, and `[R] total`.

`estat sd` reports subpopulation standard deviations based on the estimation results from `mean` and `svy: mean`; see `[R] mean`. `estat sd` is not appropriate with estimation results that used direct standardization or poststratification.

`estat strata` displays a table of the number of singleton and certainty strata within each sampling stage. The variance scaling factors are also displayed for estimation results where `singuleunit(scaled)` was `svyset`.

`estat cv` reports the coefficient of variation (CV) for each coefficient in the current estimation results. The CV for coefficient b is

$$ CV(b) = \frac{SE(b)}{|b|} \times 100\% $$

`estat gof` reports a goodness-of-fit test for binary response models using survey data. This command is available only after `svy: logistic`, `svy: logit`, and `svy: probit`; see `[R] logistic`, `[R] logit`, and `[R] probit`.

`estat vce` displays the covariance or correlation matrix of the parameter estimates of the previous model. See `[R] estat vce` for examples.

Quick start

Design effects for each parameter in current estimation results after a command using the `svy:` prefix

`estat effects`

Design effects for the sum of parameter estimates for variables v1 and v2

`estat lceffects v1 + v2`

As above, but add misspecification effects

`estat lceffects v1 + v2, deff deft meff meft`
Number of observations used and subpopulation size for each parameter
 `estat size`

Estimate of subpopulation standard deviation based on estimation results from `svy: mean`
 `estat sd`

Compute standard deviation using an estimate of SRS variance for sampling within a subpopulation
 `estat sd, srssubpop`

Display the number of singleton and certainty strata within each sampling stage
 `estat strata`

Coefficient of variation for each parameter in current estimation results
 `estat cv`

Goodness-of-fit test for binary response models using survey data and grouping data into quintiles
 `estat gof, group(5)`

Variance–covariance matrix of parameter estimates from the most recent model
 `estat vce`

As above, but display a correlation matrix
 `estat vce, correlation`

Menu

Statistics > Survey data analysis > DEFF, MEFF, and other statistics
Syntax

Survey design characteristics

 estat svyset

Design and misspecification effects for point estimates

 estat effects [, estat_effects_options]

Design and misspecification effects for linear combinations of point estimates

 estat lceff [, estat_lceff_options]

Subpopulation sizes

 estat size [, estat_size_options]

Subpopulation standard-deviation estimates

 estat sd [, estat_sd_options]

Singleton and certainty strata

 estat strata

Coefficient of variation for survey data

 estat cv [, estat_cv_options]

Goodness-of-fit test for binary response models using survey data

 estat gof [if] [in] [, estat_gof_options]

Display covariance matrix estimates

 estat vce [, estat_vce_options]

estat_effects_options Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deff</td>
<td>report DEFF design effects</td>
</tr>
<tr>
<td>deft</td>
<td>report DEFT design effects</td>
</tr>
<tr>
<td>srs</td>
<td>report design effects, assuming SRS within subpopulation</td>
</tr>
<tr>
<td>srs</td>
<td>srs subpop</td>
</tr>
<tr>
<td>meff</td>
<td>report MEFF design effects</td>
</tr>
<tr>
<td>meft</td>
<td>report MEFT design effects</td>
</tr>
<tr>
<td>display_options</td>
<td>control spacing and display of omitted variables and base and empty cells</td>
</tr>
</tbody>
</table>
estat_iceffects_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>deff</code></td>
<td>report DEFF design effects</td>
</tr>
<tr>
<td><code>deft</code></td>
<td>report DEFT design effects</td>
</tr>
<tr>
<td><code>srssubpop</code></td>
<td>report design effects, assuming SRS within subpopulation</td>
</tr>
<tr>
<td><code>mef</code></td>
<td>report MEFF design effects</td>
</tr>
<tr>
<td><code>meft</code></td>
<td>report MEFT design effects</td>
</tr>
</tbody>
</table>

estat_size_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>obs</code></td>
<td>report number of observations (within subpopulation)</td>
</tr>
<tr>
<td><code>size</code></td>
<td>report subpopulation sizes</td>
</tr>
</tbody>
</table>

estat_sd_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>variance</code></td>
<td>report subpopulation variances instead of standard deviations</td>
</tr>
<tr>
<td><code>srssubpop</code></td>
<td>report standard deviation, assuming SRS within subpopulation</td>
</tr>
</tbody>
</table>

estat_cv_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nolegend</code></td>
<td>suppress the table legend</td>
</tr>
<tr>
<td><code>display_options</code></td>
<td>control spacing and display of omitted variables and base and empty cells</td>
</tr>
</tbody>
</table>

estat_gof_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group(#)</code></td>
<td>compute test statistic using # quantiles</td>
</tr>
<tr>
<td><code>total</code></td>
<td>compute test statistic using the total estimator instead of the mean estimator</td>
</tr>
<tr>
<td><code>all</code></td>
<td>execute test for all observations in the data</td>
</tr>
</tbody>
</table>

estat_vce_options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>covariance</code></td>
<td>display as covariance matrix; the default</td>
</tr>
<tr>
<td><code>correlation</code></td>
<td>display as correlation matrix</td>
</tr>
<tr>
<td><code>equation(spec)</code></td>
<td>display only specified equations</td>
</tr>
<tr>
<td><code>block</code></td>
<td>display submatrices by equation</td>
</tr>
<tr>
<td><code>diag</code></td>
<td>display submatrices by equation; diagonal blocks only</td>
</tr>
<tr>
<td><code>format(%,fmt)</code></td>
<td>display format for covariances and correlations</td>
</tr>
<tr>
<td><code>nolines</code></td>
<td>suppress lines between equations</td>
</tr>
<tr>
<td><code>display_options</code></td>
<td>control display of omitted variables and base and empty cells</td>
</tr>
</tbody>
</table>
Options

Options are presented under the following headings:

- Options for estat effects
- Options for estat lceffects
- Options for estat size
- Options for estat sd
- Options for estat cv
- Options for estat gof
- Options for estat vce

Options for estat effects

deff and deft request that the design-effect measures DEFF and DEFT be displayed. This is the default, unless direct standardization or poststratification was used.

The deff and deft options are not allowed with estimation results that used direct standardization or poststratification. These methods obscure the measure of design effect because they adjust the frequency distribution of the target population.

srssubpop requests that DEFF and DEFT be computed using an estimate of simple random sampling (SRS) variance for sampling within a subpopulation. By default, DEFF and DEFT are computed using an estimate of the SRS variance for sampling from the entire population. Typically, srssubpop is used when computing subpopulation estimates by strata or by groups of strata.

meff and meft request that the misspecification-effect measures MEFF and MEF be displayed.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels; see [R] estimation options.

Options for estat lceffects

deff and deft request that the design-effect measures DEFF and DEFT be displayed. This is the default, unless direct standardization or poststratification was used.

The deff and deft options are not allowed with estimation results that used direct standardization or poststratification. These methods obscure the measure of design effect because they adjust the frequency distribution of the target population.

srssubpop requests that DEFF and DEFT be computed using an estimate of simple random sampling (SRS) variance for sampling within a subpopulation. By default, DEFF and DEFT are computed using an estimate of the SRS variance for sampling from the entire population. Typically, srssubpop is used when computing subpopulation estimates by strata or by groups of strata.

meff and meft request that the misspecification-effect measures MEFF and MEF be displayed.

Options for estat size

obs requests that the number of observations used to compute the estimate be displayed for each row of estimates.

size requests that the estimate of the subpopulation size be displayed for each row of estimates. The subpopulation size estimate equals the sum of the weights for those observations in the estimation sample that are also in the specified subpopulation. The estimated population size is reported when a subpopulation is not specified.
Options for estat sd

`variance` requests that the subpopulation variance be displayed instead of the standard deviation.

`srs_subpop` requests that the standard deviation be computed using an estimate of SRS variance for sampling within a subpopulation. By default, the standard deviation is computed using an estimate of the SRS variance for sampling from the entire population. Typically, `srs_subpop` is given when computing subpopulation estimates by strata or by groups of strata.

Options for estat cv

`nolegend` prevents the table legend identifying the subpopulations from being displayed.

display_options: `noomitted`, `vsquish`, `noopener_cells`, `baselevels`, `allbaselevels`; see [R] estimation options.

Options for estat gof

`group(#)` specifies the number of quantiles to be used to group the data for the goodness-of-fit test. The minimum allowed value is `group(2)`. The maximum allowed value is `group(df)`, where `df` is the design degrees of freedom (e(df-r)). The default is `group(10)`.

`total` requests that the goodness-of-fit test statistic be computed using the total estimator instead of the mean estimator.

`all` requests that the goodness-of-fit test statistic be computed for all observations in the data, ignoring any if or in restrictions specified with the model fit.

Options for estat vce

`covariance` displays the matrix as a variance–covariance matrix; this is the default.

`correlation` displays the matrix as a correlation matrix rather than a variance–covariance matrix. `rho` is a synonym.

`equation(spec)` selects the part of the VCE to be displayed. If `spec` is `eqlist`, the VCE for the listed equations is displayed. If `spec` is `eqlist1 \ eqlist2`, the part of the VCE associated with the equations in `eqlist1` (rowwise) and `eqlist2` (columnwise) is displayed. If `spec` is `*`, all equations are displayed. `equation()` implies block if `diag` is not specified.

`block` displays the submatrices pertaining to distinct equations separately.

`diag` displays the diagonal submatrices pertaining to distinct equations separately.

`format(%)fmt)` specifies the number format for displaying the elements of the matrix. The default is `format(%.10.0g)` for covariances and `format(%.8f)` for correlations. See [U] 12.5 Formats: Controlling how data are displayed for more information.

`nolines` suppresses lines between equations.

display_options: `noomitted`, `noopener_cells`, `baselevels`, `allbaselevels`; see [R] estimation options.
Remarks and examples

Example 1

Using data from the Second National Health and Nutrition Examination Survey (NHANES II) (McDowell et al. 1981), let’s estimate the population means for total serum cholesterol (tcresult) and for serum triglycerides (tgresult).

```
use http://www.stata-press.com/data/r15/nhanes2
svy: mean tcresult tgresult
```

```
Survey: Mean estimation
Number of strata = 31  Number of obs = 5,050
Number of PSUs   = 62  Population size = 56,820,832
Design df        = 31
```

```
<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>95% Conf. Interval</td>
</tr>
<tr>
<td>tcresult</td>
<td>211.3975</td>
<td>1.252274</td>
<td>208.8435 213.9515</td>
</tr>
<tr>
<td>tgresult</td>
<td>138.576</td>
<td>2.071934</td>
<td>134.3503 142.8018</td>
</tr>
</tbody>
</table>
```

We can use `estat svyset` to remind us of the survey design characteristics that were used to produce these results.

```
estat svyset
```

```
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: psu
FPC 1: <zero>
```

`estat effects` reports a table of design and misspecification effects for each mean we estimated.

```
estat effects, deff deft meff meft
```

```
<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>DEFF</td>
<td>DEFT</td>
<td>MEFF</td>
</tr>
<tr>
<td>tcresult</td>
<td>211.3975</td>
<td>1.252274</td>
<td>3.57141</td>
<td>1.88982</td>
<td>3.46105</td>
</tr>
<tr>
<td>tgresult</td>
<td>138.576</td>
<td>2.071934</td>
<td>2.35697</td>
<td>1.53524</td>
<td>2.32821</td>
</tr>
</tbody>
</table>
```

`estat size` reports a table that contains sample and population sizes.

```
estat size
```

```
<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>Obs</td>
</tr>
<tr>
<td>tcresult</td>
<td>211.3975</td>
<td>1.252274</td>
<td>5,050</td>
</tr>
<tr>
<td>tgresult</td>
<td>138.576</td>
<td>2.071934</td>
<td>5,050</td>
</tr>
</tbody>
</table>
```
estat `size` can also report a table of subpopulation sizes.

```
svy: mean tcrresult, over(sex)
(output omitted)
estat size
Male: sex = Male
Female: sex = Female

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>Obs</td>
<td>Size</td>
</tr>
<tr>
<td>tcrresult</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>210.7937</td>
<td>1.312967</td>
<td>4,915</td>
<td>56,159,480</td>
</tr>
<tr>
<td>Female</td>
<td>215.2188</td>
<td>1.193853</td>
<td>5,436</td>
<td>60,998,033</td>
</tr>
</tbody>
</table>
```

estat sd reports a table of subpopulation standard deviations.

```
estat sd
Male: sex = Male
Female: sex = Female

<table>
<thead>
<tr>
<th>Over</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td></td>
</tr>
<tr>
<td>tcrresult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>210.7937</td>
<td>45.79065</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>215.2188</td>
<td>50.72563</td>
<td></td>
</tr>
</tbody>
</table>
```

estat cv reports a table of coefficients of variations for the estimates.

```
estat cv
Male: sex = Male
Female: sex = Female

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td></td>
</tr>
<tr>
<td>tcrresult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>210.7937</td>
<td>1.312967</td>
<td>.622868</td>
</tr>
<tr>
<td>Female</td>
<td>215.2188</td>
<td>1.193853</td>
<td>.554716</td>
</tr>
</tbody>
</table>
```

Example 2: Design effects with subpopulations

When there are subpopulations, estat effects can compute design effects with respect to one of two different hypothetical SRS designs. The default design is one in which SRS is conducted across the full population. The alternate design is one in which SRS is conducted entirely within the subpopulation of interest. This alternate design is used when the srssubpop option is specified.

Deciding which design is preferable depends on the nature of the subpopulations. If we can imagine identifying members of the subpopulations before sampling them, the alternate design is preferable. This case arises primarily when the subpopulations are strata or groups of strata. Otherwise, we may prefer to use the default.
Here is an example using the default with the NHANES II data.

```
. use http://www.stata-press.com/data/r15/nhanes2b
. svy: mean iron, over(sex)
   (output omitted)
. estat effects
   Male: sex = Male
   Female: sex = Female

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Over</td>
<td>Mean</td>
<td>Std. Err.</td>
<td>DEFF</td>
<td>DEFT</td>
</tr>
<tr>
<td>iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>104.7969</td>
<td>.557267</td>
<td>1.36097</td>
<td>1.16661</td>
</tr>
<tr>
<td>Female</td>
<td>97.16247</td>
<td>.6743344</td>
<td>2.01403</td>
<td>1.41916</td>
</tr>
</tbody>
</table>
```

Thus the design-based variance estimate is about 36% larger than the estimate from the hypothetical SRS design including the full population. We can get DEFF and DEFT for the alternate SRS design by using the `srssubpop` option.

```
. estat effects, srssubpop
   Male: sex = Male
   Female: sex = Female

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Over</td>
<td>Mean</td>
<td>Std. Err.</td>
<td>DEFF</td>
<td>DEFT</td>
</tr>
<tr>
<td>iron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>104.7969</td>
<td>.557267</td>
<td>1.348</td>
<td>1.16104</td>
</tr>
<tr>
<td>Female</td>
<td>97.16247</td>
<td>.6743344</td>
<td>2.03132</td>
<td>1.42524</td>
</tr>
</tbody>
</table>
```

Because the NHANES II did not stratify on sex, we think it problematic to consider design effects with respect to SRS of the female (or male) subpopulation. Consequently, we would prefer to use the default here, although the values of DEFF differ little between the two in this case.

For other examples (generally involving heavy oversampling or undersampling of specified sub-populations), the differences in DEFF for the two schemes can be much more dramatic.
Consider the NMIHS data (Gonzalez, Krauss, and Scott 1992), and compute the mean of birthwgt over race:

```
use http://www.stata-press.com/data/r15/nmihs
svy: mean birthwgt, over(race)
(omitted output)
estat effects
  nonblack: race = nonblack
  black: race = black
```

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>DEFF</td>
<td>DEFT</td>
</tr>
<tr>
<td>birthwgt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nonblack</td>
<td>3402.32</td>
<td>7.609532</td>
<td>1.44376</td>
<td>1.20157</td>
</tr>
<tr>
<td>black</td>
<td>3127.834</td>
<td>6.529814</td>
<td>.172041</td>
<td>.414778</td>
</tr>
</tbody>
</table>

```
estat effects, srssubpop
  nonblack: race = nonblack
  black: race = black
```

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>DEFF</td>
<td>DEFT</td>
</tr>
<tr>
<td>birthwgt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nonblack</td>
<td>3402.32</td>
<td>7.609532</td>
<td>.826842</td>
<td>.909308</td>
</tr>
<tr>
<td>black</td>
<td>3127.834</td>
<td>6.529814</td>
<td>.528963</td>
<td>.727298</td>
</tr>
</tbody>
</table>

Because the NMIHS survey was stratified on race, marital status, age, and birthweight, we believe it reasonable to consider design effects computed with respect to SRS within an individual race group. Consequently, we would recommend here the alternative hypothetical design for computing design effects; that is, we would use the srssubpop option.

Example 3: Misspecification effects

Misspecification effects assess biases in variance estimators that are computed under the wrong assumptions. The survey literature (for example, Scott and Holt 1982, 850; Skinner 1989) defines misspecification effects with respect to a general set of “wrong” variance estimators. estat effects considers only one specific form: variance estimators computed under the incorrect assumption that our observed sample was selected through SRS.

The resulting “misspecification effect” measure is informative primarily when an unweighted point estimator is approximately unbiased for the parameter of interest. See Eltinge and Sribney (1996a) for a detailed discussion of extensions of misspecification effects that are appropriate for biased point estimators.

Note the difference between a misspecification effect and a design effect. For a design effect, we compare our complex-design–based variance estimate with an estimate of the true variance that we would have obtained under a hypothetical true simple random sample. For a misspecification effect, we compare our complex-design–based variance estimate with an estimate of the variance from fitting the same model without weighting, clustering, or stratification.
estat effects defines MEFF and MEFT as

\[
\text{MEFF} = \frac{\hat{V}}{\hat{V}_{msp}}
\]
\[
\text{MEFT} = \sqrt{\text{MEFF}}
\]

where \(\hat{V}\) is the appropriate design-based estimate of variance and \(\hat{V}_{msp}\) is the variance estimate computed with a misspecified design—ignoring the sampling weights, stratification, and clustering.

Here we request that the misspecification effects be displayed for the estimation of mean zinc levels from our NHANES II data.

```stata
use http://www.stata-press.com/data/r15/nhanes2b
svy: mean zinc, over(sex)
(estimation output omitted)
estat effects, meff meft
     Male: sex = Male
     Female: sex = Female
```

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th>MEFF</th>
<th>MEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>90.74543</td>
<td>.5850741</td>
<td>6.28254</td>
<td>2.5065</td>
</tr>
<tr>
<td>Female</td>
<td>83.8635</td>
<td>.4689532</td>
<td>6.32648</td>
<td>2.51525</td>
</tr>
</tbody>
</table>

If we run `ci means` without weights, we get the standard errors that are \((\hat{V}_{msp})^{1/2}\).

```stata
sort sex
ci means zinc if sex == "Male":sex
```

```stata
Variable |     | Obs  | Mean      | Std. Err. | [95% Conf. Interval] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zinc</td>
<td></td>
<td>4,375</td>
<td>89.53143</td>
<td>.2334228</td>
<td>89.0738  89.98906</td>
</tr>
</tbody>
</table>
```

```stata
display [zinc]_se[Male]/r(se)
2.5064994
```

```stata
display ([zinc]_se[Male]/r(se))^2
6.2825393
```

```stata
ci means zinc if sex == "Female":sex
```

```stata
Variable |     | Obs  | Mean      | Std. Err. | [95% Conf. Interval] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zinc</td>
<td></td>
<td>4,827</td>
<td>83.76652</td>
<td>.186444</td>
<td>83.40101  84.13204</td>
</tr>
</tbody>
</table>
```

```stata
display [zinc]_se[Female]/r(se)
2.515249
```

```stata
display ([zinc]_se[Female]/r(se))^2
6.3264774
```
Let’s compare the mean of total serum cholesterol (tcresult) between men and women in the NHANES II dataset.

```
. use http://www.stata-press.com/data/r15/nhanes2
. svy: mean tcresult, over(sex)
```

```
Survey: Mean estimation
Number of strata = 31
Number of obs    = 10,351
Number of PSUs   = 62
Population size  = 117,157,513
Design df        = 31

Male: sex = Male
Female: sex = Female

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Err.</td>
<td>[95% Conf. Interval]</td>
<td></td>
</tr>
<tr>
<td>tcresult</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>210.7937</td>
<td>1.312967</td>
<td>208.1159</td>
<td>213.4715</td>
</tr>
<tr>
<td>Female</td>
<td>215.2188</td>
<td>1.193853</td>
<td>212.784</td>
<td>217.6537</td>
</tr>
</tbody>
</table>
```

We can use `estat lceffects` to report the standard error, design effects, and misspecification effects of the difference between the above means.

```
. estat lceffects [tcresult]Male - [tcresult]Female, deff deft meff meft
```

```
Mean | Coef.       | Std. Err. | DEFF | DEFT | MEFF | MEFT
(1)  | -4.425109   | 1.086786  | 1.31241 | 1.1456 | 1.27473 | 1.12904
```

Example 5: Using survey data to determine Neyman allocation

Suppose that we have partitioned our population into L strata and stratum h contains N_h individuals. Also let σ_h represent the standard deviation of a quantity we wish to sample from the population. According to Cochran (1977, sec. 5.5), we can minimize the variance of the stratified mean estimator, for a fixed sample size n, if we choose the stratum sample sizes according to Neyman allocation:

$$n_h = n \frac{N_h \sigma_h}{\sum_{i=1}^{L} N_i \sigma_i}$$ \hspace{1cm} (1)$$

We can use `estat sd` with our current survey data to produce a table of subpopulation standard-deviation estimates. Then we could plug these estimates into (1) to improve our survey design for the next time we sample from our population.
Here is an example using birthweight from the NMIHS data. First, we need estimation results from svy: mean over the strata.

```
. use http://www.stata-press.com/data/r15/nmihs
. svyset [pw=finwgt], strata(stratan)
    
    pweight: finwgt
    VCE: linearized
    Single unit: missing
    Strata 1: stratan
    SU 1: <observations>
    FPC 1: <zero>
. svy: mean birthwgt, over(stratan)
```

Next we will use estat size to report the table of stratum sizes. We will also generate matrix `p_obs` to contain the observed percent allocations for each stratum. In the matrix expression, `r(_N)` is a row vector of stratum sample sizes and `e(N)` contains the total sample size. `r(_N_subp)` is a row vector of the estimated population stratum sizes.

```
. estat size
```

<table>
<thead>
<tr>
<th>Over</th>
<th>Linearized Mean</th>
<th>Std. Err.</th>
<th>Obs</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthwgt</td>
<td>1</td>
<td>1049.434</td>
<td>19.00149</td>
<td>841</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2189.561</td>
<td>9.162736</td>
<td>803</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3303.492</td>
<td>7.38429</td>
<td>3,578</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1036.626</td>
<td>12.32294</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2211.217</td>
<td>9.864682</td>
<td>714</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3485.42</td>
<td>8.057648</td>
<td>3,300</td>
</tr>
</tbody>
</table>

```
. matrix p_obs = 100 * r(_N)/e(N)
. matrix nsubp = r(_N_subp)
```

Now we call estat sd to report the stratum standard-deviation estimates and generate matrix `p_neyman` to contain the percent allocations according to (1). In the matrix expression, `r(sd)` is a vector of the stratum standard deviations.

```
. estat sd
```

```
``
. estat sd
  1: stratan = 1
  2: stratan = 2
  3: stratan = 3
  4: stratan = 4
  5: stratan = 5
  6: stratan = 6

<table>
<thead>
<tr>
<th>Over</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthwgt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1049.434</td>
<td>2305.931</td>
</tr>
<tr>
<td>2</td>
<td>2189.561</td>
<td>555.7971</td>
</tr>
<tr>
<td>3</td>
<td>3303.492</td>
<td>687.3575</td>
</tr>
<tr>
<td>4</td>
<td>1036.626</td>
<td>999.0867</td>
</tr>
<tr>
<td>5</td>
<td>2211.217</td>
<td>349.8068</td>
</tr>
<tr>
<td>6</td>
<td>3485.42</td>
<td>300.6945</td>
</tr>
</tbody>
</table>

. matrix p_neyman = 100 * hadamard(nsubp,r(sd))/el(nsubp*r(sd)',1,1)
. matrix list p_obs, format(%4.1f)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>birthwgt</td>
<td></td>
</tr>
<tr>
<td>r1</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>33.2</td>
</tr>
</tbody>
</table>

. matrix list p_neyman, format(%4.1f)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>birthwgt</td>
<td></td>
</tr>
<tr>
<td>r1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>62.0</td>
</tr>
</tbody>
</table>

We can see that strata 3 and 6 each contain about one-third of the observed data, with the rest of the observations spread out roughly equally to the remaining strata. However, plugging our sample estimates into (1) indicates that stratum 6 should get 62% of the sampling units, stratum 3 should get about 27%, and the remaining strata should get a roughly equal distribution of sampling units.

Example 6: Summarizing singleton and certainty strata

Use estat strata with svy estimation results to produce a table that reports the number of singleton and certainty strata in each sampling stage. Here is an example using (fictional) data from a complex survey with five sampling stages (the dataset is already svyset). If singleton strata are present, estat strata will report their effect on the standard errors.
. use http://www.stata-press.com/data/r15/strata5
. svy: total y
   (output omitted)
. estat strata

<table>
<thead>
<tr>
<th>Stage</th>
<th>Singleton strata</th>
<th>Certainty strata</th>
<th>Total strata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>204</td>
<td>311</td>
<td>865</td>
</tr>
</tbody>
</table>

Note: Missing standard error because of stratum with single sampling unit.

estat strata also reports the scale factor used when the singleunit(scaled) option is svyset. Of the 865 strata in the last stage, 204 are singleton strata and 311 are certainty strata. Thus the scaling factor for the last stage is

\[
\frac{865 - 311}{865 - 311 - 204} \approx 1.58
\]

. svyset, singleunit(scaled) noclear
   (output omitted)
. svy: total y
   (output omitted)
. estat strata

<table>
<thead>
<tr>
<th>Stage</th>
<th>Singleton strata</th>
<th>Certainty strata</th>
<th>Total strata</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>1.11</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>110</td>
<td>1.02</td>
</tr>
<tr>
<td>5</td>
<td>204</td>
<td>311</td>
<td>865</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Note: Variances scaled within each stage to handle strata with a single sampling unit.

The singleunit(scaled) option of svyset is one of three methods in which Stata’s svy commands can automatically handle singleton strata when performing variance estimation; see [SVY] variance estimation for a brief discussion of these methods.
Example 7: Goodness-of-fit test for svy: logistic

From example 2 in [SVY] svy estimation, we modeled the incidence of high blood pressure as a function of height, weight, age, and sex (using the female indicator variable).

```
. use http://www.stata-press.com/data/r15/nhanes2d
. svyset
 pweight: finalwgt
 VCE: linearized
 Single unit: missing
 Strata 1: strata
 SU 1: psu
 FPC 1: <zero>
. svy: logistic highbp height weight age female
(running logistic on estimation sample)
```

Survey: Logistic regression
Number of strata = 31 Number of obs = 10,351
Number of PSUs = 62 Population size = 117,157,513
Design df = 31 F( 4, 28) = 368.33
Prob > F = 0.0000

```
 Linearized

 Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
 height .9657022 .0051511 -6.54 0.000 .9552534 .9762654
 weight 1.053023 .0026902 20.22 0.000 1.047551 1.058524
 age 1.050059 .0019761 25.96 0.000 1.046037 1.054097
 female .6272129 .0368195 -7.95 0.000 .5564402 .7069870
 _cons .716868 .6106878 -0.39 0.699 .1261491 4.073749
```

Note: _cons estimates baseline odds.

We can use estat gof to perform a goodness-of-fit test for this model.

```
. estat gof
Logistic model for highbp, goodness-of-fit test
 F(9,23) = 5.32
 Prob > F = 0.0006
```

The $F$ statistic is significant at the 5% level, indicating that the model is not a good fit for these data.
Stored results

`estat svyset` stores the following in `r()`:

Scalars
- `r(stages)` number of sampling stages
- `r(stages_wt)` last stage containing stage-level weights

Macros
- `r(wtype)` weight type
- `r(wexp)` weight expression
- `r(wvar)` weight variable name
- `r(weight##)` variable identifying weight for stage #
- `r(su##)` variable identifying sampling units for stage #
- `r(strata##)` variable identifying strata for stage #
- `r(fpc##)` FPC for stage #
- `r(bsrweight)` `bsrweight()` variable list
- `r(bsn)` bootstrap mean-weight adjustment
- `r(brrweight)` `brrweight()` variable list
- `r(fay)` Fay’s adjustment
- `r(jkrweight)` `jkrweight()` variable list
- `r(sdrweight)` `sdrweight()` variable list
- `r(sdrfpc)` `fpc()` value from within `sdrweight()`
- `r(vce)` `vcetype` specified in `vce()`
- `r(dof)` `dof()` value
- `r(mse)` `mse`, if specified
- `r(poststrata)` `poststrata()` variable
- `r(postweight)` `postweight()` variable
- `r(rake)` `rake()` specification
- `r(regress)` `regress()` specification
- `r(settings)` `svyset` arguments to reproduce the current settings
- `r(singleunit)` `singleunit()` setting

`estat strata` stores the following in `r()`:

Matrices
- `r(\_N\_strata\_single)` number of strata with one sampling unit
- `r(\_N\_strata\_certain)` number of certainty strata
- `r(\_N\_strata)` number of strata
- `r(scale)` variance scale factors used when `singleunit(scaled)` is `svyset`

`estat effects` stores the following in `r()`:

Matrices
- `r(deff)` vector of DEFF estimates
- `r(deft)` vector of DEFT estimates
- `r(deffsup)` vector of DEFF estimates for `srssubpop`
- `r(deftsup)` vector of DEFT estimates for `srssubpop`
- `r(meff)` vector of MEFF estimates
- `r(meft)` vector of MEFT estimates

`estat lceffects` stores the following in `r()`:

 Scalars
- `r(estimate)` point estimate
- `r(se)` estimate of standard error
- `r(df)` degrees of freedom
- `r(deff)` DEFF estimate
- `r(deft)` DEFT estimate
- `r(deffsup)` DEFF estimate for `srssubpop`
- `r(deftsup)` DEFT estimate for `srssubpop`
- `r(meff)` MEFF estimate
- `r(meft)` MEFT estimate
**estat** stores the following in \( r() \):

Matrices
\[
\begin{align*}
\text{r(}_N\text{)} & : \text{vector of numbers of nonmissing observations} \\
\text{r(}_N\text{SUBP)} & : \text{vector of subpopulation size estimates}
\end{align*}
\]

**estat sd** stores the following in \( r() \):

Macros
\[
\text{r(srssubpop)} : \text{srssubpop, if specified}
\]

Matrices
\[
\begin{align*}
\text{r(mean)} & : \text{vector of subpopulation mean estimates} \\
\text{r(sd)} & : \text{vector of subpopulation standard-deviation estimates} \\
\text{r(variance)} & : \text{vector of subpopulation variance estimates}
\end{align*}
\]

**estat cv** stores the following in \( r() \):

Matrices
\[
\begin{align*}
\text{r(b)} & : \text{estimates} \\
\text{r(se)} & : \text{standard errors of the estimates} \\
\text{r(cv)} & : \text{coefficients of variation of the estimates}
\end{align*}
\]

**estat gof** stores the following in \( r() \):

Scalars
\[
\begin{align*}
\text{r(p)} & : p\text{-value associated with the test statistic} \\
\text{r(F)} & : F\text{ statistic, if } e(\text{df}_r) \text{ was stored by estimation command} \\
\text{r(df1)} & : \text{numerator degrees of freedom for } F\text{ statistic} \\
\text{r(df2)} & : \text{denominator degrees of freedom for } F\text{ statistic} \\
\text{r(chi2)} & : \chi^2\text{ statistic, if } e(\text{df}_r) \text{ was not stored by estimation command} \\
\text{r(df)} & : \text{degrees of freedom for } \chi^2\text{ statistic}
\end{align*}
\]

**estat vce** stores the following in \( r() \):

Matrices
\[
\text{r(V)} : \text{VCE or correlation matrix}
\]

**Methods and formulas**

Methods and formulas are presented under the following headings:

- Design effects
- Linear combinations
- Misspecification effects
- Population and subpopulation standard deviations
- Coefficient of variation
- Goodness of fit for binary response models

**Design effects**

**estat effects** produces two estimators of design effect, DEFF and DEFT.

DEFF is estimated as described in Kish (1965) as

\[
\text{DEFF} = \frac{\hat{V}(\hat{\theta})}{\hat{V}_{\text{srswor}}(\hat{\theta}_{\text{srswor}})}
\]
where $\hat{V}(\theta)$ is the design-based estimate of variance for a parameter, $\theta$, and $\hat{V}_{\text{srswor}}(\tilde{\theta}_{\text{srs}})$ is an estimate of the variance for an estimator, $\tilde{\theta}_{\text{srs}}$, that would be obtained from a similar hypothetical survey conducted using SRS without replacement (wor) and with the same number of sample elements, $m$, as in the actual survey. For example, if $\theta$ is a total $\sum Y$, then

\[
\hat{V}_{\text{srswor}}(\tilde{\theta}_{\text{srs}}) = (1 - f) \frac{\hat{M}}{m - 1} \sum_{j=1}^{m} w_j (y_j - \hat{Y})^2
\]

(1)

where $\hat{Y} = \hat{Y}/\hat{M}$. The factor $(1 - f)$ is a finite population correction. If the user sets an FPC for the first stage, $f = m/\hat{M}$ is used; otherwise, $f = 0$.

DEFT is estimated as described in Kish (1987, 41) as

\[
\text{DEFT} = \sqrt{\frac{\hat{V}(\theta)}{\hat{V}_{\text{srswr}}(\tilde{\theta}_{\text{srs}})}}
\]

where $\hat{V}_{\text{srswr}}(\tilde{\theta}_{\text{srs}})$ is an estimate of the variance for an estimator, $\tilde{\theta}_{\text{srs}}$, obtained from a similar survey conducted using SRS with replacement (wr). $\hat{V}_{\text{srswr}}(\tilde{\theta}_{\text{srs}})$ is computed using (1) with $f = 0$.

When computing estimates for a subpopulation, $S$, and the \text{srrsubpop} option is not specified (that is, the default), (1) is used with $w_{SJ} = I_S(j) w_j$ in place of $w_j$, where

\[
I_S(j) = \begin{cases} 
1, & \text{if } j \in S \\
0, & \text{otherwise}
\end{cases}
\]

The sums in (1) are still calculated over all elements in the sample, regardless of whether they belong to the subpopulation: by default, the SRS is assumed to be done across the full population.

When the \text{srrsubpop} option is specified, the SRS is carried out within subpopulation $S$. Here (1) is used with the sums restricted to those elements belonging to the subpopulation; $m$ is replaced with $m_S$, the number of sample elements from the subpopulation; $\hat{M}$ is replaced with $\hat{M}_S$, the sum of the weights from the subpopulation; and $\hat{Y}$ is replaced with $\hat{Y}_S = \hat{Y}_S/\hat{M}_S$, the weighted mean across the subpopulation.

**Linear combinations**

\texttt{estat lceffects} estimates $\eta = C\theta$, where $\theta$ is a $q \times 1$ vector of parameters (for example, population means or population regression coefficients) and $C$ is any $1 \times q$ vector of constants. The estimate of $\eta$ is $\hat{\eta} = C\hat{\theta}$, and its variance estimate is

\[
\hat{V}(\hat{\eta}) = C\hat{V}(\hat{\theta})C'
\]

Similarly, the SRS without replacement (srswor) variance estimator used in the computation of DEFF is

\[
\hat{V}_{\text{srswor}}(\tilde{\eta}_{\text{srs}}) = C\hat{V}_{\text{srswor}}(\tilde{\theta}_{\text{srs}})C'
\]
and the SRS with replacement (srswr) variance estimator used in the computation of DEFT is

\[ \hat{V}_{srswr}(\tilde{\eta}_{srs}) = C\hat{V}_{srswr}(\hat{\theta}_{srs})C' \]

The variance estimator used in computing MEFF and MEFT is

\[ \hat{V}_{msp}(\tilde{\eta}_{msp}) = C\hat{V}_{msp}(\hat{\theta}_{msp})C' \]

`estat lceffects` was originally developed under a different command name; see Eltinge and Sribney (1996b).

### Misspecification effects

`estat effects` produces two estimators of misspecification effect, MEFF and MEFT.

\[
\text{MEFF} = \frac{\hat{V}(\hat{\theta})}{\hat{V}_{msp}(\hat{\theta}_{msp})} \\
\text{MEFT} = \sqrt{\text{MEFF}}
\]

where \( \hat{V}(\hat{\theta}) \) is the design-based estimate of variance for a parameter, \( \theta \), and \( \hat{V}_{msp}(\hat{\theta}_{msp}) \) is the variance estimate for \( \hat{\theta}_{msp} \). These estimators, \( \hat{\theta}_{msp} \) and \( \hat{V}_{msp}(\hat{\theta}_{msp}) \), are based on the incorrect assumption that the observations were obtained through SRS with replacement: they are the estimators obtained by simply ignoring weights, stratification, and clustering. When \( \theta \) is a total \( Y \), the estimator and its variance estimate are computed using the standard formulas for an unweighted total:

\[
\hat{Y}_{msp} = \bar{M}\bar{y} = \frac{\bar{M}}{m} \sum_{j=1}^{m} y_j
\]

\[
\hat{V}_{msp}(\hat{Y}_{msp}) = \frac{\bar{M}^2}{m(m-1)} \sum_{j=1}^{m} (y_j - \bar{y})^2
\]

When computing MEFF and MEFT for a subpopulation, sums are restricted to those elements belonging to the subpopulation, and \( m_S \) and \( \bar{M}_S \) are used in place of \( m \) and \( \bar{M} \).

### Population and subpopulation standard deviations

For srswr designs, the variance of the mean estimator is

\[ V_{srswr}(\bar{y}) = \sigma^2 / n \]

where \( n \) is the sample size and \( \sigma \) is the population standard deviation. `estat sd` uses this formula and the results from `mean` and `svy: mean` to estimate the population standard deviation via

\[ \hat{\sigma} = \sqrt{n \hat{V}_{srswr}(\bar{y})} \]

Subpopulation standard deviations are computed similarly, using the corresponding variance estimate and sample size.
Coefficient of variation

The coefficient of variation (CV) for estimate $\hat{\theta}$ is

$$ CV(\hat{\theta}) = \sqrt{\hat{V}(\hat{\theta})} \times 100\% $$

A missing value is reported when $\hat{\theta}$ is zero.

Goodness of fit for binary response models

Let $y_j$ be the $j$th observed value of the dependent variable, $\hat{p}_j$ be the predicted probability of a positive outcome, and $\hat{r}_j = y_j - \hat{p}_j$. Let $g$ be the requested number of groups from the group() option; then the $\hat{r}_j$ are placed in $g$ quantile groups as described in Methods and formulas for the xtile command in [D] pctile. Let $\bar{r} = (\bar{r}_1, \ldots, \bar{r}_g)$, where $\bar{r}_i$ is the subpopulation mean of the $\hat{r}_j$ for the $i$th quantile group. The standard Wald statistic for testing $H_0: \bar{r} = 0$ is

$$ \hat{X}^2 = \bar{r}' \hat{V}(\bar{r})^{-1} \bar{r} $$

where $\hat{V}(\bar{r})$ is the design-based variance estimate for $\bar{r}$. Here $\hat{X}^2$ is approximately distributed as a $\chi^2$ with $g - 1$ degrees of freedom. This Wald statistic is one of the three goodness-of-fit statistics discussed in Graubard, Korn, and Midthune (1997). estat gof reports this statistic when the design degrees of freedom is missing, such as with svy bootstrap results.

According to Archer and Lemeshow (2006), the $F$-adjusted mean residual test is given by

$$ \hat{F} = \hat{X}^2(d - g + 2)/(dg) $$

where $d$ is the design degrees of freedom. Here $\hat{F}$ is approximately distributed as an $F$ with $g - 1$ numerator and $d - g + 2$ denominator degrees of freedom.

With the total option, estat gof uses the subpopulation total estimator instead of the subpopulation mean estimator.

References


Also see

- [SVY] *svy postestimation* — Postestimation tools for svy
- [SVY] *svy estimation* — Estimation commands for survey data
- [SVY] *subpopulation estimation* — Subpopulation estimation for survey data
- [SVY] *variance estimation* — Variance estimation for survey data