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Description
st refers to survival-time data, which are fully described below.

stset declares the data in memory to be st data, informing Stata of key variables and their roles
in a survival-time analysis. When you stset your data, stset runs various data consistency checks
to ensure that what you have declared makes sense. If the data are weighted, you specify the weights
when you stset the data, not when you issue the individual st commands.

streset changes how the st dataset is declared. In multiple-record data, streset can also
temporarily set the sample to include records from before the time at risk (called the past) and records
after failure (called the future). Then typing streset without arguments resets the sample back to
the analysis sample.

st displays how the dataset is currently declared.

Whenever you type stset or streset, Stata runs or reruns data consistency checks to ensure
that what you are now declaring (or declared in the past) makes sense. Thus if you have made any
changes to your data or simply wish to verify how things are, you can type streset with no options.

stset, clear is for use by programmers. It causes Stata to forget the st markers, making the
data no longer st data to Stata. The data remain unchanged. It is not necessary to stset, clear
before doing another stset.

Quick start
Single-record-per-subject survival data

Specify time of failure, recorded in tvar, for data without censoring
stset tvar

Specify time of censoring or failure, tvar, and specify that event = 2 represents a failure
stset tvar, failure(event==2)

Specify that event = 2 and event = 3 represent failures
stset tvar, failure(event==2 3)

Specify failure using indicator variable fail

stset tvar, failure(fail)

Same as above, and specify that subjects become at risk at time torig

stset tvar, failure(fail) origin(time torig)

Specify that subjects become at risk at time 0, but enter the study at time tenter

stset tvar, fail(failure) enter(time tenter)
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2 stset — Declare data to be survival-time data

Specify subjects become at risk at time torig, and enter the study at time tenter

stset tvar, fail(failure) origin(time torig) enter(time tenter)

Same as above, but specify analysis time in years when time variables are measured in days
stset tvar, fail(failure) origin(time torig) enter(time tenter) ///

scale(365.25)

Convert analysis time units back to days
streset, scale(1)

Display previous st settings and verify that any changes to data correspond to settings
stset

Multiple-record-per-subject survival data

Specify analysis-time variable tvar with failure indicator fail and subject identifier idvar
stset tvar, failure(fail) id(idvar)

Same as above, and specify that subjects become at risk at time torig

stset tvar, failure(fail) id(idvar) origin(time torig)

Same as above, and specify that subjects enter the study at time tenter

stset tvar, failure(fail) id(idvar) origin(time torig) ///
enter(time tenter)

Same as above, and specify that subjects exit the study at time texit

stset tvar, failure(fail) id(idvar) origin(time torig) ///
enter(time tenter) exit(time texit)

Menu
Statistics > Survival analysis > Setup and utilities > Declare data to be survival-time data
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Syntax

Single-record-per-subject survival data

stset timevar
[

if
] [

weight
] [

, single options
]

streset
[

if
] [

weight
] [

, single options
]

st
[
, nocmd notable

]
stset, clear

Multiple-record-per-subject survival data

stset timevar
[

if
] [

weight
]
, id(idvar) failure(failvar

[
==numlist

]
)[

multiple options
]

streset
[

if
] [

weight
] [

, multiple options
]

streset, { past | future | past future }

st
[
, nocmd notable

]
stset, clear

single options Description

Main

failure( failvar
[
==numlist

]
) failure event

noshow prevent other st commands from showing st setting information

Options

origin(time exp) define when a subject becomes at risk
scale(#) rescale time value
enter(time exp) specify when subject first enters study
exit(time exp) specify when subject exits study

Advanced

if(exp) select records for which exp is true; recommended rather
than if exp

time0(varname) mechanical aspect of interpretation about records in dataset;
seldom used

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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multiple options Description

Main
∗id(idvar) multiple-record ID variable
∗failure( failvar

[
==numlist

]
) failure event

noshow prevent other st commands from showing st
setting information

Options

origin(
[

varname==numlist
]
time exp | min) define when a subject becomes at risk

scale(#) rescale time value
enter(

[
varname==numlist

]
time exp) specify when subject first enters study

exit(failure |
[

varname==numlist
]
time exp) specify when subject exits study

Advanced

if(exp) select records for which exp is true;
recommended rather than if exp

ever(exp) select subjects for which exp is ever true
never(exp) select subjects for which exp is never true
after(exp) select records within subject on or after

the first time exp is true
before(exp) select records within subject before the

first time exp is true
time0(varname) mechanical aspect of interpretation about

records in dataset; seldom used
∗ id() and failure() are required with stset multiple-record-per-subject survival data.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Examples
. stset ftime (time measured from 0, all failed)
. stset ftime, failure(died) (time measured from 0, censoring)
. stset ftime, failure(died) id(id) (time measured from 0, censoring & ID)
. stset ftime, failure(died==2,3) (time measured from 0, failure codes)
. stset ftime, failure(died) origin(time dob) (time measured from dob, censoring)

You cannot harm your data by using stset, so feel free to experiment.

Options
Options are presented under the following headings:

Options for use with stset and streset
Options unique to streset
Options for st

https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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Options for use with stset and streset

� � �
Main �

id(idvar) specifies the subject-ID variable; observations with equal, nonmissing values of idvar are
assumed to be the same subject. idvar may be string or numeric. Observations for which idvar is
missing (. or "") are ignored.

When id() is not specified, each observation is assumed to represent a different subject and thus
constitutes a one-record-per-subject survival dataset.

When you specify id(), the data are said to be multiple-record data, even if it turns out that there
is only one record per subject. Perhaps they would better be called potentially multiple-record
data.

If you specify id(), stset requires that you specify failure().

Specifying id() never hurts; we recommend it because a few st commands, such as stsplit,
require an ID variable to have been specified when the dataset was stset.

failure(failvar[==numlist]) specifies the failure event.

If failure() is not specified, all records are assumed to end in failure. This is allowed with
single-record data only.

If failure(failvar) is specified, failvar is interpreted as an indicator variable; 0 and missing
mean censored, and all other values are interpreted as representing failure.

If failure(failvar==numlist) is specified, records with failvar taking on any of the values in
numlist are assumed to end in failure, and all other records are assumed to be censored.

noshow prevents other st commands from showing the key st variables at the top of their output.

� � �
Options �

origin([varname==numlist] time exp | min) and scale(#) define analysis time; that is, origin()
defines when a subject becomes at risk. Subjects become at risk when time = origin(). All
analyses are performed in terms of time since becoming at risk, called analysis time.

Let us use the terms time for how time is recorded in the data and t for analysis time. Analysis
time t is defined

t =
time− origin()

scale()

t is time from origin in units of scale.

By default, origin(time 0) and scale(1) are assumed, meaning that t = time. Then you must
ensure that time in your data is measured as time since becoming at risk. Subjects are exposed
at t = time = 0 and later fail. Observations with t = time ≤ 0 are ignored because information
before becoming at risk is irrelevant.

origin() determines when the clock starts ticking. scale() plays no substantive role, but it can
be handy for making t units more readable (such as converting days to years).

origin(time exp) sets the origin to exp. For instance, if time were recorded as dates, such as
05jun1998, in your data and variable expdate recorded the date when subjects were exposed, you
could specify origin(time expdate). If instead all subjects were exposed on 12nov1997, you
could specify origin(time mdy(11,12,1997)).

origin(time exp) may be used with single- or multiple-record data.

https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
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origin(varname==numlist) is for use with multiple-record data; it specifies the origin indirectly.
If time were recorded as dates in your data, variable obsdate recorded the (ending) date
associated with each record, and subjects became at risk upon, say, having a certain operation—
and that operation were indicated by code==217—then you could specify origin(code==217).
origin(code==217) would mean, for each subject, that the origin time is the earliest time at
which code==217 is observed. Records before that would be ignored (because t < 0). Subjects
who never had code==217 would be ignored entirely.

origin(varname==numlist time exp) sets the origin to the later of the two times determined by
varname==numlist and exp.

origin(min) sets origin to the earliest time observed, minus 1. This is an odd thing to do and
is described in example 10.

origin() is an important concept; see Key concepts, Two concepts of time, and The substantive
meaning of analysis time.

scale() makes results more readable. If you have time recorded in days (such as Stata dates, which
are really days since 01jan1960), specifying scale(365.25) will cause results to be reported in
years.

enter([varname==numlist] time exp) specifies when a subject first comes under observation, meaning
that any failures, were they to occur, would be recorded in the data.

Do not confuse enter() and origin(). origin() specifies when a subject first becomes at
risk. In many datasets, becoming at risk and coming under observation are coincident. Then it is
sufficient to specify origin().

enter(time exp), enter(varname==numlist), and enter(varname==numlist time exp) follow
the same syntax as origin(). In multiple-record data, both varname==numlist and time exp are
interpreted as the earliest time implied, and if both are specified, the later of the two times is used.

exit(failure | [varname==numlist] time exp) specifies the latest time under which the subject is
both under observation and at risk. The emphasis is on latest; obviously, subjects also exit the risk
pool when their data run out.

exit(failure) is the default. When the first failure event occurs, the subject is removed from
the analysis risk pool, even if the subject has subsequent records in the data and even if some
of those subsequent records document other failure events. Specify exit(time .) if you wish to
keep all records for a subject after failure. You want to do this if you have multiple-failure data.

exit(varname==numlist), exit(time exp), and exit(varname==numlist time exp) follow the
same syntax as origin() and enter(). In multiple-record data, both varname==numlist and
time exp are interpreted as the earliest time implied. exit differs from origin() and enter()
in that if both are specified, the earlier of the two times is used.

� � �
Advanced �

if(exp), ever(exp), never(exp), after(exp), and before(exp) select relevant records.

if(exp) selects records for which exp is true. We strongly recommend specifying this if() option
rather than if exp following stset or streset. They differ in that if exp removes the data
from consideration before calculating beginning and ending times and other quantities. The if()
option, on the other hand, sets the restriction after all derived variables are calculated. See if( )
versus if exp.

if() may be specified with single- or multiple-record data. The remaining selection options are
for use with multiple-record data only.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
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ever(exp) selects only subjects for which exp is ever true.

never(exp) selects only subjects for which exp is never true.

after(exp) selects records within subject on or after the first time exp is true.

before(exp) selects records within subject before the first time exp is true.

time0(varname) is seldom specified because most datasets do not contain this information. time0()
should be used exclusively with multiple-record data, and even then you should consider whether
origin() or enter() would be more appropriate.

time0() specifies a mechanical aspect of interpretation about the records in the dataset, namely,
the beginning of the period spanned by each record. See Intermediate exit and reentry times (gaps).

Options unique to streset

past expands the stset sample to include the entire recorded past of the relevant subjects, meaning
that it includes observations before becoming at risk and those excluded because of after(), etc.

future expands the stset sample to include the records on the relevant subjects after the last record
that previously was included, if any, which typically means to include all observations after failure
or censoring.

past future expands the stset sample to include all records on the relevant subjects.

Typing streset without arguments resets the sample to the analysis sample. See Past and future
records for more information.

Options for st

nocmd suppresses displaying the last stset command.

notable suppresses displaying the table summarizing what has been stset.

Remarks and examples stata.com

Remarks are presented under the following headings:

What are survival-time data?
Key concepts
Survival-time datasets
Using stset
Two concepts of time
The substantive meaning of analysis time
Setting the failure event
Setting multiple failures
First entry times
Final exit times
Intermediate exit and reentry times (gaps)
if( ) versus if exp
Past and future records
Using streset
Performance and multiple-record-per-subject datasets
Sequencing of events within t
Weights
Data warnings and errors flagged by stset
Using survival-time data in Stata
Video example

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://stata.com
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What are survival-time data?

Survival-time data—what we call st data—document spans of time ending in an event. For instance,

died
x1=17
x2=22

< >
> t

0 9

which indicates x1 = 17 and x2 = 22 over the time span 0 to 9, and died = 1. More formally, it
means x1 = 17 and x2 = 22 for 0 < t ≤ 9, which we often write as (0, 9 ]. However you wish to
say it, this information might be recorded by the observation

id end x1 x2 died
101 9 17 22 1

and we call this single-record survival data.

The data can be more complicated. For instance, we might have

died
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 4 9

meaning
x1 = 17 and x2 = 22 during (0, 4 ]
x1 = 12 and x2 = 22 during (4, 9 ], and then died = 1.

and this would be recorded by the data

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 1

We call this multiple-record survival data.

These two formats allow you to record many different possibilities. The last observation on a
person need not be failure,

lost because of censoring
x1=17
x2=22

< >
> t

0 9

id end x1 x2 died
101 9 17 22 0

or

lost because of censoring
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 4 9

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 0
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Multiple-record data might have gaps,

died
x1=17 x1=12
x2=22 x2=22

< > (not observed) < >
> t

0 4 9 14

id begin end x1 x2 died
101 0 4 17 22 0
101 9 14 12 22 1

or subjects might not be observed from the onset of risk,

exposure died
x1=17
x2=22

< >
> t

0 2 9

begin end x1 x2 died
2 9 17 22 1

and

exposure died
x1=17 x1=12
x2=22 x2=22

< > < >
> t

0 1 4 9

id begin end x1 x2 died
101 1 4 17 22 0
101 4 9 12 22 1

The failure event might not be death but instead something that can be repeated:

1st 2nd
infarction infarction

x1=17 x1=12 x1=10
x2=22 x2=22 x2=22

< > < > < >
> t

0 4 9 13

id begin end x1 x2 infarc
101 0 4 17 22 1
101 4 9 12 22 0
101 9 13 10 22 1

Our data may be in different time units; rather than t where t = 0 corresponds to the onset of risk,
we might have time recorded as age,

died
x1=17
x2=22

< >
> age

20 29

id age0 age1 x1 x2 died
101 20 29 17 22 1
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or time recorded as calendar dates:
died

x1=17 x1=12
x2=22 x2=22

< > < >
> date

01jan1998 02may1998 15oct1998

id bdate edate x1 x2 died
101 01jan1998 02may1998 17 22 0
101 02may1998 15oct1998 12 22 1

Finally, we can mix these diagrams however we wish, so we might have time recorded according to
the calendar, unobserved periods after the onset of risk, subsequent gaps, and multiple failure events.

The st commands analyze data like these, and the first step is to tell st about your data by using
stset. You do not change your data to fit some predefined mold; you describe your data with stset,
and the rest of the st commands just do the right thing.

Before we discuss using stset, let’s describe one more style of recording time-to-event data
because it is common and is inappropriate for use with st. It is inappropriate, but it is easy to convert
to the survival-time form. It is called snapshot data, which are data for which you do not know spans
of time but you have information recorded at various points in time:

x1=17 x1=12
x2=22 x2=22 died

(unobserved) (unobserved)
> t

0 4 9

id t x1 x2 died
101 0 17 22 0
101 4 12 22 0
101 9 . . 1

In this snapshot dataset, all we know are the values of x1 and x2 at t = 0 and t = 4, and we know
that the subject died at t = 9. Snapshot data can be converted to survival-time data if we are willing
to assume that x1 and x2 remained constant between times:

died
x1=17 x1=12
x2=22 x2=22

< > < >
>

0 4 9

id begin end x1 x2 died
101 0 4 17 22 0
101 4 9 12 22 1

The snapspan command makes this conversion. If you have snapshot data, first see [ST] snapspan to
convert it to survival-time data and then use stset to tell st about the converted data; see example 10
first.

Key concepts

time, or, better, time units, is how time is recorded in your data. It might be numbers (such as 0, 1,
2, . . . , with time = 0 corresponding to some exposure event), a subject’s age, or calendar time.

events are things that happen at an instant in time, such as being exposed to an environmental hazard,
being diagnosed as myopic, becoming employed, being promoted, becoming unemployed, having
a heart attack, and dying.

https://www.stata.com/manuals/stsnapspan.pdf#stsnapspan


stset — Declare data to be survival-time data 11

failure event is the event indicating failure as it is defined for analysis. This can be a single or
compound event. The failure event might be when variable dead is 1, or it might be when variable
diag is any of 115, 121, or 133.

at risk means the subject is at risk of the failure event occurring. For instance, if the failure event
is becoming unemployed, a person must be employed. The subject is not at risk before being
employed. Once employed, the subject becomes at risk; once again, the subject is no longer at
risk once the failure event occurs. If subjects become at risk upon the occurrence of some event,
it is called the exposure event. Gaining employment is the exposure event in our example.

origin is the time when the subject became at risk. If time is recorded as numbers such as 0, 1, 2, . . . ,
with time = 0 corresponding to the exposure event, then origin = 0. Alternatively, origin might
be the age of the subject when diagnosed or the date when the subject was exposed. Regardless,
origin is expressed in time units.

scale is just a fixed number, typically 1, used in mapping time to analysis time t.

t, or analysis time, is (time− origin)/scale, meaning the time since onset of being at risk measured
in scale units.

t = 0 corresponds to the onset of risk, and scale just provides a way to make the units of t more
readable. You might have time recorded in days from 01jan1960 and want t recorded in years, in
which case scale would be 365.25.

Time is how time is recorded in your data, and t is how time is reported in the analysis.

under observation means that, should the failure event occur, it would be observed and recorded in
the data. Sometimes subjects are under observation only after they are at risk. This would be the
case, for instance, if subjects enrolled in a study after being diagnosed with cancer and if, to enroll
in the study, subjects were required to be diagnosed with cancer.

Being under observation does not mean that the subject is necessarily at risk. A subject may come
under observation before being at risk, and in fact, a subject under observation may never become
at risk.

entry time and exit time mark when a subject is first and last under observation. The emphasis here
is on the words first and last; entry time and exit time do not record observational gaps; there is
only one entry time and one exit time per subject.

Entry time and exit time might be expressed as times (recorded in time units), or they might
correspond to the occurrence of some event (such as enrolling in the study).

Often the entry time corresponds to t = 0; that is, because t = (time−origin)/scale, time = origin,
meaning that time equals when the subject became at risk.

Often the exit time corresponds to when the failure event occurs or, failing that, the end of data
for the subject.

delayed entry means that entry time corresponds to t > 0; the subject became at risk before coming
under observation.

ID refers to a subject identification variable; equal values of ID indicate that the records are on the
same subject. An ID variable is required for multiple-record data and is optional, but recommended,
with single-record data.

time0 refers to the beginning time (recorded in time units) of a record. Some datasets have this
variable, but most do not. If the dataset does not contain the beginning time for each record,
subsequent records are assumed to begin where previous records ended. A time0 variable may be
created for these datasets by using the snapspan command; see [ST] snapspan. Do not confuse
time0—a mechanical aspect of datasets—with entry time—a substantive aspect of analysis.

https://www.stata.com/manuals/stsnapspan.pdf#stsnapspan
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gaps refer to gaps in observation between entry time and exit time. During a gap, a subject is not
under observation. Gaps can arise only if the data contain a time0 variable, because otherwise
subsequent records beginning when previous records end would preclude there being gaps in the
data. Gaps are distinct from delayed entry.

past history is a term we use to mean information recorded in the data before the subject was both at
risk and under observation. Complex datasets can contain such observations. Say that the dataset
contains histories on subjects from birth to death. You might tell st that a subject becomes at risk
once diagnosed with a particular kind of cancer. The past history on the subject would then refer
to records before the subject was diagnosed.

The word history is often dropped, and the term simply becomes past. For instance, we might
want to know whether the subject smoked in the past.

future history is a term meaning information recorded in the data after the subject is no longer at
risk. Perhaps the failure event is not so serious as to preclude the possibility of data after failure.

The word history is often dropped, and the term simply becomes future. Perhaps the failure event
is cardiac infarction, and you want to know whether the subject died soon in the future so that
you can exclude the subject.

Survival-time datasets
In survival-time datasets, observations (records) document a span of time. The span might be

explicitly indicated, such as

begin end x1 x2
3 9 17 22 <- spans (3,9 ]

or it might be implied that the record begins at 0,

end x1 x2
9 17 22 <- spans (0,9 ]

or it might be implied because there are multiple records per subject:

id end x1 x2
1 4 17 22 <- spans (0,4 ]
1 9 12 22 <- spans (4,9 ]

Records may have an event indicator:

begin end x1 x2 died
3 9 17 22 1 <- spans (3,9 ], died at t=9

end x1 x2 died
9 17 22 1 <- spans (0,9 ], died at t=9

id end x1 x2 died
1 4 17 22 0 <- spans (0,4 ],
1 9 12 22 1 <- spans (4,9 ], died at t=9

The first two examples are called single-record survival-time data because there is one record per
subject.

The final example is called multiple-record survival-time data. There are two records for the subject
with id = 1.

Either way, survival-time data document time spans. Characteristics are assumed to remain constant
over the span, and the event is assumed to occur at the end of the span.
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Using stset

Once you have stset your data, you can use the other st commands.

If you save your data after stsetting, you will not have to re-stset in the future; Stata will
remember.

stset declares your data to be survival-time data. It does not change the data, although it does
add a few variables to your dataset.

This means that you can re-stset your data as often as you wish. In fact, the streset command
encourages this. Using complicated datasets often requires typing long stset commands, such as

. stset date, fail(event==27 28) origin(event==15) enter(event==22)

Later, you might want to try fail(event==27). You could retype the stset command, making the
substitution, or you could type

. streset, fail(event==27)

streset takes what you type, merges it with what you have previously declared with stset, and
performs the combined stset command.

Example 1: Single-record data

Generators are run until they fail. Here is some of our dataset:

. use https://www.stata-press.com/data/r18/kva
(Generator experiment)

. list in 1/3

failtime load bearings

1. 100 15 0
2. 140 15 1
3. 97 20 0

The stset command for this dataset is

. stset failtime

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (0, failtime]

Exit on or before: failure

12 total observations
0 exclusions

12 observations remaining, representing
12 failures in single-record/single-failure data

896 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 140

When you type stset timevar, timevar is assumed to be the time of failure. More generally, you
will learn, timevar is the time of failure or censoring. Here timevar is failtime.
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. describe

Contains data from https://www.stata-press.com/data/r18/kva.dta
Observations: 12 Generator experiment

Variables: 7 8 Jan 2022 15:59

Variable Storage Display Value
name type format label Variable label

failtime int %9.0g Time until failure (hrs.)
load byte %9.0g Overload (kVA)
bearings byte %9.0g Has new bearings
_st byte %8.0g 1 if record is to be used; 0

otherwise
_d byte %8.0g 1 if failure; 0 if censored
_t int %10.0g Analysis time when record ends
_t0 byte %10.0g Analysis time when record begins

Sorted by:

When you stset this dataset, Stata added the system variables st, d, t, and t0 to your
data.

Example 2: Single-record data with censoring

Generators are run until they fail, but during the experiment, the room flooded, so some generators
were run only until the flood. Here are some of our data:

. use https://www.stata-press.com/data/r18/kva2
(Generator experiment)

. list in 1/4

failtime load bearings failed

1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 1
4. 122 20 1 1

Here the second generator did not fail at time 140; the experiment was merely discontinued then.
The stset command for this dataset is

. stset failtime, failure(failed)

Survival-time data settings

Failure event: failed!=0 & failed<.
Observed time interval: (0, failtime]

Exit on or before: failure

12 total observations
0 exclusions

12 observations remaining, representing
11 failures in single-record/single-failure data

896 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 140
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When you type stset timevar, failure(failvar), timevar is interpreted as the time of failure or
censoring, which is determined by the value of failvar. failvar = 0 and failvar = . (missing) indicate
censorings, and all other values indicate failure.

Example 3: Multiple-record data

Assume that we are analyzing survival time of patients with a particular kind of cancer. In this
dataset, the characteristics of patients vary over time, perhaps because new readings were taken or
because the drug therapy was changed. Some of the data are

. list, separator(0)

patid t died x1 x2

1. 90 100 0 1 0
2. 90 150 1 0 0
3. 91 50 1 1 1
4. 92 100 0 0 0
5. 92 150 0 0 1
6. 92 190 0 0 0
7. 93 100 0 0 0

(output omitted )

There are two records for patient 90, and died is 0 in the first record but 1 in the second. The
interpretation of these two records is

Interval ( 0,100 ]: x1 = 1 and x2 = 0
Interval (100,150 ]: x1 = 0 and x2 = 0
at t = 150: the patient died

Similarly, here is how you interpret the other records:
Patient 91:
Interval ( 0, 50 ]: x1 = 1 and x2 = 1
at t = 50: the patient died

Patient 92:
Interval ( 0,100 ]: x1 = 0 and x2 = 0
Interval (100,150 ]: x1 = 0 and x2 = 1
Interval (150,190 ]: x1 = 0 and x2 = 0
at t = 190: the patient was lost because of censoring

Look again at patient 92’s data:

patid t died x1 x2
92 100 0 0 0
92 150 0 0 1
92 190 0 0 0

died = 0 for the first event. Mechanically, this removes the subject from the data at t = 100—the
patient is treated as censored. The next record, however, adds the patient back into the data (at
t = 100) with new characteristics.
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The stset command for this dataset is

. stset t, id(patid) failure(died)

Survival-time data settings

ID variable: patid
Failure event: died!=0 & died<.

Observed time interval: (t[_n-1], t]
Exit on or before: failure

126 total observations
0 exclusions

126 observations remaining, representing
40 subjects
26 failures in single-failure-per-subject data

2,989 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 139

When you have multiple-record data, you specify stset’s id(idvar) option. When you type stset
timevar, id(idvar) failure(failvar), timevar denotes the end of the period (just as it does in
single-record data). The first record within idvar is assumed to begin at time 0, and later records are
assumed to begin where the previous record left off. failvar should contain 0 on all but, possibly, the
last record within idvar, unless your data contain multiple failures (in which case you must specify
the exit() option; see Setting multiple failures below).

Example 4: Multiple-record data with multiple events

We have the following data on hospital patients admitted to a particular ward:

patid day sex x1 x2 code
101 5 1 10 10 177
101 13 1 20 8 286
101 21 1 16 11 208
101 24 1 11 17 401
102 8 0 20 19 204
102 18 0 19 1 401
103 etc.
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Variable code records various actions; code 401 indicates being discharged alive, and 402 indicates
death. We stset this dataset by typing

. stset day, id(patid) fail(code==402)

Survival-time data settings

ID variable: patid
Failure event: code==402

Observed time interval: (day[_n-1], day]
Exit on or before: failure

243 total observations
0 exclusions

243 observations remaining, representing
40 subjects
15 failures in single-failure-per-subject data

1,486 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 62

When you specify failure(eventvar == #), the failure event is as specified. You may include a
list of numbers following the equal signs. If failure were codes 402 and 403, you could specify
failure(code == 402 403). If failure were codes 402, 403, 404, 405, 406, 407, and 409, you could
specify failure(code == 402/407 409).

Example 5: Multiple-record data recording time rather than t

More reasonably, the hospital data in the above example would not contain days since admission
but would contain admission and current dates. In the dataset below, adday contains the day of
admission, and curday contains the ending date of the record, both recorded as number of days since
the ward opened:

patid adday curday sex x1 x2 code
101 287 292 1 10 10 177
101 . 300 1 20 8 286
101 . 308 1 16 11 208
101 . 311 1 11 17 401
102 289 297 0 20 19 204
102 . 307 0 19 1 401
103 etc.
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This is the same dataset as shown in example 4. Previously, the first record on patient 101 was
recorded 5 days after admission. In this dataset, 292 − 287 = 5. We would stset this dataset by
typing

. stset curday, id(patid) fail(code==402) origin(time adday)

Survival-time data settings

ID variable: patid
Failure event: code==402

Observed time interval: (curday[_n-1], curday]
Exit on or before: failure
Time for analysis: (time-origin)

Origin: time adday

243 total observations
0 ignored because never entered

243 observations remaining, representing
40 subjects
15 failures in single-failure-per-subject data

1,486 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 62

origin() sets when a subject becomes at risk. It does this by defining analysis time.

When you specify stset timevar, . . . origin(time originvar), analysis time is defined as
t = (timevar − originvar)/scale(). In analysis-time units, subjects become at risk at t = 0. See
Two concepts of time and The substantive meaning of analysis time below.

Example 6: Multiple-record data with time recorded as a date

Even more reasonably, dates would not be recorded as integers 428, 433, and 453, meaning the
number of days since the ward opened. The dates would be recorded as dates:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
102 20aug1998 28aug1998 0 20 19 204
102 . 07sep1998 0 19 1 401
103 etc.

That, in fact, changes nothing. We still type what we previously typed:

. stset curdate, id(patid) fail(code==402) origin(time addate)

Stata dates are, in fact, integers—they are the number of days since 01jan1960—and it is merely
Stata’s %td display format that makes them display as dates.

Example 7: Multiple-record data with extraneous information

Perhaps we wish to study the outcome after a certain operation, said operation being indicated by
code 286. Subjects become at risk when the operation is performed. Here we do not type

. stset curdate, id(patid) fail(code==402) origin(time addate)
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We instead type

. stset curdate, id(patid) fail(code==402) origin(code==286)

The result of typing this would be to set analysis time t to

t = curdate− (the value of curdate when code==286)

Let’s work through this for the first patient:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401

The event 286 occurred on 31aug1998, and thus the values of t for the four records are

t1 = curdate1 − 31aug1998 = 23aug1998− 31aug1998 = −8

t2 = curdate2 − 31aug1998 = 31aug1998− 31aug1998 = 0

t3 = curdate3 − 31aug1998 = 08sep1998− 31aug1998 = 8

t4 = curdate4 − 31aug1998 = 11sep1998− 31aug1998 = 11

Information prior to t = 0 is not relevant because the subject is not yet at risk. Thus the relevant
data on this subject are

t in (0, 8 ] sex = 1, x1 = 16, x2 = 11
t in (8, 11 ] sex = 1, x1 = 11, x2 = 17, and the subject is censored (code 6= 402)

That is precisely the logic that stset went through. For your information, stset quietly creates the
variables

st 1 if the record is to be used, 0 if ignored
t0 Analysis time when record begins
t Analysis time when record ends
d 1 if failure, 0 if censored

You can examine these variables after issuing the stset command:

. list _st _t0 _t _d

_st _t0 _t _d

1. 0 . . .
2. 0 . . .

203. 1 0 8 0
204. 1 8 11 0

Results are just as we anticipated. Do not let the observation numbers bother you; stset sorts the
data in a way it finds convenient. Feel free to re-sort the data; if any of the st commands need the
data in a different order, they will sort it themselves.

There are two ways of specifying origin():

origin(time timevar) or origin(time exp)
origin(eventvar == numlist)
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In the first syntax—which is denoted by typing the word time—you directly specify when a subject
becomes at risk. In the second syntax—which is denoted by typing a variable name and equal
signs—you specify the same thing indirectly. The subject becomes at risk when the specified event
occurs (which may be never).

Information prior to origin() is ignored. That information composes what we call the past history.

Example 8: Multiple-record data with delayed entry

In another analysis, we want to use the above data to analyze all patients, not just those undergoing
a particular operation. In this analysis, subjects become at risk when they enter the ward. For this
analysis, however, we need information from a particular test, and that information is available only
if the test is administered to the patient. Even if the test is administered, some amount of time passes
before that. Assume that when the test is administered, code==152 is inserted into the patient’s
hospital record.

To summarize, we want origin(time addate), but patients do not enter our sample until
code==152. The way to stset these data is

. stset curdate, id(patid) fail(code==402) origin(time addate) enter(code==152)

Patient 107 has code 152:

patid addate curdate sex x1 x2 code
107 22aug1998 25aug1998 1 9 13 274
107 . 28aug1998 1 19 19 152
107 . 30aug1998 1 18 12 239
107 . 07sep1998 1 12 11 401

In analysis time, t = 0 corresponds to 22aug1998. The test was not administered, however, until 6
days later. The analysis times for these records are

t1 = curdate1 − 22aug1998 = 25aug1998− 22aug1998 = 3

t2 = curdate2 − 22aug1998 = 28aug1998− 22aug1998 = 6

t3 = curdate3 − 22aug1998 = 30aug1998− 22aug1998 = 8

t4 = curdate4 − 22aug1998 = 07sep1998− 22aug1998 = 16

and the data we want in our sample are

t in (6, 8 ] sex = 1, x1 = 18, x2 = 12
t in (8, 16 ] sex = 1, x1 = 12, x2 = 11, and patient was censored (code 6= 402)

The above stset command produced this:

. list _st _t0 _t _d

_st _t0 _t _d

1. 0 . . .
2. 0 . . .

39. 1 6 8 0
40. 1 8 16 0
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Example 9: Multiple-record data with extraneous information and delayed entry

The origin() and enter() options can be combined. For instance, we want to analyze patients
receiving a particular operation (time at risk begins upon code == 286, but patients may not enter the
sample before a test is administered, denoted by code == 152). We type

. stset curdate, id(patid) fail(code==402) origin(code==286) enter(code==152)

If we typed the above commands, it would not matter whether the test was performed before or after
the operation.

A patient who had the test and then the operation would enter at analysis time t = 0.

A patient who had the operation and then the test would enter at analysis time t > 0, the analysis
time being the time the test was performed.

If we wanted to require that the operation be performed after the test, we could type

. stset curdate, id(patid) fail(code==402) origin(code==286) after(code==152)

Admittedly, this can be confusing. The way to proceed is to find a complicated case in your data
and then list st t0 t d for that case after you stset the data.

Example 10: Real data

All of our hospital ward examples are artificial in one sense: it is unlikely the data would have
come to us in survival-time form:

patid addate curdate sex x1 x2 code
101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
102 20aug1998 28aug1998 0 20 19 204
102 . 07sep1998 0 19 1 401
103 etc.

Rather, we would have received a snapshot dataset:

patid date sex x1 x2 code
101 18aug1998 1 10 10 22
101 23aug1998 . 20 8 177
101 31aug1998 . 16 11 286
101 08sep1998 . 11 17 208
101 11sep1998 . . . 401
102 20aug1998 0 20 19 22
102 28aug1998 . 19 1 204
102 07sep1998 . . . 401
103 etc.

In a snapshot dataset, we have a time (here a date) and values of the variables as of that instant.

This dataset can be converted to the appropriate form by typing

. snapspan patid date code
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The result would be as follows:

patid date sex x1 x2 code
101 18aug1998 . . . 22
101 23aug1998 1 10 10 177
101 31aug1998 . 20 8 286
101 08sep1998 . 16 11 208
101 11sep1998 . 11 17 401
102 20aug1998 . . . 22
102 28aug1998 0 20 19 204
102 07sep1998 . 19 1 401

This is virtually the same dataset with which we have been working, but it differs in two ways:

1. The variable sex is not filled in for all the observations because it was not filled in on the original
form. The hospital wrote down the sex on admission and then never bothered to document it
again.

2. We have no admission date (addate) variable. Instead, we have an extra first record for each
patient with code = 22 (22 is the code the hospital uses for admissions).

The first problem is easily fixed, and the second, it turns out, is not a problem because we can vary
what we type when we stset the data.

First, let’s fix the problem with variable sex. There are two ways to proceed. One would be simply
to fill in the variable ourselves:

. by patid (date), sort: replace sex = sex[_n-1] if sex>=.

We could also perform a phony stset that is good enough to set all the data and then use stfill
to fill in the variable for us. Let’s begin with the phony stset:

. stset date, id(patid) origin(min) fail(code==-1)

Survival-time data settings

ID variable: patid
Failure event: code==-1

Observed time interval: (date[_n-1], date]
Exit on or before: failure
Time for analysis: (time-origin)

Origin: min

283 total observations
0 exclusions

283 observations remaining, representing
40 subjects
0 failures in single-failure-per-subject data

2,224 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 89

Typing stset date, id(patid) origin(min) fail(code == -1) does not produce anything we
would want to use for analysis. This is a trick to get the dataset temporarily stset so that we can
use some st data management commands on it.

The first part of the trick is to specify origin(min). This defines the analysis time as t = 0,
corresponding to the minimum observed value of the time variable minus 1. The time variable is
date here. Why the minimum minus 1? Because st ignores observations for which analysis time
t < 0. origin(min) provides a phony definition of t that ensures t > 0 for all observations.
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The second part of the trick is to specify fail(code == -1), and you might have to vary what
you type. We just wanted to choose an event that we know never happens, thus ensuring that no
observations are ignored after failure.

Now that we have the dataset stset, we can use the other st commands. Do not use the st analysis
commands unless you want ridiculous results, but one of the st data management commands is just
what we want:

. stfill sex, forward

Failure _d: code==-1
Analysis time _t: (date-origin)

Origin: min
ID variable: patid

Replacing missing values with previously observed values:
sex: 203 real changes made

Problem one solved.

The second problem concerns the lack of an admission-date variable. That is not really a problem
because we have a new first observation with code = 22 recording the date of admission, so every
place we previously coded origin(time addate), we substitute origin(code == 22).

Problem two solved.

We also solved the big problem—converting a snapshot dataset into a survival-time dataset; see
[ST] snapspan.

Two concepts of time

The st system has two concepts of time. The first is time in italics, which corresponds to how time
is recorded in your data. The second is analysis time, which we write as t. Substantively, analysis
time is time at risk. stset defines analysis time in terms of time via

t =
time− origin()

scale()

t and time can be the same thing, and by default they are because, by default, origin() is 0 and
scale() is 1.

All the st analysis commands work with analysis time, t.

By default, if you do not specify the origin() and scale() options, your time variables
are expected to be the analysis-time variables. This means that time = 0 corresponds to
when subjects became at risk, and that means, among other things, that observations for
which time < 0 are ignored because survival analysis concerns persons who are at risk,
and no one is at risk before t = 0.

origin determines when the clock starts ticking. If you do not specify origin(),
origin(time 0) is assumed, meaning that t = time and that persons are at risk from
t = time = 0.

time and t will often differ. time might be calendar time and t the length of time since some event,
such as being born or being exposed to some risk factor. origin() sets when t = 0. scale()
merely sets a constant that makes t more readable.

https://www.stata.com/manuals/stsnapspan.pdf#stsnapspan
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The syntax for the origin() option makes it look more complicated than it really is

origin(
[

varname == numlist
]
time exp | min)

This says that there are four different ways to specify origin():

origin(time exp)
origin(varname == numlist)
origin(varname == numlist time exp)
origin(min)

The first syntax can be used with single- or multiple-record data. It states that the origin is given
by exp, which can be a constant for all observations, a variable (and hence may vary subject by
subject), or even an expression composed of variables and constants. Perhaps the origin is a fixed
date or a date recorded in the data when the subject was exposed or when the subject turned 18.

The second and third syntaxes are for use with multiple-record data. The second states that the
origin corresponds to the (earliest) time when the designated event occurred. Perhaps the origin is
when an operation was performed. The third syntax calculates the origin both ways and then selects
the later one.

The fourth syntax does something odd; it sets the origin to the minimum time observed minus
1. This is not useful for analysis but is sometimes useful for playing data management tricks; see
example 10 above.

Let’s start with the first syntax. Say that you had the data

faildate x1 x2
28dec1997 12 22
12nov1997 15 22
03feb1998 55 22

and that all the observations came at risk on the same date, 01nov1997. You could type

. stset faildate, origin(time mdy(11,1,1997))

Remember that stset adds t0 and t to your dataset and that they contain the time span for each
record, documented in analysis-time units. After typing stset, you can list the results:

. list faildate x1 x2 _t0 _t

faildate x1 x2 _t0 _t

1. 28dec1997 12 22 0 57
2. 12nov1997 15 22 0 11
3. 03feb1998 55 22 0 94

Record 1 reflects the period (0, 57 ] in analysis-time units, which are days here. stset calculated the
57 from 28dec1997− 01nov1997 = 13,876− 13,819 = 57. (Dates such as 28dec1997 are really just
integers containing the number of days from 01jan1960, and Stata’s %td display format makes them
display nicely. 28dec1997 is really the number 13,876.)

As another example, we might have data recording exposure and failure dates:

expdate faildate x1 x2
07may1998 22jun1998 12 22
02feb1998 11may1998 11 17

https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats
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The way to stset this dataset is

. stset faildate, origin(time expdate)

and the result, in analysis units, is

. list expdate faildate x1 x2 _t0 _t

expdate faildate x1 x2 _t0 _t

1. 07may1998 22jun1998 12 22 0 46
2. 02feb1998 11may1998 11 17 0 98

There is nothing magical about dates. Our original data could just as well have been

expdate faildate x1 x2
32 78 12 22
12 110 11 17

and the result would still be the same because 78− 32 = 46 and 110− 12 = 98.

Specifying an expression can sometimes be useful. Suppose that your dataset has the variable
date recording the date of event and variable age recording the subject’s age as of date. You
want to make t = 0 correspond to when the subject turned 18. You could type origin(time
date-int((age-18)*365.25)).

origin(varname == numlist) is for use with multiple-record data. It states when each subject
became at risk indirectly; the subject became at risk at the earliest time that varname takes on any
of the enumerated values. Say that you had

patid date x1 x2 event
101 12nov1997 15 22 127
101 28dec1997 12 22 155
101 03feb1998 55 22 133
101 05mar1998 14 22 127
101 09apr1998 12 22 133
101 03jun1998 13 22 101
102 22nov1997 . . .

and assume event = 155 represents the onset of exposure. You might stset this dataset by typing

. stset date, id(patid) origin(event==155) . . .

If you did that, the information for patient 101 before 28dec1997 would be ignored in subsequent
analysis. The prior information would not be removed from the dataset; it would just be ignored.
Probably something similar would happen for patient 102, or if patient 102 has no record with
event = 155, all the records on the patient would be ignored.

For analysis time, t = 0 would correspond to when event 155 occurred. Here are the results in
analysis-time units:

patid date x1 x2 event _t0 _t
101 12nov1997 15 22 127 . .
101 28dec1997 12 22 155 . .
101 03feb1998 55 22 133 0 37
101 05mar1998 14 22 127 37 67
101 09apr1998 12 22 133 67 102
101 03jun1998 13 22 101 102 157
102 22nov1997 . . . . .
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Patient 101’s second record is excluded from the analysis. That is not a mistake. Records document
durations, date reflects the end of the period, and events occur at the end of periods. Thus event
155 occurred at the instant date = 28dec1997, and the relevant first record for the patient is
(28dec1997, 03feb1998] in time units, which is (0, 37 ] in t units.

The substantive meaning of analysis time

In specifying origin(), you must ask yourself whether two subjects with identical characteristics
face the same risk of failure. The answer is that they face the same risk when they have the same
value of t = (time − origin())/scale() or, equivalently, when the same amount of time has
elapsed from origin().

Say that we have the following data on smokers who have died:

ddate x1 x2 reason
11mar1984 23 11 2
15may1994 21 9 1
22nov1993 22 13 2
etc.

We wish to analyze death due to reason==2. However, typing

. stset ddate, fail(reason==2)

would probably not be adequate. We would be saying that smokers were at risk of death from
01jan1960. Would it matter? It would if we planned on doing anything parametric because parametric
hazard functions, except for the exponential, are functions of analysis time, and the location of 0
makes a difference.

Even if we were thinking of performing nonparametric analysis, there would probably be difficulties.
We would be asserting that two “identical” persons (in terms of x1 and x2) face the same risk on the
same calendar date. Does the risk of death due to smoking really change as the calendar changes?

It would be more reasonable to assume that the risk changes with how long a subject has been
smoking and that our data would probably include that date. We would type

. stset ddate, fail(reason==2) origin(time smdate)

if smdate were the name of the date-started-smoking variable. We would now be saying that the risk
is equal when the number of days smoked is the same. We might prefer to see t in years,

. stset ddate, fail(reason==2) origin(time smdate) scale(365.25)

but that would make no substantive difference.

Consider single-record data on firms that went bankrupt:

incorp bankrupt x1 x2 btype
22jan1983 11mar1984 23 11 2
17may1992 15may1994 21 9 1
03nov1991 22nov1993 22 13 2
etc.

Say that we wish to examine the risk of a particular kind of bankruptcy, btype == 2, among firms
that become bankrupt. Typing

. stset bankrupt, fail(btype==2)
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would be more reasonable than it was in the smoking example. It would not be reasonable if we were
thinking of performing any sort of parametric analysis, of course, because then location of t = 0
would matter, but it might be reasonable for semiparametric analysis. We would be asserting that
two “identical” firms (with respect to the characteristics we model) have the same risk of bankruptcy
when the calendar dates are the same. We would be asserting that the overall state of the economy
matters.

It might be reasonable to instead measure time from the date of incorporation:

. stset bankrupt, fail(btype==2) origin(time incorp)

Understand that the choice of origin() is a substantive decision.

Setting the failure event

You set the failure event by using the failure() option.

In single-record data, if failure() is not specified, every record is assumed to end in a failure.
For instance, with

failtime load bearings
1. 100 15 0
2. 140 15 1
etc.

you would type stset failtime, and the first observation would be assumed to fail at time = 100;
the second, at time = 140; and so on.

failure(varname) specifies that a failure occurs whenever varname is not zero and is not missing.
For instance, with

failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 1
4. 122 20 1 0
5. 84 25 0 1
6. 100 25 1 1
etc.

you might type stset failtime, failure(burnout). Observations 1, 3, 5, and 6 would be
assumed to fail at times 100, 97, 84, and 100, respectively; observations 2 and 4 would be assumed
to be censored at times 140 and 122.

Similarly, if the data were

failtime load bearings burnout
1. 100 15 0 1
2. 140 15 1 0
3. 97 20 0 2
4. 122 20 1 .
5. 84 25 0 2
6. 100 25 1 3
etc.

the result would be the same. Nonzero, nonmissing values of the failure variable are assumed to
represent failures. (Perhaps burnout contains a code on how the burnout occurred.)

failure(varname == numlist) specifies that a failure occurs whenever varname takes on any of
the values of numlist. In the above example, specifying

. stset failtime, failure(burnout==1 2)
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would treat observation 6 as censored.
. stset failtime, failure(burnout==1 2 .)

would also treat observation 4 as a failure.
. stset failtime, failure(burnout==1/3 6 .)

would treat burnout==1, burnout==2, burnout==3, burnout==6, and burnout==. as representing
failures and all other values as representing censorings. (Perhaps we want to examine “failure due to
meltdown”, and these are the codes that represent the various kinds of meltdown.)

failure() is treated the same way in both single- and multiple-record data. Consider
patno t x1 x2 died

1. 1 4 23 11 1
2. 2 5 21 9 0
3. 2 8 22 13 1
4. 3 7 20 5 0
5. 3 9 22 5 0
6. 3 11 21 5 0
7. 4 ...

Typing
. stset t, id(patno) failure(died)

would treat
patno==1 as dying at t==4
patno==2 as dying at t==8
patno==3 as being censored at t==11

Intervening records on the same subject are marked as “censored”. Technically, they are not really
censored if you think about it carefully; they are simply marked as not failing. Look at the data for
subject 3:

patno t x1 x2 died
3 9 22 5 0
3 11 21 5 0

The subject is not censored at t = 9 because there are more data on the subject; it is merely the case
that the subject did not die at that time. At t = 9, x1 changed from 22 to 21. The subject is really
censored at t = 11 because the subject did not die and there are no more records on the subject.

Typing stset t, id(patno) failure(died) would mark the same persons as dying and the
same persons as censored, as in the previous case. If died contained not 0 and 1, but 0 and nonzero,
nonmissing codes for the reason for death would be

patno t x1 x2 died
1. 1 4 23 11 103
2. 2 5 21 9 0
3. 2 8 22 13 207
4. 3 7 20 5 0
5. 3 9 22 5 0
6. 3 11 21 5 0
7. 4 ...

Typing
. stset t, id(patno) failure(died)

or
. stset t, id(patno) failure(died==103 207)

would yield the same results; subjects 1 and 2 would be treated as dying and subject 3 as censored.
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Typing

. stset t, id(patno) failure(died==207)

would treat subject 2 as dying and subjects 1 and 3 as censored. Thus when you specify the values
for the code, the code variable need not ever contain 0. In

patno t x1 x2 died
1. 1 4 23 11 103
2. 2 5 21 9 13
3. 2 8 22 13 207
4. 3 7 20 5 11
5. 3 9 22 5 12
6. 3 11 21 5 12
7. 4 ...

typing

. stset t, id(patno) failure(died==207)

treats patient 2 as dying and 1 and 3 as censored. Typing

. stset t, id(patno) failure(died==103 207)

treats patients 1 and 2 as dying and 3 as censored.

Setting multiple failures

In multiple-record data, records after the first failure event are ignored unless you specify the
exit() option. Consider the following data:

patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
4. 1 8 22 7 22
5. 1 9 22 7 22
6. 1 11 21 7 29
7. 2 ...

Perhaps code 22 represents the event of interest—say, the event “visited the doctor”. Were you to
type stset t, id(patno) failure(code == 22), the result would be as if the data contained

patno t x1 x2 code
1. 1 4 21 7 14
2. 1 5 21 7 11
3. 1 7 20 7 17
4. 1 8 22 7 22

Records after the first occurrence of the failure event are ignored. If you do not want this, you must
specify the exit() option. Probably you would want to specify exit(time .), here meaning that
subjects are not to exit the risk group until their data run out. Alternatively, perhaps code 142 means
“entered the nursing home” and, once that event happens, you no longer want them in the risk group.
Then you would code exit(code == 142); see Final exit times below.
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First entry times

Do not confuse enter() with origin(). origin() specifies when a subject first becomes at
risk. enter() specifies when a subject first comes under observation. In most datasets, becoming at
risk and coming under observation are coincident. Then it is sufficient to specify origin() alone,
although you could specify both options.

Some persons enter the data after they have been at risk of failure. Say that we are studying deaths
due to exposure to substance X and we know the date at which a person was first exposed to the
substance. We are willing to assume that persons are at risk from the date of exposure forward. A
person arrives at our door who was exposed 15 years ago. Can we add this person to our data? The
statistical issue is labeled left-truncation, and the problem is that had the person died before arriving
at our door, we would never have known about her. We can add her to our data, but we must be
careful to treat her subsequent survival time as conditional on having already survived 15 years.

Say that we are examining visits to the widget repair facility, “failure” being defined as a visit
(so failures can be repeated). The risk begins once a person buys a widget. We have a woman who
bought a widget 3 years ago, and she has no records on when she has visited the facility in the last
3 years. Can we add her to our data? Yes, as long as we are careful to treat her subsequent behavior
as already being 3 years after she first became at risk.

The jargon for this is “under observation”. All this means is that any failures would be observed.
Before being under observation, failure would not be observed.

If enter() is not specified, we assume that subjects are under observation at the time they enter
the risk group as specified by origin(), 0 if origin() is not specified, or possibly time0(). To
be precise, subject i is assumed to first enter the analysis risk pool at

timei = max
(
earliest time0() for i, enter(), origin()

)
Say that we have multiple-record data recording “came at risk” (mycode == 1), “enrolled in our study”
(mycode == 2), and “failed because of risk” (mycode == 3). We stset this dataset by typing

. stset time, id(id) origin(mycode==1) enter(mycode==2) failure(mycode==3)

The above stset correctly handles the came at risk/came under observation problem regardless of
the order of events 1, 2, and 3. For instance, if the subject comes under observation before he or she
becomes at risk, the subject will be treated as entering the analysis risk pool at the time he or she
came at risk.

Say that we have the same data in single-record format: variable riskdate documents becoming
at risk and variable enr date the date of enrollment in our study. We would stset this dataset by
typing

. stset time, origin(time riskdate) enter(time enr_date) failure(mycode==3)

For a final example, let’s return to the multiple-record way of recording our data and say that we
started enrolling people in our study on 12jan1998 but that, up until 16feb1998, we do not trust that
our records are complete (we had start-up problems). We would stset that dataset by typing

. stset time, origin(mycode==1) enter(mycode==2 time mdy(2,16,1998))
> fail(mycode==3)

enter(varname==numlist time exp) is interpreted as

max(time of earliest event in numlist, exp)

Thus persons having mycode == 2 occurring before 16feb1998 are assumed to be under observation
from 16feb1998, and those having mycode == 2 thereafter are assumed to be under observation from
the time of mycode == 2.
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Final exit times
exit() specifies the latest time under which the subject is both under observation and at risk of

the failure event. The emphasis is on latest; obviously subjects also exit the data when their data run
out.

When you type
. stset . . ., . . . failure(outcome==1/3 5) . . .

the result is as if you had typed
. stset . . ., . . . failure(outcome==1/3 5) exit(failure) . . .

which, in turn, is the same as
. stset . . ., . . . failure(outcome==1/3 5) exit(outcome==1/3 5) . . .

When are people to be removed from the analysis risk pool? When their data end, of course, and
when the event 1, 2, 3, or 5 first occurs. How are they to be removed? According to their status at
that time. If the event is 1, 2, 3, or 5 at that instant, they exit as a failure. If the event is something
else, they exit as censored.

Perhaps events 1, 2, 3, and 5 represent death due to heart disease, and that is what we are studying.
Say that outcome == 99 represents death for some other reason. Obviously, once the person dies, she
is no longer at risk of dying from heart disease, so we would want to specify

. stset . . ., . . . failure(outcome==1/3 5) exit(outcome==1/3 5 99) . . .

When we explicitly specify exit(), we must list all the reasons for which a person is to be removed
other than simply running out of data. Here it would have been a mistake to specify just exit(99)
because that would have left persons in the analysis risk pool who died for reasons 1, 2, 3, and 5.
We would have treated those people as if they were still at risk of dying.

In fact, it probably would not have mattered had we specified exit(99) because, once a person
is dead, he or she is unlikely to have any subsequent records anyway. By that logic, we did not even
have to specify exit(99) because death is death and there should be no records following it.

For other kinds of events, however, exit() becomes important. Let’s assume that the failure event
is to be diagnosed with heart disease. A person may surely have records following diagnosis, but
even so,

. stset . . ., . . . failure(outcome==22) . . .

would be adequate because, by not specifying exit(), we are accepting the default that exit()
is equivalent to failure(). Once outcome 22 occurs, subsequent records on the subject will be
ignored—they constitute the future history of the subject.

Say, however, that we wish to treat as censored persons diagnosed with kidney disease. We would
type

. stset . . ., . . . failure(outcome==22) exit(outcome==22 29) . . .

assuming that outcome = 29 is “diagnosed with kidney disease”. It is now of great importance that
we specified exit(outcome==22 29) and not just exit(outcome==29) because, had we omitted
code 22, persons would have remained in the analysis risk pool even after the failure event, that is,
being diagnosed with heart disease.

If, in addition, our data were untrustworthy after 22nov1998 (perhaps not all the data have been
entered yet), we would type

. stset . . . , . . . failure(outcome==22) exit(outcome==22 29 time
> mdy(11,22,1998)) . . .
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If we type exit(varname==numlist time exp), the exit time is taken to be

min(time of earliest event in numlist, exp)

For some analyses, repeated failures are possible. If you have repeated failure data, you specify the
exit() option and include whatever reasons, if any, that would cause the person to be removed. If
there are no such reasons and you wish to retain all observations for the person, you type

. stset . . ., . . . exit(time .) . . .

exit(time .) specifies that the maximum time a person can be in the risk pool is infinite; thus
subjects will not be removed until their data run out.

Intermediate exit and reentry times (gaps)

Gaps arise when a subject is temporarily not under observation. The statistical importance of gaps
is that, if failure is death and if the person died during such a gap, he would not have been around to be
found again. The solution to this is to remove the person from the risk pool during the observational
gap.

To determine that you have gaps, your data must provide starting and ending times for each record.
Most datasets provide only ending times, making it impossible to know that you have gaps.

You use time0() to specify the beginning times of records. time0() specifies a mechanical
aspect of interpreting the records in the dataset, namely, the beginning of the period spanned by each
record. Do not confuse time0() with origin(), which specifies when a subject became at risk, or
with enter(), which specifies when a subject first comes under observation.

time0() merely identifies the beginning of the time span covered by each record. Say that we
had two records on a subject, the first covering the span (40,49 ] and the second, (49,57 ]:

< record 1 > < record 2 >
> time

40 49 57

A time0() variable would contain
40 in record 1
49 in record 2

and not, for instance, 40 and 40. A time0() variable varies record by record for a subject.

Most datasets merely provide an end-of-record time value, timevar, which you specify by typing
stset timevar, . . . . When you have multiple records per subject and you do not specify a time0()
variable, stset assumes that each record begins where the previous one left off.

if( ) versus if exp

Both the if exp qualifier and the if(exp) option select records for which exp is true. We strongly
recommend specifying the if() option in preference to the if exp qualifier. They differ in that the
if exp qualifier removes data from consideration before calculating beginning and ending times and
other quantities as well. The if() option, on the other hand, sets the restriction after all derived
variables are calculated. To appreciate this difference, consider the following multiple-record data:

patno t x1 x2 code
3 7 20 5 14
3 9 22 5 23
3 11 21 5 29
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Consider the difference in results between typing
. stset t if x1!=22, failure(code==14)

and
. stset t, if(x1!=22) failure(code==14)

The first would remove record 2 from consideration at the outset. In constructing beginning and
ending times, stset and streset would see

patno t x1 x2 code
3 7 20 5 14
3 11 21 5 29

and would construct the result:
x1=20 x1=21
x2= 5 x2= 5

< > < >

0 7 11

In the second case, the result would be
x1=20 x1=21
x2= 5 x2= 5

< > (gap) < >

0 7 9 11

The latter result is correct and the former incorrect because x1 = 21 is not true in the interval (7, 9).

The only reason to specify the if exp qualifier is to ignore errors in the data—observations that
would confuse stset and streset—without actually dropping the offending observations from the
dataset.

You specify the if() option to exclude observations that are not themselves errors. Specifying
if() yields the same result as specifying if exp on the subsequent st commands after the dataset
has been stset.

Past and future records

Consider the hospital ward data that we have seen before:
patid addate curdate sex x1 x2 code

101 18aug1998 23aug1998 1 10 10 177
101 . 31aug1998 1 20 8 286
101 . 08sep1998 1 16 11 208
101 . 11sep1998 1 11 17 401
etc.

Say that you stset this dataset such that you selected the middle two records. Perhaps you typed
. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)

The first record for the subject, because it was not selected, is called a past history record. Any
earlier records that were not selected would also be called past history records.

The last record for the subject, because it was not selected, is called a future history record. Any
later records that were not selected would also be called future history records.

If you typed
. streset, past

the first three records for this subject would be selected.
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Typing

. streset, future

would select the last three records for this subject.

If you typed

. streset, past future

all four records for this subject would be selected.

If you then typed

. streset

the original two records would be selected, and things would be back just as they were before.

After typing streset, past; streset, future; or streset, past future, you would not want
to use any analysis commands. streset did some strange things, especially with the analysis-time
variable, to include the extra records. It would be the wrong sample, anyway.

You might, however, want to use certain data management commands on the data, especially those
for creating new variables.

Typically, streset, past is of greater interest than the other commands. Past records—records
prior to being at risk or excluded for other reasons—are not supposed to play a role in survival
analysis. stset makes sure they do not. But it is sometimes reasonable to ask questions about them
such as, was the subject ever on the drug cisplatin? Has the subject ever been married? Did the
subject ever have a heart attack?

To answer questions like that, you sometimes want to dig into the past. Typing streset, past
makes that easy, and once the past is set, the data can be used with stgen and st is 2. You might
well type the following:

. stset curdate, id(patid) origin(addate) enter(code==286) failure(code==208)

. streset, past

. stgen attack = ever(code==177)

. streset

. stcox attack . . .

Do not be concerned about doing something inappropriate while having the past or future set; st will
not let you:

. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)
(output omitted )

. streset, past
(output omitted )

. stcox x1
you last streset, past
you must type streset to restore the analysis sample
r(119);

Using streset

streset is a useful tool for gently modifying what you have previously stset. Rather than typing
the whole stset command, you can type streset followed just by what has changed.

For instance, you might type

. stset curdate, id(patid) origin(time addate) enter(code==286) failure(code==208)

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(119)
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and then later want to restrict the analysis to subjects who ever have x1>20. You could retype the
whole stset command and add ever(x1>20), but it would be easier to type

. streset, ever(x1>20)

If later you decide you want to remove the restriction, type
. streset, ever(.)

That is the general rule for resetting options to the default: type ‘.’ as the option’s argument.

Be careful using streset because you can make subtle mistakes. In another analysis with another
dataset, consider the following:

. stset date, fail(code==2) origin(code==1107)

. . . .

. streset date, fail(code==9) origin(code==1422) after(code==1423)

. . . .

. streset, fail(code==2) origin(code==1107)

If, in the last step, you are trying to get back to the results of the first stset, you will fail. The last
streset is equivalent to

. stset date, fail(code==9) origin(code==1107) after(code==1423)

streset() remembers the previously specified options and uses them if you do not override them.
Both stset and streset display the current command line. Make sure that you verify that the
command is what you intended.

Performance and multiple-record-per-subject datasets

stset and streset do not drop data; they simply mark data to be excluded from consideration.
Some survival-time datasets can be large, although the relevant subsamples are small. In such cases,
you can reduce memory requirements and speed execution by dropping the irrelevant observations.

stset and streset mark the relevant observations by creating a variable named st (it is always
named this) containing 1 and 0; st = 1 marks the relevant observations and st = 0 marks the
irrelevant ones. If you type

. drop if _st==0

or equivalently
. keep if _st==1

or equivalently
. keep if _st

you will drop the irrelevant observations. All st commands produce the same results whether you do
this or not. Be careful, however, if you are planning future stsets or stresets. Observations that
are irrelevant right now might be relevant later.

One solution to this conundrum is to keep only those observations that are relevant after setting
the entire history:

. stset date, fail(code==9) origin(code==1422) after(code==1423)

. streset, past future

. keep if _st

. streset

As a final note, you may drop the irrelevant observations as marked by st = 0, but do not drop
the st variable itself. The other st commands expect to find variable st.
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Sequencing of events within t

Consider the following bit of data:

etime failtime fail
0 5 1
0 5 0
5 7 1

Note all the different events happening at time 5: the first observation fails, the second is censored,
and the third enters.

What does it mean for something to happen at time 5? In particular, is it at least potentially
possible for the second observation to have failed at time 5; that is, was it in the risk group when
the first observation failed? How about the third observation? Was it in the risk group, and could it
have potentially failed at time 5?

Stata sequences events within a time as follows:

first, at time t the failures occur
then, at time t+ 0 the censorings are removed from the risk group
finally, at time t+ 0 + 0 the new entries are added to the risk group

Thus, to answer the questions:

Could the second observation have potentially failed at time 5? Yes.

Could the third observation have potentially failed at time 5? No, because it was not yet in the
risk group.

By this logic, the following makes no sense:

etime failtime fail
5 5 1

This would mark a subject as failing before being at risk. It would make no difference if fail were
0—the subject would then be marked as being censored too soon. Either way, stset would flag this
as an error. If you had a subject who entered and immediately exited, you would code this as

etime failtime fail
4.99 5 1

Weights

stset allows you to specify fweights, pweights, and iweights.

fweights are Stata’s frequency or replication weights. Consider the data

failtime load bearings count
100 15 0 3
140 15 1 2
97 20 0 1
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and the stset command

. stset failtime [fw=count]

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (0, failtime]

Exit on or before: failure
Weight: [fweight=count]

3 total observations
0 exclusions

3 physical observations remaining, equal to
6 weighted observations, representing
6 failures in single-record/single-failure data

677 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 140

This combination is equivalent to the expanded data

failtime load bearings
100 15 0
100 15 0
100 15 0
140 15 1
140 15 1
97 20 0

and the command

. stset failtime

pweights are Stata’s sampling weights—the inverse of the probability that the subject was chosen
from the population. pweights are typically integers, but they do not have to be. For instance, you
might have

time0 time died sex reps
0 300 1 0 1.50
0 250 0 1 4.50

30 147 1 0 2.25

Here reps is how many patients each observation represents in the underlying population—perhaps
when multiplied by 10. The stset command for these data is

. stset time [pw=reps], origin(time time0) failure(died)

For variance calculations, the scale of the pweights does not matter. reps in the 3 observations
shown could just as well be 3, 9, and 4.5. Nevertheless, the scale of the pweights is used when you
ask for counts. For instance, stsum would report the person-time at risk as

(300− 0) 1.5 + (250− 0) 4.5 + (147− 30) 2.25 = 1,838.25

for the 3 observations shown. stsum would count that 1.5 + 2.25 = 3.75 persons died, and so the
incidence rate for these 3 observations would be 3.75/1,838.25 = 0.0020. The incidence rate is thus
unaffected by the scale of the weights. Similarly, the coefficients and confidence intervals reported
by, for instance, streg, dist(exponential) would be unaffected. The 95% confidence interval
for the incidence rate would be [ 0.0003, 0.0132 ], regardless of the scale of the weights.
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If these 3 observations were examined unweighted, the incidence rate would be 0.0030 and the
95% confidence interval would be [ 0.0007, 0.0120 ].

Finally, stset allows you to set iweights, which are Stata’s “importance” weights, but we
recommend that you do not. iweights are provided for those who wish to create special effects
by manipulating standard formulas. The st commands treat iweights just as they would fweights,
although they do not require that the weights be integers, and push their way through conventional
variance calculations. Thus results—counts, rates, and variances—depend on the scale of these
weights.

Data warnings and errors flagged by stset

When you stset your data, stset runs various checks to verify that what you are setting makes
sense. stset refuses to set the data only if, in multiple-record, weighted data, weights are not constant
within ID. Otherwise, stset merely warns you about any inconsistencies that it identifies.

Although stset will set the data, it will mark out records that it cannot understand; for instance,

. stset curdate, origin(time addate) failure(code==402) id(patid)

ID variable: patid
Failure event: code==402

Observed time interval: (curdate[_n-1], curdate]
Exit on or before: failure
Time for analysis: (time-origin)

Origin: time addate

243 total observations
1 event time missing (curdate>=.) PROBABLE ERROR
4 multiple records at same instant PROBABLE ERROR

(curdate[_n-1]==curdate)

238 observations remaining, representing
40 subjects
15 failures in single failure-per-subject data

1,478 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 62

You must ensure that the result, after exclusions, is correct.

The warnings stset might issue include

ignored because patid missing
event time missing PROBABLE ERROR
entry time missing PROBABLE ERROR
entry on or after exit (etime>t) PROBABLE ERROR
observations end on or before enter()
observations end on or before origin()
multiple records at same instant (t[ n-1]==t) PROBABLE ERROR
overlapping records (t[ n-1]>entry time) PROBABLE ERROR
weights invalid PROBABLE ERROR

stset sets st = 0 when observations are excluded for whatever reason. Thus observations with
any of the above problems can be found among the st = 0 observations.
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Using survival-time data in Stata

In the examples above, we have shown you how Stata expects survival-time data to be recorded. To
summarize:

• Each subject’s history is represented by 1 or more observations in the dataset.

• Each observation documents a span of time. The observation must contain when the span ends
(exit time) and may optionally contain when the span begins (entry time). If the entry time is
not recorded, it is assumed to be 0 or, in multiple-record data, the exit time of the subject’s
previous observation, if there is one. By previous , we mean that the data have already been
temporally ordered on exit times within subject. The physical order of the observations in your
dataset does not matter.

• Each observation documents an outcome associated with the exit time. Unless otherwise specified
with failure(), 0 and missing mean censored, and nonzero means failed.

• Each observation contains other variables (called covariates) that are assumed to be constant
over the span of time recorded by the observation.

Data rarely arrive in this neatly organized form. For instance, Kalbfleisch and Prentice (2002, 4–5)
present heart transplant survival data from Stanford (Crowley and Hu 1977). These data can be
converted into the correct st format in at least two ways. The first method is shown in example 11.
A second, shorter, method using the st commands is described in example 3 of [ST] stsplit.

Example 11

Here we will describe the process that uses the standard Stata commands.

. use https://www.stata-press.com/data/r18/stan2, clear
(Heart transplant data)

. describe

Contains data from https://www.stata-press.com/data/r18/stan2.dta
Observations: 103 Heart transplant data

Variables: 5 30 Nov 2022 11:14

Variable Storage Display Value
name type format label Variable label

id int %8.0g Patient identifier
died byte %8.0g Survival status (1=dead)
stime float %8.0g Survival time (days)
transplant byte %8.0g Heart transplant
wait int %8.0g Waiting time

Sorted by:

The data are from 103 patients selected as transplantation candidates. There is one record on each
patient, and the important variables, from an st-command perspective, are

id the patient’s ID number
transplant whether the patient received a transplant
wait when (after acceptance) the patient received the transplant
stime when (after acceptance) the patient died or was censored
died the patient’s status at stime

https://www.stata.com/manuals/ststsplit.pdf#ststsplitRemarksandexamplesex3
https://www.stata.com/manuals/ststsplit.pdf#ststsplit
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To better understand, let’s examine two records from this dataset:

. list id transplant wait stime died if id==44 | id==16

id transp~t wait stime died

33. 44 0 0 40 1
71. 16 1 28 308 1

Patient 44 never did receive a new heart; he or she died 40 days after acceptance while still on the
waiting list. Patient 16 did receive a new heart—28 days after acceptance—yet died 308 days after
acceptance.

Our goal is to turn this into st data that contain the histories of each of these patients. That is, we
want records that appear as

id t1 died posttran
16 28 0 0
16 308 1 1
44 40 1 0

or, even more explicitly, as

id t0 t1 died posttran
16 0 28 0 0
16 28 308 1 1
44 0 40 1 0

The new variable, posttran, would be 0 before transplantation and 1 afterward.

Patient 44 would have one record in this new dataset recording that he or she died at time 40 and
that posttran was 0 over the entire interval.

Patient 16, however, would have two records: one documenting the duration (0, 28 ], during which
posttran was 0, and one documenting the duration (28, 308 ], during which posttran was 1.

Our goal is to take the first dataset and convert it into the second, which we can then stset. We
make the transformation by using Stata’s other data management commands. One way we could do
this is by typing

. expand 2 if transplant
(69 observations created)

. by id, sort: gen byte posttran = (_n==2)

. by id: gen t1 = stime if _n==_N
(69 missing values generated)

. by id: replace t1 = wait if _n==1 & transplant
(69 real changes made)

. by id: replace died=0 if _n==1 & transplant
(45 real changes made)

expand 2 if transplant duplicated the observations for patients who had transplant 6= 0.
Considering our two sample patients, we would now have the following data:

id transp~t wait stime died
44 0 0 40 1
16 1 28 308 1
16 1 28 308 1

We would have 1 observation for patient 44 and 2 identical observations for patient 16.
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We then by id, sort: gen posttran = ( n==2), resulting in

id transp~t wait stime died posttran
16 1 28 308 1 0
16 1 28 308 1 1
44 0 0 40 1 0

This type of trickiness is discussed in [U] 13.7 Explicit subscripting. Statements such as n==2
produce values 1 (meaning true) and 0 (meaning false), so new variable posttran will contain 1
or 0 depending on whether n is or is not 2. n is the observation counter and, combined with by
ID variable:, becomes the observation-within-ID counter. Thus we set posttran to 1 on second
records and to 0 on all first records.

Finally, we produce the exit-time variable. Final exit time is just stime, and that is handled by
the command by id: gen t1 = stime if n== N. n is the observation-within-ID counter and N
is the total number of observations within id, so we just set the last observation on each patient to
stime. Now we have

id transp~t wait stime died posttran t1
16 1 28 308 1 0 .
16 1 28 308 1 1 308
44 0 0 40 1 0 40

All that is left to do is to fill in t1 with the value from wait on the interim records, meaning replace
t1=wait if it is an interim record.

There are many ways we could identify the interim records. In the output above, we did it by

. by id: replace t1 = wait if _n==1 & transplant

meaning that an interim record is a first record of a person who did receive a transplant. More easily,
but with more trickery, we could have just said

. replace t1=wait if t1>=.

because the only values of t1 left to be filled in are the missing ones. Another alternative would be

. by id: replace t1 = wait if _n==1 & _N==2

which would identify the first record of two-record pairs. There are many alternatives, but they would
all produce the same thing:

id transp~t wait stime died posttran t1
16 1 28 308 1 0 28
16 1 28 308 1 1 308
44 0 0 40 1 0 40

There is one more thing we must do, which is to reset died to contain 0 on the interim records:

. by id: replace died=0 if _n==1 & transplant

The result is

id transp~t wait stime died posttran t1
16 1 28 308 0 0 28
16 1 28 308 1 1 308
44 0 0 40 1 0 40

https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting
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We now have the desired result and are ready to stset our data:

. stset t1, failure(died) id(id)

Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1]
Exit on or before: failure

172 total observations
2 multiple records at same instant PROBABLE ERROR

(t1[_n-1]==t1)

170 observations remaining, representing
102 subjects
74 failures in single-failure-per-subject data

31,933 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,799

Well, something went wrong. Two records were excluded. There are few enough data here that we
could just list the dataset and look for the problem, but let’s pretend otherwise. We want to find the
records that, within patient, are marked as exiting at the same time:

. by id: gen problem = t1==t1[_n-1]

. sort id died

. list id if problem

id

61. 38

. list id transplant wait stime died posttran t1 if id==38

id transp~t wait stime died posttran t1

60. 38 1 5 5 0 0 5
61. 38 1 5 5 1 1 5

There is no typographical error in these data—we checked that variables transplant, wait, and
stime contain what the original source published. Those variables indicate that patient 38 waited 5
days for a heart transplant, received one on the fifth day, and then died on the fifth day, too.

That makes perfect sense, but not to Stata, which orders events within t as failures, followed by
censorings, followed by entries. Reading t1, Stata went for this literal interpretation: patient 38 was
censored at time 5 with posttran = 0; then, at time 5, patient 38 died; and then, at time 5, patient
38 reentered the data, but this time with posttran = 1. That made no sense to Stata.

Stata’s sequencing of events may surprise you, but trust us, there are good reasons for it, and
really, the ordering convention does not matter. To fix this problem, we just have to put a little time
between the implied entry at time 5 and the subsequent death:
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. replace t1 = 5.1 in 61
(1 real change made)

. list id transplant wait stime died posttran t1 if id==38

id transp~t wait stime died posttran t1

60. 38 1 5 5 0 0 5
61. 38 1 5 5 1 1 5.1

Now the data make sense both to us and to Stata: until time 5, the patient had posttran = 0; then,
at time 5, the value of posttran changed to 1; and then, at time 5.1, the patient died.

. stset t1, id(id) failure(died)

Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31,938.1 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,799

This dataset is now ready for use with all the other st commands. Here is an illustration:

. use https://www.stata-press.com/data/r18/stan3, clear
(Heart transplant data)

. stset, noshow

. stsum, by(posttran)

Incidence Number of Survival time
posttran Time at risk rate subjects 25% 50% 75%

0 5,936 .0050539 103 36 149 340
1 26,002.1 .0017306 69 39 96 979

Total 31,938.1 .0023483 103 36 100 979
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. stcox age posttran surgery year

Iteration 0: Log likelihood = -298.31514
Iteration 1: Log likelihood = -289.7344
Iteration 2: Log likelihood = -289.53498
Iteration 3: Log likelihood = -289.53378
Iteration 4: Log likelihood = -289.53378
Refining estimates:
Iteration 0: Log likelihood = -289.53378

Cox regression with Breslow method for ties

No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year .8873107 .059808 -1.77 0.076 .7775022 1.012628

Video example

Learn how to set up your data for survival analysis
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