
stsplit — Split and join time-span records

Description Quick start Menu Syntax
Options for stsplit Option for stjoin Remarks and examples Acknowledgments
References Also see

Description
stsplit with the at(numlist) or every(#) option splits episodes into two or more episodes at the

implied time points since being at risk or after a time point specified by after(). Each resulting record
contains the follow-up on one subject through one time band. Expansion on multiple time scales may be

obtained by repeatedly using stsplit. newvar specifies the name of the variable to be created containing

the observation’s category. The new variable records the interval to which each new observation belongs

and is bottom coded.

stsplit, at(failures) performs episode splitting at the failure times (per stratum).

stjoin performs the reverse operation, namely, joining episodes back together when such can be

done without losing information.

Quick start
Split episodes in stset data at analysis times 5, 10, and 15, and create new time category identifier

timecat
stsplit timecat, at(5 10 15)

Join data that has been split after dropping variable created by stsplit
drop timecat
stjoin

Split episodes at the value in startvar
stsplit timecat, at(0) after(time=startvar)

Split data at 30, 40, and 50 time units after the value in startvar
stsplit timecat, at(30 40 50) after(time=startvar)

Split data every 10 time units after startvar
stsplit timecat, every(10) after(time=startvar)

Split data at failure times

stsplit, at(failures)

Same as above, and create risk-set identifier variable riskvar
stsplit, at(failures) riskset(riskvar)

1

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststset.pdf#ststset

stsplit — Split and join time-span records 2

Menu
stsplit
Statistics > Survival analysis > Setup and utilities > Split time-span records

stjoin
Statistics > Survival analysis > Setup and utilities > Join time-span records

Syntax
Split at designated times

stsplit newvar [if], {at(numlist) | every(#)} [stsplitDT options]

Split at failure times

stsplit [if], at(failures) [stsplitFT options]

Join episodes

stjoin [, censored(numlist)]

stsplitDT options Description

Main
∗ at(numlist) split records at specified analysis times
∗ every(#) split records when analysis time is a multiple of #

after(spec) use time since spec for at() or every() rather than time since
onset of risk; see Options

trim exclude observations outside of range

nopreserve do not save original data; programmer’s option

∗Either at(numlist) or every(#) is required with stsplit at designated times.

stsplitFT options Description

Main
∗ at(failures) split at observed failure times

strata(varlist) restrict splitting to failures within stratum defined by varlist

riskset(newvar) create a risk-set ID variable named newvar

nopreserve do not save original data; programmer’s option

∗at(failures) is required with stsplit at failure times.

You must stset your dataset by using the id() option before using stsplit or stjoin; see [ST] stset.
nopreserve does not appear in the dialog box.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/ststsplit.pdf#ststsplitOptionsforstsplit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststset.pdf#ststset

stsplit — Split and join time-span records 3

Options for stsplit

� � �
Main �

at(numlist) or every(#) is required in syntax one; at(failures) is required for syntax two. These

options specify the analysis times at which the records are to be split.

at(5(5)20) splits records at 𝑡 = 5, 𝑡 = 10, 𝑡 = 15, and 𝑡 = 20.

If at([...] max) is specified, max is replaced by a suitably large value. For instance, to split records

every five analysis-time units from time zero to the largest follow-up time in our data, we could find

out what the largest time value is by typing summarize t and then explicitly typing it into the at()
option, or we could just specify at(0(5)max).

every(#) is a shorthand for at(#(#)max); that is, episodes are split at each positive multiple of #.

after(spec) specifies the reference time for at() or every(). Syntax one can be thought of as cor-

responding to after(time of onset of risk), although you cannot really type this. You could type,

however, after(time=birthdate) or after(time=marrydate) or after(marrydate).

spec has syntax

[{time | t | t} =]{exp | min(exp) | asis(exp)}

where

time specifies that the expression be evaluated in the same time units as timevar in stset timevar,
. . . . This is the default.

t and t specify that the expression be evaluated in units of analysis time. t and t are synonyms;

it makes no difference whether you specify one or the other.

exp specifies the reference time. For multiepisode data, exp should be constant within subject ID.

min(exp) specifies that for multiepisode data, the minimum of exp be taken within ID.

asis(exp) specifies that for multiepisode data, exp be allowed to vary within ID.

trim specifies that observations with values less than the minimum or greater than the maximum value

listed in at() be excluded from subsequent analysis. Such observations are not dropped from the

data; trim merely sets their value of variable st to 0 so that they will not be used, yet they can still

be retrieved the next time the dataset is stset.

strata(varlist) specifies up to five strata variables. Observations with equal values of the variables are

assumed to be in the same stratum. strata() restricts episode splitting to failures that occur within

the stratum, and memory requirements are reduced when strata are specified.

riskset(newvar) specifies the name for a new variable recording the distinct risk set in which an

episode occurs, and missing otherwise.

The following option is available with stsplit but is not shown in the dialog box:

nopreserve is intended for use by programmers. It speeds the transformation by not saving the original

data, which can be restored should things go wrong or if you press Break. Programmers often specify

this option when they have already preserved the original data. nopreserve does not affect the

transformation.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

stsplit — Split and join time-span records 4

Option for stjoin
censored(numlist) specifies values of the failure variable, failvar, from

stset ..., failure(failvar =. . .) that indicate “no event” (censoring).

If you are using stjoin to rejoin records after stsplit, you do not need to specify censored().
Just do not forget to drop the variable created by stsplit before typing stjoin. See example 4

below.

Neither do you need to specify censored() if, when you stset your dataset, you specified

failure(failvar) and not failure(failvar =...). Then stjoin knows that failvar = 0 and

failvar = . (missing) correspond to no event. Two records can be joined if they are contiguous

and record the same data and the first record has failvar = 0 or failvar = ., meaning no event at that

time.

You may need to specify censored(), and you probably do if, when you stset the dataset, you

specified failure(failvar =...). If stjoin is to join records, it needs to know what events do

not count and can be discarded. If the only such event is failvar = ., you do not need to specify

censored().

Remarks and examples
Remarks are presented under the following headings:

What stsplit does and why
Using stsplit to split at designated times
Time versus analysis time
Splitting data on recorded ages
Using stsplit to split at failure times

What stsplit does and why
stsplit splits records into two or more records on the basis of analysis time or on a variable that

depends on analysis time, such as age. stsplit takes data like

id _t0 _t x1 x2 _d
1 0 18 12 11 1

and produces

id _t0 _t x1 x2 _d tcat
1 0 5 12 11 0 0
1 5 10 12 11 0 5
1 10 18 12 11 1 10

or

id _t0 _t x1 x2 _d agecat
1 0 7 12 11 0 30
1 7 17 12 11 0 40
1 17 18 12 11 1 50

The above alternatives record the same underlying data: subject 1 had x1 = 12 and x2 = 11 during

0 < 𝑡 ≤ 18, and at 𝑡 = 18, the subject failed.

The difference between the two alternatives is that the first breaks out the analysis times 0–5, 5–10,

and 10–20 (although subject 1 failed before 𝑡 = 20). The second breaks out age 30–40, 40–50, and

50–60. You cannot tell from what is presented above, but at 𝑡 = 0, subject 1 was 33 years old.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/ststsplit.pdf#ststsplitRemarksandexamplesex4

stsplit — Split and join time-span records 5

In our example, that the subject started with one record is not important. The original data on the

subject might have been

id _t0 _t x1 x2 _d
1 0 14 12 11 0
1 14 18 12 9 1

and then we would have obtained

id _t0 _t x1 x2 _d tcat
1 0 5 12 11 0 0
1 5 10 12 11 0 5
1 10 14 12 11 0 10
1 14 18 12 9 1 10

or

id _t0 _t x1 x2 _d agecat
1 0 7 12 11 0 30
1 7 14 12 11 0 40
1 14 17 12 9 0 40
1 17 18 12 9 1 50

Also we could just as easily have produced records with analysis time or age recorded in single-year

categories. That is, we could start with

id _t0 _t x1 x2 _d
1 0 14 12 11 0
1 14 18 12 9 1

and produce

id _t0 _t x1 x2 _d tcat
1 0 1 12 11 0 0
1 1 2 12 11 0 1
1 2 3 12 11 0 2
...

or

id _t0 _t x1 x2 _d agecat
1 0 1 12 11 0 30
1 1 2 12 11 0 31
1 2 3 12 11 0 32
...

Moreover, we can even do this splitting on more than one variable. Let’s go back and start with

id _t0 _t x1 x2 _d
1 0 18 12 11 1

Let’s split it into the analysis-time intervals 0–5, 5–10, and 10–20, and let’s split it into 10-year age

intervals 30–40, 40–50, and 50–60. The result would be

id _t0 _t x1 x2 _d tcat agecat
1 0 5 12 11 0 0 30
1 5 7 12 11 0 5 30
1 7 10 12 11 0 5 40
1 10 17 12 11 0 10 40
1 17 18 12 11 1 10 50

Why would we want to do any of this?

stsplit — Split and join time-span records 6

We might want to split on a time-dependent variable, such as age, if we want to estimate a Cox

proportional hazards model and include current age among the regressors (although we could instead use

stcox’s tvc() option) or if we want to make tables by age groups (see [ST] strate).

Using stsplit to split at designated times
stsplit’s syntax to split at designated times is, ignoring other options,

stsplit newvar [if], at(numlist)
stsplit newvar [if], at(numlist) after(spec)

at() specifies the analysis times at which records are to be split. Typing at(5 10 15) splits records at

the indicated analysis times and separates records into the four intervals 0–5, 5–10, 10–15, and 15+.

In the first syntax, the splitting is done on analysis time, 𝑡. In the second syntax, the splitting is done
on 5, 10, and 15 analysis-time units after the time given by after(spec).

In either case, stsplit also creates newvar containing the interval to which each observation belongs.
Here newvarwould contain 0, 5, 10, and 15; it would contain 0 if the observation occurred in the interval

0–5, 5 if the observation occurred in the interval 5–10, and so on. To be precise,

Precise newvar

Category meaning value

0–5 (−∞, 5] 0

5–10 (5, 10] 5

10–15 (10, 15] 10

15+ (15, ∞) 15

If any of the at() numbers are negative (which would be allowed only by specifying the after() option

and would be unusual), the first category is labeled one less than the minimum value specified by at().

Consider the data

id yr0 yr1 yrborn x1 event
1 1990 1995 1960 5 52
2 1993 1997 1964 3 47

In these data, subjects became at risk in yr0. The failure event of interest is event = 47, so we stset
our dataset by typing

. stset yr1, id(id) origin(time yr0) failure(event==47)
(output omitted)

and that results in

id _t0 _t yr0 yr1 yrborn x1 event _d
1 0 5 1990 1995 1960 5 52 0
2 0 4 1993 1997 1964 3 47 1

In the jargon of st, variables t0 and t record the span of each record in analysis-time (𝑡) units. Variables
yr0 and yr1 also record the time span, but in time units. Variable d records 1 for failure and 0 otherwise.

https://www.stata.com/manuals/ststrate.pdf#ststrate
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

stsplit — Split and join time-span records 7

Typing stsplit cat, at(2 4 6 8) would split the records on the basis of analysis time:

. stsplit cat, at(2 4 6 8)
(3 observations (episodes) created)
. order id _t0 _t yr0 yr1 yrborn x1 event _d cat
. list id-cat

id _t0 _t yr0 yr1 yrborn x1 event _d cat

1. 1 0 2 1990 1992 1960 5 . 0 0
2. 1 2 4 1990 1994 1960 5 . 0 2
3. 1 4 5 1990 1995 1960 5 52 0 4
4. 2 0 2 1993 1995 1964 3 . 0 0
5. 2 2 4 1993 1997 1964 3 47 1 2

The first record, which represented the analysis-time span (0, 5], was split into three records: (0, 2],
(2, 4], and (4, 5]. The yrborn and x1 values from the single record were duplicated in (0, 2], (2, 4], and
(4, 5]. The original event variable was changed to missing at 𝑡 = 2 and 𝑡 = 4 because we do not know

the value of event; all we know is that event is 52 at 𝑡 = 5. The d variable was correspondingly set

to 0 for 𝑡 = 2 and 𝑡 = 4 because we do know, at least, that the subject did not fail.

stsplit also keeps your original time variables up to date in case you want to streset or re-stset
your dataset. yr1 was updated, too.

Now let’s go back to our original dataset after we stset it but before we split it,

id _t0 _t yr0 yr1 yrborn x1 event _d
1 0 5 1990 1995 1960 5 52 0
2 0 4 1993 1997 1964 3 47 1

and consider splitting on age. In 1990, subject 1 is age 1990 − yrborn = 1990 − 1960 = 30, and

subject 2 is 29. If we type

. stsplit acat, at(30 32 34) after(time=yrborn)

we will split the data according to

age <= 30 (called acat=0)
30 < age <= 32 (called acat=30)
32 < age <= 34 (called acat=32)
34 < age (called acat=34)

The result will be

id _t0 _t yr0 yr1 yrborn x1 event _d acat
1 0 2 1990 1992 1960 5 . 0 30
1 2 4 1990 1994 1960 5 . 0 32
1 4 5 1990 1995 1960 5 52 0 34
2 0 1 1993 1994 1964 3 . 0 0
2 1 3 1993 1996 1964 3 . 0 30
2 3 4 1993 1997 1964 3 47 1 32

The original record on subject 1 corresponding to (0, 5] was split into (0, 2], (2, 4], and (4, 5] because
those are the 𝑡-values at which age becomes 32 and 34.

You can stsplit the data more than once. Now having these data, if we typed

. stsplit cat, at(2 4 6 8)

stsplit — Split and join time-span records 8

the result would be

id _t0 _t yr0 yr1 yrborn x1 event _d acat cat
1 0 2 1990 1992 1960 5 . 0 30 0
1 2 4 1990 1994 1960 5 . 0 32 2
1 4 5 1990 1995 1960 5 52 0 34 4
2 0 1 1993 1994 1964 3 . 0 0 0
2 1 2 1993 1995 1964 3 . 0 30 0
2 2 3 1993 1996 1964 3 . 0 30 2
2 3 4 1993 1997 1964 3 47 1 32 2

Whether we typed

. stsplit acat, at(30 32 34) after(time=yrborn)

. stsplit cat, at(2 4 6 8)

or

. stsplit cat, at(2 4 6 8)

. stsplit acat, at(30 32 34) after(time=yrborn)

would make no difference.

Time versus analysis time
Be careful using the after() option if, when you stset your dataset, you specified stset’s scale()

option. We say be careful, but actually we mean be appreciative, because stsplit will do just what you

would expect if you did not think too hard.

When you split a record on a time-dependent variable, at() is still specified in analysis-time units,

meaning units of time/scale().

For instance, if your original data recorded time as Stata dates, that is, number of days since 1960,

id date0 date1 birthdate x1 event
1 14apr1993 27mar1995 12jul1959 5 52

...

and you previously stset your dataset by typing

. stset date1, id(id) origin(time date0) scale(365.25) ...

and you now wanted to split on the age implied by birthdate, you would specify the split points in

years since birth:

. stsplit agecat, at(20(5)60) after(time=birth)

at(20(5)60) means to split the records at the ages, measured in years, of 20, 25, . . . , 60.

When you stset your dataset, you basically told st how you recorded times (you recorded them as

dates) and how to map such times (dates) into analysis time. That was implied by what you typed, and

all of st remembers that. Typing

. stsplit agecat, at(20(5)60) after(time=birth)

tells stsplit to split the data on 20, 25, . . . , 60 analysis-time units after birthdate for each subject.

stsplit — Split and join time-span records 9

Splitting data on recorded ages
Recorded ages can sometimes be tricky. Consider the data

id yr0 yr1 age x1 event
1 1980 1996 30 5 52

...

When was age = 30 recorded—1980 or 1996? Put aside that question because things are about to get

worse. Say that you stset this dataset so that yr0 is the origin(),

id _t0 _t yr0 yr1 age x1 event
1 0 16 1980 1996 30 5 52

...

and then split on analysis time by typing stsplit cat, at(5(5)20). The result would be

id _t0 _t yr0 yr1 age x1 event
1 0 5 1980 1985 30 5 .
1 5 10 1980 1990 30 5 .
1 10 15 1980 1995 30 5 .
1 15 16 1980 1996 30 5 52

Regardless of the answer to the question on when age was measured, age is most certainly not 30 in the

newly created records, although you might argue that age at baseline was 30 and that is what you wanted,

anyway.

The only truly safe way to deal with ages is to convert them back to birthdates at the outset. Here we

would, early on, type

. generate bdate = yr1 - age (if age was measured at yr1)

or

. generate bdate = yr0 - age (if age was measured at yr0)

In fact, stsplit tries to protect you from making age errors. Suppose that you did not do as we just

recommended. Say that age was measured at yr1, and you typed, knowing that stsplit wants a date,

. stsplit acat, at(20(5)50) after(time= yr1-age)

on these already stsplit data. stsplit will issue the error message “after() should be constant within

id”. To use the earliest date, you need to type

. stsplit acat, at(20(5)50) after(time= min(yr1-age))

Nevertheless, be aware that when you stsplit data, if you have recorded ages in your data, and if the

records were not already split to control for the range of those ages, then age values, just like all the other

variables, are carried forward and no longer reflect the age of the newly created record.

Example 1: Splitting on age
Consider the data from a heart disease and diet survey. The data arose from a study described more

fully in Morris, Marr, and Clayton (1977) and analyzed in Clayton and Hills (1993). (Their results differ

slightly from ours because the dataset has been updated.)

stsplit — Split and join time-span records 10

. use https://www.stata-press.com/data/r19/diet
(Diet data with dates)
. describe
Contains data from https://www.stata-press.com/data/r19/diet.dta
Observations: 337 Diet data with dates

Variables: 11 1 May 2024 19:01

Variable Storage Display Value
name type format label Variable label

id int %9.0g Subject identity number
fail byte %8.0g Outcome (CHD = 1 3 13)
job byte %8.0g Occupation
month byte %8.0g Month of survey
energy float %9.0g Total energy (1000kcals/day)
height float %9.0g Height (cm)
weight float %9.0g Weight (kg)
hienergy byte %9.0g Indicator for high energy
doe int %td Date of entry
dox int %td Date of exit
dob int %td Date of birth

Sorted by: id

In this dataset, the outcome variable, fail, has been coded as 0, 1, 3, 5, 12, 13, 14, and 15. Codes 1, 3,
and 13 indicated coronary heart disease (CHD), other nonzero values code other events such as cancer,

and 0 is used to mean “no event” at the end of the study.

The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0

otherwise.

We would like to expand the data, using age as the time scale with 10-year age bands. We do this by

first stsetting the dataset, specifying the date of birth as the origin.

. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)
Survival-time data settings

ID variable: id
Failure event: fail!=0 & fail<.

Observed time interval: (dox[_n-1], dox]
Enter on or after: time doe
Exit on or before: failure
Time for analysis: (time-origin)/365.25

Origin: time dob

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
80 failures in single-failure-per-subject data

4,603.669 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 30.07529
Last observed exit t = 69.99863

The origin is set to date of birth, making time-since-birth analysis time, and the scale is set to 365.25, so

that time since birth is measured in years.

stsplit — Split and join time-span records 11

Let’s list a few records and verify that the analysis-time variables t0 and t are indeed recorded as

we expect:

. list id dob doe dox fail _t0 _t if id==1 | id==34

id dob doe dox fail _t0 _t

1. 1 04jan1915 16aug1964 01dec1976 0 49.615332 61.908282
34. 34 12jun1899 16apr1959 31dec1966 3 59.841205 67.550992

We see that patient 1 was 49.6 years old at time of entry into our study and left at age 61.9. Patient 34

entered the study at age 59.8 and exited the study with CHD at age 67.6.

Now we can split the data by age:

. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)

stsplit added 418 observations to the dataset inmemory and generated a new variable, ageband, which
identifies each observation’s age group.

. list id _t0 _t ageband fail height if id==1 | id==34

id _t0 _t ageband fail height

1. 1 49.615332 50 40 . 175.387
2. 1 50 60 50 . 175.387
3. 1 60 61.908282 60 0 175.387

61. 34 59.841205 60 50 . 177.8
62. 34 60 67.550992 60 3 177.8

The single record for the subject with id = 1 has expanded to three records. The first refers to the age

band 40–49, coded 40, and the subject spends t− t0 = 0.384668 years in this band. The second refers

to the age band 50–59, coded 50, and the subject spends 10 years in this band, and so on. The follow-up

in each of the three bands is censored (fail = .). The single record for the subject with id = 34 is

expanded to two age bands; the follow-up for the first band was censored (fail = .), and the follow-up
for the second band ended in CHD (fail = 3).

The values for variables that do not change with time, such as height, are simply repeated in the

new records. This can lead to much larger datasets after expansion. Dropping unneeded variables before

using stsplit may be necessary.

Example 2: Splitting on age and time in study
To use stsplit to expand the records on two time scales simultaneously, such as age and time in

study, we can first expand on the age scale as described in example 1, and then on the time-in-study scale

with the command

https://www.stata.com/manuals/ststsplit.pdf#ststsplitRemarksandexamplesex_splitting

stsplit — Split and join time-span records 12

. stsplit timeband, at(0(5)25) after(time=doe)
(767 observations (episodes) created)
. list id _t0 _t ageband fail if id==1 | id==34

id _t0 _t ageband fail

1. 1 49.615332 50 40 .
2. 1 50 54.615332 50 .
3. 1 54.615332 59.615332 50 .
4. 1 59.615332 60 50 .
5. 1 60 61.908282 60 0

111. 34 59.841205 60 50 .
112. 34 60 64.841205 60 .
113. 34 64.841205 67.550992 60 3

By splitting the data by using two time scales, we partitioned the data into time cells corresponding

to a Lexis diagram as described, for example, in Clayton and Hills (1993). Also see Keiding (1998) for

an overview of Lexis diagrams. Each new observation created by splitting the data records the time that

the individual spent in a Lexis cell. We can obtain the time spent in the cell by calculating the difference

t − t0. For example, the subject with id = 1 spent 0.384668 years (50 − 49.615332) in the cell

corresponding to age 40–49 and study time 0–5, and 4.615332 years (54.615332 − 50) in the cell for

age 50–59 and study time 0–5.

We can also do these expansions in reverse order, that is, split first on study time and then on age.

Example 3: Explanatory variables that change with time
In the previous examples, time, in the form of age or time in study, is the explanatory variable to

be studied or controlled for, but in some studies other explanatory variables also vary with time. The

stsplit command can sometimes be used to expand the records so that in each new record such an

explanatory variable is constant over time. For example, in the Stanford heart data (see [ST] stset),

we would like to split the data and generate the explanatory variable posttran, which takes the value

0 before transplantation and 1 thereafter. The follow-up must therefore be divided into time before

transplantation and time after.

We first generate for each observation an entry time and an exit time that preserve the correct follow-up

time in such a way that the time of transplants is the same for all individuals. By summarizing wait, the
time to transplant, we obtain its maximum value of 310. By selecting a value greater than this maximum,

say, 320, we now generate two new variables:

. use https://www.stata-press.com/data/r19/stanford, clear
(Heart transplant data)
. generate enter = 320 - wait
. generate exit = 320 + stime

We have created a new artificial time scale where all transplants are coded as being performed at time

320. By defining enter and exit in this manner, we maintain the correct total follow-up time for each

patient. We now stset and stsplit the data:

https://www.stata.com/manuals/ststset.pdf#ststset

stsplit — Split and join time-span records 13

. stset exit, enter(time enter) failure(died) id(id)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (exit[_n-1], exit]
Enter on or after: time enter
Exit on or before: failure

103 total observations
0 exclusions

103 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

34,589.1 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 10
Last observed exit t = 2,119

. stsplit posttran, at(0,320)
(69 observations (episodes) created)
. replace posttran=0 if transplant==0
(34 real changes made)
. replace posttran=1 if posttran==320
(69 real changes made)

We replaced posttran in the last command so that it is now a 0/1 indicator variable. We can now

generate our follow-up time, t1, as the difference between our analysis-time variables, list the data,

and stset the dataset.

. generate t1 =_t - _t0

. list id enter exit _t0 _t posttran if id==16 | id==44

id enter exit _t0 _t posttran

41. 44 320 360 320 360 0
110. 16 292 320 292 320 0
111. 16 292 628 320 628 1

. stset t1, failure(died) id(id)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31,938.1 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,799

stsplit — Split and join time-span records 14

Using stsplit to split at failure times
To split data at failure times, you would use stsplit with the following syntax, ignoring other op-

tions:

stsplit [if] , at(failures)

This form of episode splitting is useful for Cox regression with time-varying covariates. Splitting at

the failure times is useful because of a property of the maximum partial-likelihood estimator for a Cox

regression model: the likelihood is evaluated only at the times at which failures occur in the data, and

the computation depends only on the risk pools at those failure times. Changes in covariates between

failure times do not affect estimates for a Cox regression model. Thus, to fit a model with time-varying

covariates, all you have to do is define the values of these time-varying covariates at all failure times

at which a subject was at risk (Collett 2015, chap. 8). After splitting at failure times, you define time-

varying covariates by referring to the system variable t (analysis time) or the timevar variable used to

stset the data.

After splitting at failure times, all st commands still work fine and produce the same results as before

splitting. To fit parametric models with time-varying covariates, it does not suffice to specify covari-

ates at failure times. Stata can fit “piecewise constant” models by manipulating data using stsplit,
{at() | every()}.

Example 4: Splitting on failure times to test the proportional-hazards assumption
Collett (2015, 187–190) presents data on 26 ovarian cancer patients who underwent two different

chemotherapy protocols after a surgical intervention. Here are a few of the observations:

. use https://www.stata-press.com/data/r19/ocancer, clear

. list patient time cens treat age rdisea in 1/6, separator(0)

patient time cens treat age rdisea

1. 1 156 1 1 66 2
2. 2 1040 0 1 38 2
3. 3 59 1 1 72 2
4. 4 421 0 2 53 2
5. 5 329 1 1 43 2
6. 6 769 0 2 59 2

The treat variable indicates the chemotherapy protocol administered, age records the age of the

patient at the beginning of the treatment, and rdisea records each patient’s residual disease after surgery.
After stsetting this dataset, we fit a Cox proportional-hazards regression model on age and treat to

ascertain the effect of treatment, controlling for age.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp

stsplit — Split and join time-span records 15

. stset time, failure(cens) id(patient)
Survival-time data settings

ID variable: patient
Failure event: cens!=0 & cens<.

Observed time interval: (time[_n-1], time]
Exit on or before: failure

26 total observations
0 exclusions

26 observations remaining, representing
26 subjects
12 failures in single-failure-per-subject data

15,588 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,227

. stcox age treat, nolog nohr
Failure _d: cens

Analysis time _t: time
ID variable: patient

Cox regression with no ties
No. of subjects = 26 Number of obs = 26
No. of failures = 12
Time at risk = 15,588

LR chi2(2) = 15.82
Log likelihood = -27.073767 Prob > chi2 = 0.0004

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .1465698 .0458537 3.20 0.001 .0566982 .2364415
treat -.7959324 .6329411 -1.26 0.209 -2.036474 .4446094

One way to test the proportional-hazards assumption is to include in the model a term for the interac-

tion between age and time at risk, which is a continuously varying covariate. This can be easily done by

first splitting the data at the failure times and then generating the interaction term.

stsplit — Split and join time-span records 16

. stsplit, at(failures)
(12 failure times)
(218 observations (episodes) created)
. generate tage = age * _t
. stcox age treat tage, nolog nohr

Failure _d: cens
Analysis time _t: time

ID variable: patient
Cox regression with no ties
No. of subjects = 26 Number of obs = 244
No. of failures = 12
Time at risk = 15,588

LR chi2(3) = 16.36
Log likelihood = -26.806607 Prob > chi2 = 0.0010

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .2156499 .1126093 1.92 0.055 -.0050602 .43636
treat -.6635945 .6695492 -0.99 0.322 -1.975887 .6486978
tage -.0002031 .0002832 -0.72 0.473 -.0007582 .000352

Other time-varying interactions of age and time at risk could be generated. For instance,

. generate lntage = age * ln(_t)

. generate dage = age * (_t >= 500)

Although inmost analyses in which we include interactions we also includemain effects, if we include

in a Cox regression a multiplicative interaction between analysis time (or any transformation) and some

covariate, we should not include the analysis time as a covariate in stcox. The analysis time is constant

within each risk set, and hence, its effect is not identified.

Technical note
If our interest really were just in performing this test of the proportional-hazards assumption, we

would not have had to use stsplit at all. We could have just typed

. stcox age treat, tvc(age)

to have fit a model including 𝑡*age, and if we wanted instead to include ln(𝑡)*age or age*𝑡 ≥ 500, we

could have typed

. stcox age treat, tvc(age) texp(ln(_t))

. cstoc age treat, tvc(age) texp(_t >= 500)

Still, it is worth understanding how stsplit could be used to obtain the same results for instances when

stcox’s tvc() and texp() options are not rich enough to handle the desired specification.

Assume that we want to control for rdisea as a stratification variable. If the data are already split at

all failure times, we can proceed with

. stcox age treat tage, strata(rdisea)

stsplit — Split and join time-span records 17

If the data are not yet split, and memory is scarce, then we could just split the data at the failure times

within the respective stratum. That is, with the original data in memory, we could type

. stset time, failure(cens) id(patient)

. stsplit, at(failures) strata(rdisea)

. generate tage = age * _t

. stcox treat age tage, strata(rdisea)

This would save memory by reducing the size of the split dataset.

Technical note
Of course, the above model could also be obtained by typing

. stcox age treat, tvc(age) strata(rdisea)

without splitting the data.

Example 5: Cox regression versus conditional logistic regression
Cox regression with the “exact partial” method of handling ties is tightly related to conditional logistic

regression. In fact, we can perform Cox regression via clogit, as illustrated in the following example

using Stata’s cancer data. First, let’s fit the Cox model.

. use https://www.stata-press.com/data/r19/cancer, clear
(Patient survival in drug trial)
. generate id =_n
. stset studytim, failure(died) id(id)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (studytime[_n-1], studytime]
Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

https://www.stata.com/manuals/rclogit.pdf#rclogit

stsplit — Split and join time-span records 18

. stcox age drug, nolog nohr exactp
Failure _d: died

Analysis time _t: studytime
ID variable: id

Cox regression with exact partial likelihood method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 38.13
Log likelihood = -73.10556 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .1169906 .0374955 3.12 0.002 .0435008 .1904805
drug -1.664873 .3437487 -4.84 0.000 -2.338608 -.9911376

We will now perform the same analysis by using clogit. To do this, we first split the data at failure
times, specifying the riskset() option so that a risk set identifier is added to each observation. We then

fit the conditional logistic regression, using d as the outcome variable and the risk set identifier as the

grouping variable.

. stsplit, at(failures) riskset(RS)
(21 failure times)
(534 observations (episodes) created)
. clogit _d age drug, group(RS) nolog
note: multiple positive outcomes within groups encountered.
Conditional (fixed-effects) logistic regression Number of obs = 573

LR chi2(2) = 38.13
Prob > chi2 = 0.0000

Log likelihood = -73.10556 Pseudo R2 = 0.2069

_d Coefficient Std. err. z P>|z| [95% conf. interval]

age .1169906 .0374955 3.12 0.002 .0435008 .1904805
drug -1.664873 .3437487 -4.84 0.000 -2.338608 -.9911376

Example 6: Joining data that have been split with stsplit
Let’s return to the first example. We split the diet data into age bands, using the following commands:

. use https://www.stata-press.com/data/r19/diet, clear
(Diet data with dates)
. stset dox, failure(fail) origin(time dob) enter(time doe) scale(365.25) id(id)
(output omitted)

. stsplit ageband, at(40(10)70)
(418 observations (episodes) created)

We can rejoin the data by typing stjoin:

. stjoin
(option censored(0) assumed)
(no observations eliminated)

https://www.stata.com/manuals/ststsplit.pdf#ststsplitRemarksandexamplesex_splitting

stsplit — Split and join time-span records 19

Nothing happened! stjoin will combine records that are contiguous and record the same data. Here,

when we split the data, stsplit created the new variable ageband, and that variable takes on different
values across the split observations. Remember to drop the variable that stsplit creates:

. drop ageband

. stjoin
(option censored(0) assumed)
(418 observations eliminated)

� �
Wilhelm Lexis (1837–1914) was born near Aachen in Germany. He studied law, mathematics, and

science at the University of Bonn and developed interests in the social sciences during a period in

Paris. Lexis held posts at universities in Strassburg (now Strasbourg, in France), Dorpat (now Tartu,

in Estonia), Freiburg, Breslau (now Wroclaw, in Poland), and Göttingen. During this peripatetic

career, he carried out original work in statistics on the analysis of dispersion, foreshadowing the

later development of 𝜒2 and analysis of variance.� �
Acknowledgments

stsplit and stjoin are extensions of lexis by David Clayton (retired) of the Cambridge Institute

for Medical Research and Michael Hills (1934–2021) of the London School of Hygiene and Tropical

Medicine (Clayton and Hills 1995). The original stsplit and stjoin commands were written by

Jeroen Weesie of the Department of Sociology at Utrecht University, The Netherlands (Weesie 1998a,

1998b), as was the revised stsplit command.

References
Clayton, D. G., and M. Hills. 1993. Statistical Models in Epidemiology. Oxford: Oxford University Press.

———. 1995. ssa7: Analysis of follow-up studies. Stata Technical Bulletin 27: 19–26. Reprinted in Stata Technical

Bulletin Reprints, vol. 5, pp. 219–227. College Station, TX: Stata Press.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3rd ed.

College Station, TX: Stata Press.

Collett, D. 2015.Modelling Survival Data in Medical Research. 3rd ed. Boca Raton, FL: Chapman and Hall/CRC.

Hertz, S. 2001. “Wilhelm Lexis”. In Statisticians of the Centuries, edited by C. C. Heyde and E. Seneta, 204–207. New

York: Springer.

Keiding, N. 1998. “Lexis diagrams”. In Encyclopedia of Biostatistics, edited by P. Armitage and T. Colton, 2844–2850.

New York: Wiley.

Lexis, W. H. 1875. Einleitung in die Theorie der Bevölkerungsstatistik. Strassburg: Trübner.

Morris, J. N., J. W. Marr, and D. G. Clayton. 1977. Diet and heart: A postscript. BMJ 19: 1307–1314. https://doi.org/10.

1136/bmj.2.6098.1307.

Weesie, J. 1998a. ssa11: Survival analysis with time-varying covariates. Stata Technical Bulletin 41: 25–43. Reprinted

in Stata Technical Bulletin Reprints, vol. 7, pp. 268–292. College Station, TX: Stata Press.

———. 1998b. dm62: Joining episodes in multi-record survival time data. Stata Technical Bulletin 45: 5–6. Reprinted

in Stata Technical Bulletin Reprints, vol. 8, pp. 27–28. College Station, TX: Stata Press.

https://www.stata.com/bookstore/sme.html
https://www.stata.com/products/stb/journals/stb27.pdf
https://www.stata-press.com/books/survival-analysis-stata-introduction/
https://doi.org/10.1136/bmj.2.6098.1307
https://doi.org/10.1136/bmj.2.6098.1307
https://www.stata.com/products/stb/journals/stb41.pdf
https://www.stata.com/products/stb/journals/stb45.pdf

stsplit — Split and join time-span records 20

Also see
[ST] stset — Declare data to be survival-time data

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

