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Description
streg performs maximum likelihood estimation for parametric regression survival-time models.

streg can be used with single- or multiple-record or single- or multiple-failure st data. Survival models

currently supported are exponential, Weibull, Gompertz, lognormal, loglogistic, and generalized gamma.

Parametric frailty models and shared-frailty models are also fit using streg.

Also see [ST] stcox for proportional hazards models.

Quick start
Weibull survival model with covariates x1 and x2 using stset data

streg x1 x2, distribution(weibull)

Use accelerated failure-time metric instead of proportional-hazards parameterization

streg x1 x2, distribution(weibull) time

Different intercepts and ancillary parameters for strata identified by svar
streg x1 x2, distribution(weibull) strata(svar)

Lognormal survival model

streg x1 x2, distribution(lognormal)

Same as above, but also model frailty using the gamma distribution

streg x1 x2, distribution(lognormal) frailty(gamma)

Specify shared frailty within groups identified by gvar
streg x1 x2, distribution(lognormal) frailty(gamma) shared(gvar)

Menu
Statistics > Survival analysis > Regression models > Parametric survival models
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Syntax
streg [ indepvars ] [ if ] [ in ] [ , options ]

options Description

Model

noconstant suppress constant term

distribution(exponential) exponential survival distribution

distribution(gompertz) Gompertz survival distribution

distribution(loglogistic) loglogistic survival distribution

distribution(llogistic) synonym for distribution(loglogistic)
distribution(weibull) Weibull survival distribution

distribution(lognormal) lognormal survival distribution

distribution(lnormal) synonym for distribution(lognormal)
distribution(ggamma) generalized gamma survival distribution

frailty(gamma) gamma frailty distribution

frailty(invgaussian) inverse-Gaussian distribution

time use accelerated failure-time metric

Model 2

strata(varname) strata ID variable

offset(varname) include varname in model with coefficient constrained to 1

shared(varname) shared frailty ID variable

ancillary(varlist) use varlist to model the first ancillary parameter

anc2(varlist) use varlist to model the second ancillary parameter

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
nohr do not report hazard ratios

tratio report time ratios

noshow do not show st setting information

noheader suppress header from coefficient table

nolrtest do not perform likelihood-ratio test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/ststreg.pdf#ststregOptionsdisplay_options
https://www.stata.com/manuals/ststreg.pdf#ststregOptionsmaxopts
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You must stset your data before using streg; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayes, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy are
allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: streg and [FMM] fmm: streg.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

shared(), vce(), and noheader are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights may be specified using stset; see [ST] stset. However, weights may not be specified
if you are using the bootstrap prefix with the streg command.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

distribution(distname) specifies the survival model to be fit. A specified distribution() is re-

membered from one estimation to the next when distribution() is not specified.

For instance, typing streg x1 x2, distribution(weibull) fits a Weibull model. Subsequently,

you do not need to specify distribution(weibull) to fit other Weibull regression models.

All Stata estimation commands, including streg, redisplay results when you type the command name
without arguments. To fit a model with no explanatory variables, type streg, distribution(dist-
name). . . .

frailty(gamma | invgaussian) specifies the assumed distribution of the frailty, or heterogeneity. The

estimation results, in addition to the standard parameter estimates, will contain an estimate of the vari-

ance of the frailties and a likelihood-ratio test of the null hypothesis that this variance is zero. When

this null hypothesis is true, the model reduces to the model with frailty(distname) not specified.

A specified frailty() is remembered from one estimation to the next when distribution() is

not specified. When you specify distribution(), the previously remembered specification of

frailty() is forgotten.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log relative-

hazard metric. This option is valid only for the exponential andWeibull models because these are the

only models that have both a proportional hazards and an accelerated failure-time parameterization.

Regardless of metric, the likelihood function is the same, and models are equally appropriate viewed

in either metric; it is just a matter of changing the interpretation.

time must be specified at estimation.

� � �
Model 2 �

strata(varname) specifies the stratification ID variable. Observations with equal values of the variable

are assumed to be in the same stratum. Stratified estimates (with equal coefficients across strata but

intercepts and ancillary parameters distinct for each stratum) are then obtained. This option is not

available if frailty(distname) is specified.

offset(varname); see [R] Estimation options.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesstreg.pdf#bayesbayesstreg
https://www.stata.com/manuals/fmmfmmstreg.pdf#fmmfmmstreg
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions


streg — Parametric survival models 4

shared(varname) is valid with frailty() and specifies a variable defining those groups over which

the frailty is shared, analogous to a random-effects model for panel data where varname defines the

panels. frailty() specified without shared() treats the frailties as occurring at the observation

level.

A specified shared() is remembered from one estimation to the next when distribution() is

not specified. When you specify distribution(), the previously remembered specification of

shared() is forgotten.

shared() may not be used with distribution(ggamma), vce(robust), vce(cluster clustvar),
vce(opg), the svy prefix, or in the presence of delayed entries or gaps.

If shared() is specified without frailty() and there is no remembered frailty() from the previ-

ous estimation, frailty(gamma) is assumed to provide behavior analogous to stcox; see [ST] stcox.

ancillary(varlist) specifies that the ancillary parameter for the Weibull, lognormal, Gompertz, and

loglogistic distributions and that the first ancillary parameter (sigma) of the generalized log-gamma

distribution be estimated as a linear combination of varlist. This option may not be used with

frailty(distname).

When an ancillary parameter is constrained to be strictly positive, the logarithm of the ancillary pa-

rameter is modeled as a linear combination of varlist.

anc2(varlist) specifies that the second ancillary parameter (kappa) for the generalized log-gamma distri-
bution be estimated as a linear combination of varlist. This option may not be used with frailty(dis-
tname).

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients rather
than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios be

displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for models with a natural proportional-hazards parameterization: exponen-

tial, Weibull, and Gompertz. These three models, by default, report hazard ratios (exponentiated

coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.

tratio is appropriate only for the loglogistic, lognormal, and generalized gamma models, or for

the exponential and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents streg from showing the key st variables. This option is rarely used because most

people type stset, show or stset, noshow to set once and for all whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststcox.pdf#ststcox
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
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noheader suppresses the output header, either at estimation or upon replay.

nolrtest is valid only with frailty models, in which case it suppresses the likelihood-ratio test for sig-

nificant frailty.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with streg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Distributions

Weibull and exponential models
Gompertz model
Lognormal and loglogistic models
Generalized gamma model

Examples
Parameterization of ancillary parameters
Stratified estimation
(Unshared-) frailty models
Shared-frailty models

Introduction
What follows is a brief summary of what you can do with streg. For a complete tutorial, see Cleves,

Gould, and Marchenko (2016), which devotes four chapters to this topic.

Two often-usedmodels for adjusting survivor functions for the effects of covariates are the accelerated

failure-time (AFT) model and the multiplicative or proportional hazards (PH) model. In theAFTmodel, the

natural logarithm of the survival time, log 𝑡, is expressed as a linear function of the covariates, yielding
the linear model

log𝑡𝑗 = x𝑗β + 𝑧𝑗

where x𝑗 is a vector of covariates, β is a vector of regression coefficients, and 𝑧𝑗 is the error with density

𝑓(⋅). The distributional form of the error term determines the regression model. If we let 𝑓(⋅) be the
normal density, the lognormal regression model is obtained. Similarly, by letting 𝑓(⋅) be the logistic
density, the loglogistic regression is obtained. Setting 𝑓(⋅) equal to the extreme-value density yields the
exponential and the Weibull regression models.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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The effect of the AFT model is to change the time scale by a factor of exp(−x𝑗β). Depending on

whether this factor is greater or less than 1, time is either accelerated or decelerated (degraded). That

is, if a subject at baseline experiences a probability of survival past time 𝑡 equal to 𝑆(𝑡), then a subject
with covariates x𝑗 would have probability of survival past time 𝑡 equal to 𝑆(⋅) evaluated at the point

exp(−x𝑗β)𝑡, instead. Thus accelerated failure time does not imply a positive acceleration of time with
the increase of a covariate but instead implies a deceleration of time or, equivalently, an increase in the

expected waiting time for failure.

In the PH model, the concomitant covariates have a multiplicative effect on the hazard function

ℎ(𝑡𝑗) = ℎ0(𝑡)𝑔(x𝑗)

for some ℎ0(𝑡), and for 𝑔(x𝑗), a nonnegative function of the covariates. A popular choice, and the one

adopted here, is to let 𝑔(x𝑗) = exp(x𝑗β). The function ℎ0(𝑡) may either be left unspecified, yielding

the Cox proportional hazards model (see [ST] stcox), or take a specific parametric form. For the streg
command, ℎ0(𝑡) is assumed to be parametric. Three regression models are currently implemented as

PH models: the exponential, Weibull, and Gompertz models. The exponential and Weibull models are

implemented as bothAFT and PHmodels, and the Gompertz model is implemented only in the PHmetric.

The above model allows for the presence of an intercept term, 𝛽0, within x𝑗β. Thus what is commonly
referred to as the baseline hazard function—the hazard when all covariates are zero—is actually equal

to ℎ0(𝑡) exp(𝛽0). That is, the intercept term serves to scale the baseline hazard. Of course, specifying

noconstant suppresses the intercept or equivalently constrains 𝛽0 to equal zero.

streg is suitable only for data that have been stset. By stsetting your data, you define the variables
t0, t, and d, which serve as the trivariate response variable (𝑡0, 𝑡, 𝑑). Each response corresponds to
a period under observation, (𝑡0, 𝑡], resulting in either failure (𝑑 = 1) or right-censoring (𝑑 = 0) at time
𝑡. As a result, streg is appropriate for data exhibiting delayed entry, gaps, time-varying covariates, and

even multiple-failure data.

https://www.stata.com/manuals/ststcox.pdf#ststcox
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Distributions
Six parametric survival distributions are currently supported by streg. The parameterization and

ancillary parameters for each distribution are summarized in table 1:

Table 1. Parametric survival distributions supported by streg

Ancillary

Distribution Metric Survivor function Parameterization parameters

Exponential PH exp(−𝜆𝑗𝑡𝑗) 𝜆𝑗 = exp(x𝑗β)
Exponential AFT exp(−𝜆𝑗𝑡𝑗) 𝜆𝑗 = exp(−x𝑗β)
Weibull PH exp(−𝜆𝑗𝑡

𝑝
𝑗 ) 𝜆𝑗 = exp(x𝑗β) 𝑝

Weibull AFT exp(−𝜆𝑗𝑡
𝑝
𝑗 ) 𝜆𝑗 = exp(−𝑝x𝑗β) 𝑝

Gompertz PH exp{−𝜆𝑗𝛾−1(𝑒𝛾𝑡𝑗 − 1)} 𝜆𝑗 = exp(x𝑗β) 𝛾

Lognormal AFT 1 − Φ { log(𝑡𝑗)−𝜇𝑗
𝜎 } 𝜇𝑗 = x𝑗β 𝜎

Loglogistic AFT {1 + (𝜆𝑗𝑡𝑗)1/𝛾}−1 𝜆𝑗 = exp(−x𝑗β) 𝛾
Generalized gamma

if 𝜅 > 0 AFT 1 − 𝐼(𝛾, 𝑢) 𝜇𝑗 = x𝑗β 𝜎, 𝜅
if 𝜅 = 0 AFT 1 − Φ(𝑧) 𝜇𝑗 = x𝑗β 𝜎, 𝜅
if 𝜅 < 0 AFT 𝐼(𝛾, 𝑢) 𝜇𝑗 = x𝑗β 𝜎, 𝜅

where PH = proportional hazards, AFT = accelerated failure time, and Φ(𝑧) is the standard normal cu-
mulative distribution. For the generalized gamma, 𝛾 = |𝜅|−2, 𝑢 = 𝛾exp(|𝜅|𝑧), 𝐼(𝑎, 𝑥) is the incomplete
gamma function, and 𝑧 = sign(𝜅){ log(𝑡𝑗) − 𝜇𝑗}/𝜎.



streg — Parametric survival models 8

Plotted in figure 1 are example hazard functions for five of the six distributions. The exponential haz-

ard (not separately plotted) is a special case of the Weibull hazard when the Weibull ancillary parameter

𝑝 = 1. The generalized gamma (not plotted) is extremely flexible and therefore can take many shapes.
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Figure 1. Example plots of hazard functions

Weibull and exponential models
The Weibull and exponential models are parameterized as both PH and AFT models. The Weibull

distribution is suitable for modeling data with monotone hazard rates that either increase or decrease

exponentially with time, whereas the exponential distribution is suitable for modeling data with constant

hazard (see figure 1).

For the PH model, ℎ0(𝑡) = 1 for exponential regression, and ℎ0(𝑡) = 𝑝 𝑡𝑝−1 for Weibull regression,

where 𝑝 is the shape parameter to be estimated from the data. Some authors refer not to 𝑝 but to 𝜎 = 1/𝑝.
The AFT model is written as

log(𝑡𝑗) = x𝑗β
∗ + 𝑧𝑗

where 𝑧𝑗 has an extreme-value distribution scaled by 𝜎. Let β be the vector of regression coefficients

derived from the PH model so that β∗ = −𝜎β. This relationship holds only if the ancillary parameter, 𝑝,
is a constant; it does not hold when the ancillary parameter is parameterized in terms of covariates.

streg uses, by default, for the exponential andWeibull models, the proportional-hazards metric sim-

ply because it eases comparisonwith those results produced by stcox (see [ST] stcox). You can, however,
specify the time option to choose the accelerated failure-time parameterization.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesfig1
https://www.stata.com/manuals/ststcox.pdf#ststcox
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The Weibull hazard and survivor functions are

h(𝑡) = 𝑝𝜆𝑡𝑝−1

𝑆(𝑡) = exp(−𝜆𝑡𝑝)

where 𝜆 is parameterized as described in table 1. If 𝑝 = 1, these functions reduce to those of the

exponential.

Gompertz model
The Gompertz regression is parameterized only as a PH model. First described in 1825, this model

has been extensively used by medical researchers and biologists modeling mortality data. The Gompertz

distribution implemented is the two-parameter function as described in Lee and Wang (2013), with the

following hazard and survivor functions:

ℎ(𝑡) = 𝜆 exp(𝛾𝑡)

𝑆(𝑡) = exp{−𝜆𝛾−1(𝑒𝛾𝑡 − 1)}

The model is implemented by parameterizing 𝜆𝑗 = exp(x𝑗β), implying that ℎ0(𝑡) = exp(𝛾𝑡), where
𝛾 is an ancillary parameter to be estimated from the data.

This distribution is suitable for modeling data with monotone hazard rates that either increase or

decrease exponentially with time (see figure 1).

When 𝛾 is positive, the hazard function increases with time; when 𝛾 is negative, the hazard function

decreases with time; and when 𝛾 is zero, the hazard function is equal to 𝜆 for all 𝑡, so the model reduces
to an exponential.

Some recent survival analysis texts, such as Klein and Moeschberger (2003), restrict 𝛾 to be strictly

positive. If 𝛾 < 0, then as 𝑡 goes to infinity, the survivor function, 𝑆(𝑡), exponentially decreases to a

nonzero constant, implying that there is a nonzero probability of never failing (living forever). That is,

there is always a nonzero hazard rate, yet it decreases exponentially. By restricting 𝛾 to be positive, we

know that the survivor function always goes to zero as 𝑡 tends to infinity.
Although the above argument may be desirable from a mathematical perspective, in Stata’s imple-

mentation, we took the more traditional approach of not restricting 𝛾. We did this because, in survival

studies, subjects are not monitored forever—there is a date when the study ends, and in many investiga-

tions, specifically in medical research, an exponentially decreasing hazard rate is clinically appealing.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplestable1
https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesfig1


streg — Parametric survival models 10

Lognormal and loglogistic models
The lognormal and loglogistic models are implemented only in theAFT form. These two distributions

are similar and tend to produce comparable results. For the lognormal distribution, the natural logarithm

of time follows a normal distribution; for the loglogistic distribution, the natural logarithm of time follows

a logistic distribution.

The lognormal survivor and density functions are

𝑆(𝑡) = 1 − Φ{ log(𝑡) − 𝜇
𝜎

}

f (𝑡) = 1
𝑡𝜎

√
2𝜋

exp[ −1
2𝜎2 { log(𝑡) − 𝜇}

2
]

where Φ(𝑧) is the standard normal cumulative distribution function.
The lognormal regression is implemented by setting 𝜇𝑗 = x𝑗β and treating the standard deviation, 𝜎,

as an ancillary parameter to be estimated from the data.

The loglogistic regression is obtained if 𝑧𝑗 has a logistic density. The loglogistic survivor and density

functions are

𝑆(𝑡) = {1 + (𝜆𝑡)1/𝛾}−1

f (𝑡) = 𝜆1/𝛾𝑡1/𝛾−1

𝛾{1 + (𝜆𝑡)1/𝛾}2

This model is implemented by parameterizing 𝜆𝑗 = exp(−x𝑗β) and treating the scale parameter 𝛾 as

an ancillary parameter to be estimated from the data.

Unlike the exponential, Weibull, and Gompertz distributions, the lognormal and the loglogistic distri-

butions are indicated for data exhibiting nonmonotonic hazard rates, specifically initially increasing and

then decreasing rates (figure 1).

Thus far we have considered the exponential, Weibull, lognormal, and loglogistic models. These

models are sufficiently flexible for many datasets, but further flexibility can be obtained with the gener-

alized gammamodel, described below. Alternatively, youmight consider using a Royston–Parmarmodel

(Royston and Parmar 2002; Lambert and Royston 2009). Royston–Parmar models are highly flexible

alternatives to the exponential, Weibull, lognormal, and loglogistic models that allow extension from

proportional hazards to proportional odds and to scaled probit models. Additional flexibility can be ob-

tained with restricted cubic spline functions as alternatives to the linear functions of log time considered

in Introduction. See Royston and Lambert (2011) for a thorough treatment of this topic.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesfig1
https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesIntroduction
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Generalized gamma model
The generalized gammamodel is implemented only in theAFT form. The three-parameter generalized

gamma survivor and density functions are

𝑆(𝑡) =
⎧
{
⎨
{
⎩

1 − 𝐼(𝛾, 𝑢) if 𝜅 > 0

1 − Φ(𝑧) if 𝜅 = 0

𝐼(𝛾, 𝑢) if 𝜅 < 0

𝑓(𝑡) =
⎧{
⎨{⎩

𝛾𝛾

𝜎𝑡√𝛾Γ(𝛾) exp(𝑧√𝛾 − 𝑢) if 𝜅 ≠ 0
1

𝜎𝑡
√

2𝜋 exp(−𝑧2/2) if 𝜅 = 0

where 𝛾 = |𝜅|−2, 𝑧 = sign(𝜅){ log(𝑡) − 𝜇}/𝜎, 𝑢 = 𝛾 exp(|𝜅|𝑧), Φ(𝑧) is the standard normal cumulative
distribution function, and 𝐼(𝑎, 𝑥) is the incomplete gamma function. See the gammap(a,x) entry in

[FN] Statistical functions to see how the incomplete gamma function is implemented in Stata.

This model is implemented by parameterizing 𝜇𝑗 = x𝑗β and treating the parameters 𝜅 and 𝜎 as

ancillary parameters to be estimated from the data.

The hazard function of the generalized gamma distribution is extremely flexible, allowing for many

possible shapes, including as special cases the Weibull distribution when 𝜅 = 1, the exponential when

𝜅 = 1 and 𝜎 = 1, and the lognormal distribution when 𝜅 = 0. The generalized gamma model is,

therefore, commonly used for evaluating and selecting an appropriate parametric model for the data.

The Wald or likelihood-ratio test can be used to test the hypotheses that 𝜅 = 1 or that 𝜅 = 0.

Technical note
Prior to Stata 14, streg’s option distribution(gamma) was used to fit generalized gamma models.

As of Stata 14, the new option for fitting these models is distribution(ggamma). The old option

continues to work under version control. This option was renamed to avoid confusion with mestreg’s
option distribution(gamma) for fitting mixed-effects survival gamma models; see [ME] mestreg.

Examples

Example 1
TheWeibull distribution provides a good illustration of streg because this distribution is parameter-

ized as both AFT and PH and serves to compare and contrast the two approaches.

We wish to analyze an experiment testing the ability of emergency generators with new-style bearings

to withstand overloads. This dataset is described in [ST] stcox. This time, we wish to fit aWeibull model:

https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctionsFunctionsgammap()
https://www.stata.com/manuals/fnstatisticalfunctions.pdf#fnStatisticalfunctions
https://www.stata.com/manuals/memestreg.pdf#memestreg
https://www.stata.com/manuals/ststcox.pdf#ststcox
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. use https://www.stata-press.com/data/r19/kva
(Generator experiment)
. stset failtime
(output omitted )

. streg load bearings, distribution(weibull)
Failure _d: 1 (meaning all fail)

Analysis time _t: failtime
Fitting constant-only model:
Iteration 0: Log likelihood = -13.666193
Iteration 1: Log likelihood = -9.7427276
Iteration 2: Log likelihood = -9.4421169
Iteration 3: Log likelihood = -9.4408287
Iteration 4: Log likelihood = -9.4408286
Fitting full model:
Iteration 0: Log likelihood = -9.4408286
Iteration 1: Log likelihood = -2.078323
Iteration 2: Log likelihood = 5.2226016
Iteration 3: Log likelihood = 5.6745808
Iteration 4: Log likelihood = 5.6934031
Iteration 5: Log likelihood = 5.6934189
Iteration 6: Log likelihood = 5.6934189
Weibull PH regression
No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

load 1.599315 .1883807 3.99 0.000 1.269616 2.014631
bearings .1887995 .1312109 -2.40 0.016 .0483546 .7371644

_cons 2.51e-20 2.66e-19 -4.26 0.000 2.35e-29 2.68e-11

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

Note: _cons estimates baseline hazard.

Because we did not specify otherwise, the estimation took place in the hazard metric, which is the de-

fault for distribution(weibull). The estimates are directly comparable to those produced by stcox:
stcox estimated a hazard ratio of 1.526 for load and 0.0636 for bearings.

However, we estimated the baseline hazard function as well, assuming that it isWeibull. The estimates

are the full maximum-likelihood estimates. The shape parameter is fit as ln 𝑝, but streg then reports 𝑝
and 1/𝑝 = 𝜎 so that you can think about the parameter however you wish.

We find that 𝑝 is greater than 1, which means that the hazard of failure increases with time and, here,

increases dramatically. After 100 hours, the bearings are more than 1 million times more likely to fail

per second than after 10 hours (or, to be precise, (100/10)7.78−1). From our knowledge of generators,

we would expect this; it is the accumulation of heat due to friction that causes bearings to expand and

seize.

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex1
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Technical note
Regression results are often presented in a metric other than the natural regression coefficients, that

is, as hazard ratios, relative risk ratios, odds ratios, etc. In those cases, standard errors are calculated

using the delta method.

However, the 𝑍 test and 𝑝-values given are calculated from the natural regression coefficients and

standard errors. Although a test based on, say, a hazard ratio and its standard error would be asymptoti-

cally equivalent to that based on a regression coefficient, in real samples a hazard ratio will tend to have

a more skewed distribution because it is an exponentiated regression coefficient. Also, it is more natural

to think of these tests as testing whether a regression coefficient is nonzero, rather than testing whether

a transformed regression coefficient is unequal to some nonzero value (one for a hazard ratio).

Finally, the confidence intervals given are obtained by transforming the endpoints of the correspond-

ing confidence interval for the untransformed regression coefficient. This ensures that, say, strictly pos-

itive quantities such as hazard ratios have confidence intervals that do not overlap zero.

Example 2
The previous estimation took place in the PH metric, and exponentiated coefficients—hazard ra-

tios—were reported. If we want to see the unexponentiated coefficients, we could redisplay results

and specify the nohr option:

. streg, nohr
Weibull PH regression
No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

load .4695753 .1177884 3.99 0.000 .2387143 .7004363
bearings -1.667069 .6949745 -2.40 0.016 -3.029194 -.3049443

_cons -45.13191 10.60663 -4.26 0.000 -65.92053 -24.34329

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex_streg_experiment
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Example 3
We could just as well have fit this model in the AFT metric:

. streg load bearings, distribution(weibull) time nolog
Failure _d: 1 (meaning all fail)

Analysis time _t: failtime
Weibull AFT regression
No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 30.27
Log likelihood = 5.6934189 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

load -.060357 .0062214 -9.70 0.000 -.0725507 -.0481632
bearings .2142771 .0746451 2.87 0.004 .0679753 .3605789

_cons 5.80104 .1752301 33.11 0.000 5.457595 6.144485

/ln_p 2.051552 .2317074 8.85 0.000 1.597414 2.505691

p 7.779969 1.802677 4.940241 12.25202
1/p .1285352 .0297826 .0816192 .2024193

This is the same model we previously fit, but it is presented in a different metric. Calling the previous

coefficients 𝑏, these coefficients are −𝜎𝑏 = −𝑏/𝑝. For instance, in the previous example, the coefficient
on load was reported as roughly 0.47, and −0.47/7.78 = −0.06.

Example 4
streg may also be applied to more complicated data. Below we have multiple records per subject on

a failure that can occur repeatedly:

. use https://www.stata-press.com/data/r19/mfail3

. stdescribe
Per subject

Category Total Mean Min Median Max

Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 6
Time on gap 411 68.5 16 57.5 133
Time at risk 435444 470.2419 1 477 960
Failures 808 .8725702 0 1 3

In this dataset, subjects have up to four records (most have two) and have up to three failures (most have

one) and, although you cannot tell from the above output, the data have time-varying covariates, as well.

There are even six subjects with gaps in their histories, meaning that, for a while, they went unobserved.

Although we could estimate in the AFT metric, it is easier to interpret results in the PH metric (or the log

relative-hazard metric, as it is also known):

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplesex2
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. streg x1 x2, distribution(weibull) vce(robust)
Fitting constant-only model:
Iteration 0: Log pseudolikelihood = -1398.2504
Iteration 1: Log pseudolikelihood = -1382.8224
Iteration 2: Log pseudolikelihood = -1382.7457
Iteration 3: Log pseudolikelihood = -1382.7457
Fitting full model:
Iteration 0: Log pseudolikelihood = -1382.7457
Iteration 1: Log pseudolikelihood = -1328.4186
Iteration 2: Log pseudolikelihood = -1326.4483
Iteration 3: Log pseudolikelihood = -1326.4449
Iteration 4: Log pseudolikelihood = -1326.4449
Weibull PH regression
No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444

Wald chi2(2) = 154.45
Log pseudolikelihood = -1326.4449 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.240069 .1812848 9.97 0.000 1.911504 2.625111
x2 .3206515 .0504626 -7.23 0.000 .2355458 .436507

_cons .0006962 .0001792 -28.25 0.000 .0004204 .001153

/ln_p .1771265 .0310111 5.71 0.000 .1163458 .2379071

p 1.193782 .0370205 1.123384 1.268591
1/p .8376738 .0259772 .7882759 .8901674

Note: _cons estimates baseline hazard.

Aone-unit change in x1 approximately doubles the hazard of failure, whereas a one-unit change in x2
cuts the hazard to one-third its previous value. We also see that these data are close to being exponentially

distributed; 𝑝 is nearly 1.

Above we mentioned that interpreting results in the PHmetric is easier, though regression coefficients

are not difficult to interpret in the AFT metric. A positive coefficient means that time is decelerated by

a unit increase in the covariate in question. This may seem awkward, but think of this instead as a unit

increase in the covariate causing a delay in failure and thus increasing the expected time until failure.

The difficulty that arises with the AFT metric is merely that it places an emphasis on log(time-to-

failure) rather than risk (hazard) of failure. With this emphasis usually comes a desire to predict the time

to failure, and therein lies the difficulty with complex survival data. Predicting the log(time to failure)

with predict assumes that the subject is at risk from time 0 until failure and has a fixed covariate pattern

over this period. With these data, such assumptions produce predictions having little to do with the test

subjects, who exhibit not only time-varying covariates but also multiple failures.

Predicting time to failure with complex survival data is difficult regardless of the metric under which

estimation took place. Those who estimate in the PH metric are probably used to dealing with results

from Cox regression, of which predicted time to failure is typically not the focus.
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Example 5
The multiple-failure data above are close enough to exponentially distributed that we will reestimate

using exponential regression:

. streg x1 x2, distribution(exp) vce(robust)
Iteration 0: Log pseudolikelihood = -1398.2504
Iteration 1: Log pseudolikelihood = -1343.6083
Iteration 2: Log pseudolikelihood = -1341.5932
Iteration 3: Log pseudolikelihood = -1341.5893
Iteration 4: Log pseudolikelihood = -1341.5893
Exponential PH regression
No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444

Wald chi2(2) = 166.92
Log pseudolikelihood = -1341.5893 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.19065 .1684399 10.20 0.000 1.884186 2.54696
x2 .3037259 .0462489 -7.83 0.000 .2253552 .4093511

_cons .0024536 .0001535 -96.05 0.000 .0021704 .0027738

Note: _cons estimates baseline hazard.

Technical note
For our “complex” survival data, we specified vce(robust)when fitting theWeibull and exponential

models. This was because these data were stset with an id() variable, and given the time-varying

covariates and multiple failures, it is important not to assume that the observations within each subject

are independent. When we specified vce(robust), it was implicit that we were “clustering” on the

groups defined by the id() variable.

You might sometimes have multiple observations per subject, which exist merely as a result of the

data-organization mechanism and are not used to record gaps, time-varying covariates, or multiple fail-

ures. Such data could be collapsed into single-observation-per-subject data with no loss of information.

In these cases, we refer to splitting the observations to form multiple observations per subject as nonin-

formative. When the episode-splitting is noninformative, the model-based (nonrobust) standard errors

produced will be the same as those produced when the data are collapsed into single records per sub-

ject. Thus, for these type of data, clustering of these multiple observations that results from specifying

vce(robust) is not critical.

Example 6
A reasonable question to ask is, “Given that we have several possible parametric models, how can

we select one?” When parametric models are nested, the likelihood-ratio or Wald test can be used to

discriminate between them. This can certainly be done for Weibull versus exponential or gamma versus

Weibull or lognormal. When models are not nested, however, these tests are inappropriate, and the task

of discriminating between models becomes more difficult. A common approach to this problem is to use
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the Akaike information criterion (AIC). Akaike (1974) proposed penalizing each log likelihood to reflect

the number of parameters being estimated in a particular model and then comparing them. Here the AIC

can be defined as

AIC = −2(log likelihood) + 2(𝑐 + 𝑝 + 1)

where 𝑐 is the number of model covariates and 𝑝 is the number of model-specific ancillary parameters

listed in table 1. Although the best-fitting model is the one with the largest log likelihood, the preferred

model is the one with the smallest AIC value. The AIC value may be obtained by using the estat ic
postestimation command; see [R] estat ic.

Using cancer.dta distributed with Stata, let’s first fit a generalized gamma model and test the hy-

pothesis that 𝜅 = 0 (test for the appropriateness of the lognormal) and then test the hypothesis that 𝜅 = 1

(test for the appropriateness of the Weibull).

. use https://www.stata-press.com/data/r19/cancer
(Patient survival in drug trial)
. stset studytime, failure(died)
(output omitted )

. replace drug = drug==2 | drug==3 // 0, placebo : 1, nonplacebo
(48 real changes made)
. streg drug age, distribution(ggamma) nolog

Failure _d: died
Analysis time _t: studytime

Generalized gamma AFT regression
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 36.07
Log likelihood = -42.452006 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

drug 1.394658 .2557198 5.45 0.000 .893456 1.895859
age -.0780416 .0227978 -3.42 0.001 -.1227245 -.0333587

_cons 6.456091 1.238457 5.21 0.000 4.02876 8.883421

/lnsigma -.3793632 .183707 -2.07 0.039 -.7394222 -.0193041
/kappa .4669252 .5419478 0.86 0.389 -.595273 1.529123

sigma .684297 .1257101 .4773897 .980881

The Wald test of the hypothesis that 𝜅 = 0 (test for the appropriateness of the lognormal) is reported

in the output above. The 𝑝-value is 0.389, suggesting that lognormal might be an adequate model for

these data.

The Wald test for 𝜅 = 1 is

. test [kappa] = 1
( 1) [/]kappa = 1

chi2( 1) = 0.97
Prob > chi2 = 0.3253

providing some support against rejecting the Weibull model.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplestable1
https://www.stata.com/manuals/restatic.pdf#restatic
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We now fit the exponential, Weibull, loglogistic, and lognormal models separately. To directly com-

pare coefficients, we will ask Stata to report the exponential and Weibull models in AFT form by speci-

fying the time option. The output from fitting these models and the results from the generalized gamma

model are summarized in table 2.

Table 2. Results obtained from streg, using cancer.dta with drug as an indicator variable

Generalized
Parameter Exponential Weibull Lognormal Loglogistic gamma

Age −0.0886715 −0.0714323 −0.0833996 −0.0803289 −0.078042

Drug 1.682625 1.305563 1.445838 1.420237 1.394658

Constant 7.146218 6.289679 6.580887 6.446711 6.456091

Ancillary 1.682751 0.751136 0.429276 0.684297

Kappa 0.466925

Log likelihood −48.397094 −42.931335 −42.800864 −43.21698 −42.452006

AIC 102.7942 93.86267 93.60173 94.43396 94.90401

The largest log likelihood was obtained for the generalized gammamodel; however, the lognormal model

is preferred by the AIC.

Parameterization of ancillary parameters
By default, all ancillary parameters are estimated as being constant. For example, the ancillary pa-

rameter, 𝑝, of theWeibull distribution is assumed to be a constant that is not dependent on any covariates.

streg’s ancillary() and anc2() options allow for complete parameterization of parametric survival

models. By specifying, for example,

. streg x1 x2, distribution(weibull) ancillary(x2 z1 z2)

both 𝜆 and the ancillary parameter, 𝑝, are parameterized in terms of covariates.
Ancillary parameters are usually restricted to be strictly positive, in which case the logarithm of the

ancillary parameter is modeled using a linear predictor, which can assume any value on the real line.

Example 7
Consider a dataset in which we model the time until hip fracture asWeibull for patients on the basis of

age, sex, and whether the patient wears a hip-protective device (variable protect). We believe that the

hazard is scaled according to sex and the presence of the device but believe the hazards for both sexes to

be of different shapes.

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplestable2
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. use https://www.stata-press.com/data/r19/hip3, clear
(Hip-fracture study)
. streg protect age, distribution(weibull) ancillary(male) nolog

Failure _d: fracture
Analysis time _t: time1

ID variable: id
Weibull PH regression
No. of subjects = 148 Number of obs = 206
No. of failures = 37
Time at risk = 1,703

LR chi2(2) = 39.80
Log likelihood = -69.323532 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
protect -2.130058 .3567005 -5.97 0.000 -2.829178 -1.430938

age .0939131 .0341107 2.75 0.006 .0270573 .1607689
_cons -10.17575 2.551821 -3.99 0.000 -15.17722 -5.174269

ln_p
male -.4887189 .185608 -2.63 0.008 -.8525039 -.1249339

_cons .4540139 .1157915 3.92 0.000 .2270667 .6809611

From our estimation results, we see that l̂n(𝑝) = 0.454 for females and l̂n(𝑝) = 0.454 − 0.489 =
−0.035 for males. Thus ̂𝑝 = 1.57 for females and ̂𝑝 = 0.97 for males. When we combine this with the

main equation in the model, the estimated hazards are then

ℎ̂(𝑡𝑗|x𝑗) =
⎧{
⎨{⎩

exp(−10.18 − 2.13protect𝑗 + 0.09age𝑗) 1.57𝑡0.57
𝑗 if female

exp(−10.18 − 2.13protect𝑗 + 0.09age𝑗) 0.97𝑡−0.03
𝑗 if male

If we believe this model, we would say that the hazard for males given age and protect is almost

constant over time.

Contrast this with what we obtain if we type

. streg protect age if male, distribution(weibull)

. streg protect age if !male, distribution(weibull)

which is completely general, because not only the shape parameter, 𝑝, will differ over both sexes but also
the regression coefficients.

The anc2() option is for use only with the gamma regression model, because it contains two ancillary
parameters—anc2() is used to parameterize 𝜅.

Stratified estimation
When we type

. streg xvars, distribution(distname) strata(varname)

we are asking that a completely stratified model be fit. By completely stratified, we mean that both the

model’s intercept and any ancillary parameters are allowed to vary for each level of the strata variable.

That is, we are constraining the coefficients on the covariates to be the same across strata but allowing

the intercept and ancillary parameters to vary.
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Example 8
We demonstrate this by fitting a stratified Weibull model to the cancer data, with the drug variable

left in its original state: drug==1 refers to the placebo, and drug==2 and drug==3 correspond to two

alternative treatments.

. use https://www.stata-press.com/data/r19/cancer
(Patient survival in drug trial)
. stset studytime, failure(died)
(output omitted )

. streg age, distribution(weibull) strata(drug) nolog
Failure _d: died

Analysis time _t: studytime
Weibull PH regression
Strata variable: drug
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 16.58
Log likelihood = -41.113074 Prob > chi2 = 0.0009

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
age .1212332 .0367538 3.30 0.001 .049197 .1932694

drug
Other -4.561178 2.339448 -1.95 0.051 -9.146411 .0240556

NA -3.715737 2.595986 -1.43 0.152 -8.803776 1.372302

_cons -10.36921 2.341022 -4.43 0.000 -14.95753 -5.780896

ln_p
drug

Other .4872195 .332019 1.47 0.142 -.1635257 1.137965
NA .2194213 .4079989 0.54 0.591 -.5802418 1.019084

_cons .4541282 .1715663 2.65 0.008 .1178645 .7903919

Completely stratified models are fit by including a stratum variable as a factor variable in the main

equation and in any of the ancillary equations. The strata() option is thus merely a shorthand method

for including i.drug in both the main equation and the ancillary equation(s).

We associate the term “stratification” with this process by noting that the intercept term of the main

equation is a component of the baseline hazard (or baseline survivor) function. By allowing this intercept,

as well as the ancillary shape parameter, to vary with respect to the strata, we allow the baseline functions

to completely vary over the strata, analogous to a stratified Cox model.
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Example 9
We can produce a less-stratified model by specifying a factor variable in the ancillary() option.

. streg age, distribution(weibull) ancillary(i.drug) nolog
Failure _d: died

Analysis time _t: studytime
Weibull PH regression
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(1) = 9.61
Log likelihood = -44.596379 Prob > chi2 = 0.0019

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_t
age .1126419 .0362786 3.10 0.002 .0415373 .1837466

_cons -10.95772 2.308489 -4.75 0.000 -15.48227 -6.433162

ln_p
drug

Other -.3279568 .11238 -2.92 0.004 -.5482176 -.107696
NA -.4775351 .1091141 -4.38 0.000 -.6913948 -.2636755

_cons .6684086 .1327284 5.04 0.000 .4082657 .9285514

By doing this, we are restricting not only the coefficients on the covariates to be the same across

“strata” but also the intercept, while allowing only the ancillary parameter to differ.

By using ancillary() or strata(), we may thus consider a wide variety of models, depending on
what we believe about the effect of the covariate(s) in question. For example, when fitting a Weibull PH

model to the cancer data, we may choose from many models, depending on what we want to assume is

the effect of the categorical variable drug. For all models considered below, we assume implicitly that
the effect of age is proportional on the hazard function.

1. drug has no effect:

. streg age, distribution(weibull)

2. The effect of drug is proportional on the hazard (scale), and the effect of age is the same for each

level of drug:

. streg age i.drug, distribution(weibull)

3. drug affects the shape of the hazard, and the effect of age is the same for each level of drug:

. streg age, distribution(weibull) ancillary(i.drug)

4. drug affects both the scale and shape of the hazard, and the effect of age is the same for each level of

drug:

. streg age, distribution(weibull) strata(drug)
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5. drug affects both the scale and shape of the hazard, and the effect of age is different for each level of

drug:

. streg drug##c.age, distribution(weibull) strata(drug)

These models may be compared using Wald or likelihood-ratio tests when the models in question are

nested (such as 3 nested within 4) or by using the AIC for nonnested models.

Everything we said regarding the modeling of ancillary parameters and stratification applies to AFT

models as well, for which interpretations may be stated in terms of the baseline survivor function, that

is, the unaccelerated probability of survival past time 𝑡.

Technical note
When fitting PH models, streg will, by default, display the exponentiated regression coefficients,

labeled as hazard ratios. However, in our previous examples using ancillary() and strata(), the
regression outputs displayed the untransformed coefficients instead. This change in behavior has to do

with themodeling of the ancillary parameter. Whenwe use one ormore covariates from themain equation

to model an ancillary parameter, hazard ratios (and time ratios for AFT models) lose their interpretation.

streg, as a precaution, disallows the display of hazard/time ratios when ancillary(), anc2(), or
strata() is specified.

Keep this in mind when comparing results across various model specifications. For example, when

comparing a stratified Weibull PH model to a standard Weibull PH model, be sure that the latter is dis-

played using the nohr option.

(Unshared-) frailty models
A frailty model is a survival model with unobservable heterogeneity, or frailty. At the observation

level, frailty is introduced as an unobservable multiplicative effect, 𝛼, on the hazard function, such that

ℎ(𝑡|𝛼) = 𝛼ℎ(𝑡)

where ℎ(𝑡) is a nonfrailty hazard function, say, the hazard function of any of the six parametric models
supported by streg described earlier in this entry. The frailty, 𝛼, is a random positive quantity and, for

model identifiability, is assumed to have mean 1 and variance 𝜃.
Exploiting the relationship between the cumulative hazard function and survivor function yields the

expression for the survivor function, given the frailty

𝑆(𝑡|𝛼) = exp{− ∫
𝑡

0
ℎ(𝑢|𝛼)𝑑𝑢} = exp{−𝛼 ∫

𝑡

0

𝑓(𝑢)
𝑆(𝑢)

𝑑𝑢} = {𝑆(𝑡)}𝛼

where 𝑆(𝑡) is the survivor function that corresponds to ℎ(𝑡).
Because 𝛼 is unobservable, it must be integrated out of 𝑆(𝑡|𝛼) to obtain the unconditional survivor

function. Let 𝑔(𝛼) be the probability density function of 𝛼, in which case an estimable form of our frailty

model is achieved as

𝑆𝜃(𝑡) = ∫
∞

0
𝑆(𝑡|𝛼)𝑔(𝛼)𝑑𝛼 = ∫

∞

0
{𝑆(𝑡)}𝛼 𝑔(𝛼)𝑑𝛼
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Given the unconditional survivor function, we can obtain the unconditional hazard and density in the

usual way:

𝑓𝜃(𝑡) = − 𝑑
𝑑𝑡

𝑆𝜃(𝑡) ℎ𝜃(𝑡) = 𝑓𝜃(𝑡)
𝑆𝜃(𝑡)

Hence, an unshared-frailty model is merely a typical parametric survival model, with the additional

estimation of an overdispersion parameter, 𝜃. In a standard survival regression, the likelihood calculations
are based on 𝑆(𝑡), ℎ(𝑡), and 𝑓(𝑡). In an unshared-frailty model, the likelihood is based analogously on
𝑆𝜃(𝑡), ℎ𝜃(𝑡), and 𝑓𝜃(𝑡).

At this stage, the only missing piece is the choice of frailty distribution, 𝑔(𝛼). In theory, any con-

tinuous distribution supported on the positive numbers that has expectation 1 and finite variance 𝜃 is

allowed here. For mathematical tractability, however, we limit the choice to either the gamma(1/𝜃, 𝜃)
distribution or the inverse-Gaussian distribution with parameters 1 and 1/𝜃, denoted as IG(1, 1/𝜃). The
gamma(𝑎, 𝑏) distribution has probability density function

𝑔(𝑥) = 𝑥𝑎−1𝑒−𝑥/𝑏

Γ(𝑎)𝑏𝑎

and the IG(𝑎, 𝑏) distribution has density

𝑔(𝑥) = ( 𝑏
2𝜋𝑥3 )

1/2
exp{− 𝑏

2𝑎
(𝑥

𝑎
− 2 + 𝑎

𝑥
)}

Therefore, performing the integrations described above will show that specifying frailty(gamma)
will result in the frailty survival model (in terms of the nonfrailty survivor function, 𝑆(𝑡))

𝑆𝜃(𝑡) = [1 − 𝜃 log {𝑆(𝑡)}]−1/𝜃

Specifying frailty(invgaussian) will give

𝑆𝜃(𝑡) = exp{1
𝜃

(1 − [1 − 2𝜃 log {𝑆(𝑡)}]1/2)}

Regardless of the choice of frailty distribution, lim𝜃→0𝑆𝜃(𝑡) = 𝑆(𝑡), and thus the frailty model reduces
to 𝑆(𝑡) when there is no heterogeneity present.

When using frailty models, distinguish between the hazard faced by the individual (subject), 𝛼ℎ(𝑡),
and the “average” hazard for the population, ℎ𝜃(𝑡). Similarly, an individual will have probability of sur-
vival past time 𝑡 equal to {𝑆(𝑡)}𝛼, whereas 𝑆𝜃(𝑡)will measure the proportion of the population surviving
past time 𝑡. You specify 𝑆(𝑡) as before with distribution(distname), and the list of possible para-

metric forms for 𝑆(𝑡) is given in table 1. Thus when you specify distribution() you are specifying a

model for an individual with frailty equal to one. Specifying frailty(distname) determines which of

the two above forms for 𝑆𝜃(𝑡) is used.
The output of the estimation remains unchanged from the nonfrailty version, except for the additional

estimation of 𝜃 and a likelihood-ratio test of 𝐻0 ∶ 𝜃 = 0. For more information on frailty models,

Hougaard (1986) offers an excellent introduction. For a Stata-specific overview, see Gutierrez (2002).

https://www.stata.com/manuals/ststreg.pdf#ststregRemarksandexamplestable1
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Example 10
Consider as an example a survival analysis of data on women with breast cancer. Our hypothetical

dataset consists of analysis times on 80 women with covariates age, smoking, and dietfat, which
measures the average weekly calories from fat (×103) in the patient’s diet over the course of the study.

. use https://www.stata-press.com/data/r19/bc

. list in 1/12

age smoking dietfat t dead

1. 30 1 4.919 14.2 0
2. 50 0 4.437 8.21 1
3. 47 0 5.85 5.64 1
4. 49 1 5.149 4.42 1
5. 52 1 4.363 2.81 1

6. 29 0 6.153 35 0
7. 49 1 3.82 4.57 1
8. 27 1 5.294 35 0
9. 47 0 6.102 3.74 1

10. 59 0 4.446 2.29 1

11. 35 0 6.203 15.3 0
12. 26 0 4.515 35 0

The data are well fit by a Weibull model for the distribution of survival time conditional on age,

smoking, and dietary fat. By omitting the dietfat variable from the model, we hope to introduce

unobserved heterogeneity.

. stset t, fail(dead)
(output omitted )

. streg age smoking, distribution(weibull) frailty(gamma)
Failure _d: dead

Analysis time _t: t
Fitting Weibull model ...
Fitting constant-only model:
Iteration 0: Log likelihood = -137.15363
Iteration 1: Log likelihood = -136.3927
Iteration 2: Log likelihood = -136.01557
Iteration 3: Log likelihood = -136.01202
Iteration 4: Log likelihood = -136.01201
Fitting full model:
Iteration 0: Log likelihood = -85.933969
Iteration 1: Log likelihood = -73.61173
Iteration 2: Log likelihood = -68.999447
Iteration 3: Log likelihood = -68.340858
Iteration 4: Log likelihood = -68.136187
Iteration 5: Log likelihood = -68.135804
Iteration 6: Log likelihood = -68.135804
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Weibull PH regression
Gamma frailty
No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(2) = 135.75
Log likelihood = -68.135804 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.475948 .1379987 4.16 0.000 1.228811 1.772788
smoking 2.788548 1.457031 1.96 0.050 1.00143 7.764894

_cons 4.57e-11 2.38e-10 -4.57 0.000 1.70e-15 1.23e-06

/ln_p 1.087761 .222261 4.89 0.000 .6521376 1.523385
/lntheta .3307466 .5250758 0.63 0.529 -.698383 1.359876

p 2.967622 .6595867 1.91964 4.587727
1/p .3369701 .0748953 .2179729 .520931

theta 1.392007 .7309092 .4973889 3.895711

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 22.57 Prob >= chibar2 = 0.000

We could also use an inverse-Gaussian distribution to model the heterogeneity.

. streg age smoking, distribution(weibull) frailty(invgauss) nolog
Failure _d: dead

Analysis time _t: t
Weibull PH regression
Inverse-Gaussian frailty
No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(2) = 125.44
Log likelihood = -73.838578 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.284133 .0463256 6.93 0.000 1.196473 1.378217
smoking 2.905409 1.252785 2.47 0.013 1.247892 6.764528

_cons 1.11e-07 2.34e-07 -7.63 0.000 1.83e-09 6.79e-06

/ln_p .7173904 .1434382 5.00 0.000 .4362567 .9985241
/lntheta .2374778 .8568064 0.28 0.782 -1.441832 1.916788

p 2.049079 .2939162 1.546906 2.714273
1/p .4880241 .0700013 .3684228 .6464518

theta 1.268047 1.086471 .2364941 6.799082

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 11.16 Prob >= chibar2 = 0.000
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The results are similar with respect to the choice of frailty distribution, with the gamma frailty model

producing a slightly higher likelihood. Both models show a statistically significant level of unobservable

heterogeneity because the 𝑝-value for the likelihood-ratio (LR) test of 𝐻0∶ 𝜃 = 0 is virtually zero in both

cases.

Technical note
With gamma-distributed or inverse-Gaussian–distributed frailty, hazard ratios decay over time in fa-

vor of the frailty effect, and thus the displayed “Haz. ratio” in the above output is actually the hazard ratio

only for 𝑡 = 0. The degree of decay depends on 𝜃. Should the estimated 𝜃 be close to zero, the hazard

ratios regain their usual interpretation. The rate of decay and the limiting hazard ratio differ between the

gamma and inverse-Gaussian models; see Gutierrez (2002) for details.

For this reason, many researchers prefer fitting frailty models in the AFT metric because the inter-

pretation of regression coefficients is unchanged by the frailty—the factors in question serve to either

accelerate or decelerate the survival experience. The only difference is that with frailty models, the

unconditional probability of survival is described by 𝑆𝜃(𝑡) rather than 𝑆(𝑡).

Technical note
The LR test of 𝜃 = 0 is a boundary test and thus requires careful consideration concerning the cal-

culation of its 𝑝-value. In particular, the null distribution of the LR test statistic is not the usual 𝜒2
1 but

rather is a 50:50 mixture of a 𝜒2
0 (point mass at zero) and a 𝜒2

1, denoted as 𝜒2
01. See Gutierrez, Carter,

and Drukker (2001) for more details.
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To verify that the significant heterogeneity is caused by the omission of dietfat, we now refit the

Weibull/inverse-Gaussian frailty model with dietfat included.

. streg age smoking dietfat, distribution(weibull) frailty(invgauss) nolog
Failure _d: dead

Analysis time _t: t
Weibull PH regression
Inverse-Gaussian frailty
No. of subjects = 80 Number of obs = 80
No. of failures = 58
Time at risk = 1,257.07

LR chi2(3) = 246.41
Log likelihood = -13.352142 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.74928 .0985246 9.93 0.000 1.566453 1.953447
smoking 5.203552 1.704943 5.03 0.000 2.737814 9.889992
dietfat 9.229842 2.219331 9.24 0.000 5.761312 14.78656

_cons 1.07e-20 4.98e-20 -9.92 0.000 1.22e-24 9.45e-17

/ln_p 1.431742 .0978847 14.63 0.000 1.239892 1.623593
/lntheta -14.29793 2673.364 -0.01 0.996 -5253.995 5225.399

p 4.185987 .4097439 3.45524 5.071278
1/p .2388923 .0233839 .197189 .2894155

theta 6.17e-07 .0016502 0 .

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 0.00 Prob >= chibar2 = 1.000

The estimate of the frailty variance component 𝜃 is near zero, and the 𝑝-value of the test of 𝐻0∶ 𝜃 = 0

equals one, indicating negligible heterogeneity. A regular Weibull model could be fit to these data (with

dietfat included), producing almost identical estimates of the hazard ratios and ancillary parameter, 𝑝,
so such an analysis is omitted here.

Also hazard ratios now regain their original interpretation. Thus an increase in weekly calories from

fat of 1,000 would increase the risk of death by more than ninefold.

Shared-frailty models
A generalization of the frailty models considered in the previous section is the shared-frailty model,

where the frailty is assumed to be group specific; this is analogous to a panel-data regression model. For

observation 𝑗 from the 𝑖th group, the hazard is

ℎ𝑖𝑗(𝑡|𝛼𝑖) = 𝛼𝑖ℎ𝑖𝑗(𝑡)

for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛𝑖, where by ℎ𝑖𝑗(𝑡) we mean ℎ(𝑡|x𝑖𝑗), which is the individual hazard

given covariates x𝑖𝑗.

Shared-frailty models are appropriate when you wish to model the frailties as being specific to groups

of subjects, such as subjects within families. Here a shared-frailty model may be used to model the

degree of correlation within groups; that is, the subjects within a group are correlated because they share

the same common frailty.
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Example 11
Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist andAisbett

(1991). The study is concerned with the prevalence of infection at the catheter-insertion point. Two

recurrence times (in days) are measured for each patient, and each recorded time is the time from initial

insertion (onset of risk) to infection or censoring.

. use https://www.stata-press.com/data/r19/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. list patient time infect age female in 1/10

patient time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0

6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0

10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion result-
ing in either infection (infect==1) or right-censoring (infect==0). Among the covariates measured

are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects are

the individual catheter insertions, not the patients themselves. This is a function of how the data were

recorded—the onset of risk occurs at catheter insertion (of which there are two for each patient) not, say,

at the time of admission of the patient into the study. Thus we have two subjects (insertions) within each

group (patient).

It is reasonable to assume independence of patients but unreasonable to assume that recurrence times

within each patient are independent. One solution would be to fit a standard survival model, adjust-

ing the standard errors of the parameter estimates to account for the possible correlation by specifying

vce(cluster patient).
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We could also model the correlation by assuming that the correlation is the result of a latent patient-

level effect, or frailty. That is, rather than fitting a standard model and specifying vce(cluster
patient), we fit a frailty model and specify shared(patient). Assuming that the time to infection,
given age and female, follows a Weibull distribution, and inverse-Gaussian distributed frailties, we get

. stset time, fail(infect)
(output omitted )

. streg age female, distribution(weibull) frailty(invgauss) shared(patient) nolog
Failure _d: infect

Analysis time _t: time
Weibull PH regression
Inverse-Gaussian shared frailty Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7,424 max = 2

LR chi2(2) = 9.84
Log likelihood = -99.093527 Prob > chi2 = 0.0073

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.006918 .013574 0.51 0.609 .9806623 1.033878
female .2331376 .1046382 -3.24 0.001 .0967322 .5618928
_cons .0110089 .0099266 -5.00 0.000 .0018803 .0644557

/ln_p .1900625 .1315342 1.44 0.148 -.0677398 .4478649
/lntheta .0357272 .7745362 0.05 0.963 -1.482336 1.55379

p 1.209325 .1590676 .9345036 1.564967
1/p .8269074 .1087666 .638991 1.070087

theta 1.036373 .8027085 .2271066 4.729362

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard.
LR test of theta=0: chibar2(01) = 8.70 Prob >= chibar2 = 0.002
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Contrast this with what we obtain by assuming a subject-level lognormal model:

. streg age female, distribution(lnormal) frailty(invgauss) shared(patient) nolog
Failure _d: infect

Analysis time _t: time
Lognormal AFT regression
Inverse-Gaussian shared frailty Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7,424 max = 2

LR chi2(2) = 16.34
Log likelihood = -97.614583 Prob > chi2 = 0.0003

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0066762 .0099457 -0.67 0.502 -.0261694 .0128171
female 1.401719 .3334931 4.20 0.000 .7480844 2.055354
_cons 3.336709 .4972641 6.71 0.000 2.362089 4.311329

/lnsigma .0625872 .1256185 0.50 0.618 -.1836205 .3087949
/lntheta -1.606248 1.190775 -1.35 0.177 -3.940125 .7276282

sigma 1.064587 .1337318 .8322516 1.361783
theta .2006389 .2389159 .0194458 2.070165

LR test of theta=0: chibar2(01) = 1.53 Prob >= chibar2 = 0.108

The frailty effect is insignificant at the 10% level in the latter model yet highly significant in the

former. We thus have two possible stories to tell concerning these data: If we believe the first model,

we believe that the individual hazard of infection continually rises over time (Weibull), but there is a

significant frailty effect causing the population hazard to begin falling after some time. If we believe the

second model, we believe that the individual hazard first rises and then declines (lognormal), meaning

that if a given insertion does not become infected initially, the chances that it will become infected begin

to decrease after a certain point. Because the frailty effect is insignificant, the population hazard mirrors

the individual hazard in the second model.

As a result, both models view the population hazard as rising initially and then falling past a certain

point. The second version of our story corresponds to higher log likelihood, yet perhaps not significantly

higher given the limited data. More investigation is required. One idea is to fit a more distribution-

agnostic form of a frailty model, such as a piecewise exponential (Cleves, Gould, and Marchenko 2016,

345–348) or a Cox model with frailty; see [ST] stcox.

Shared-frailty models are also appropriate when the frailties are subject specific yet there exist multi-

ple records per subject. Here you would share frailties across the same id() variable previously stset.
When you have subject-specific frailties and uninformative episode splitting, it makes no difference

whether you fit a shared or an unshared frailty model. The estimation results will be the same.

https://www.stata.com/manuals/ststcox.pdf#ststcox
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Stored results
streg stores the following in e():

Scalars

e(N) number of observations

e(N sub) number of subjects

e(N fail) number of failures

e(N g) number of groups

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2, comparison model
e(risk) total time at risk

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(theta) frailty parameter

e(aux p) ancillary parameter (weibull)
e(gamma) ancillary parameter (gompertz, loglogistic)
e(sigma) ancillary parameter (ggamma, lnormal)
e(kappa) ancillary parameter (ggamma)
e(p) 𝑝-value for model test
e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(rank0) rank of e(V), constant-only model
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) model or regression name

e(cmd2) streg
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(strata) stratum variable

e(title) title in estimation output

e(clustvar) name of cluster variable

e(shared) frailty grouping variable

e(fr title) title in output identifying frailty

e(wtype) weight type

e(wexp) weight expression

e(t0) t0
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(frm2) hazard or time
e(chi2type) Wald or LR; type of model 𝜒2 test

e(offset1) offset for main equation

e(stcurve) stcurve
e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
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e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(predict sub) predict subprogram

e(footnote) program used to implement the footnote display

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
For an introduction to survival models, see Cleves, Gould, andMarchenko (2016). For an introduction

to survival analysis directed at social scientists, see Box-Steffensmeier and Jones (2004).

Consider for 𝑗 = 1, . . . , 𝑛 observations the trivariate response, (𝑡0𝑗, 𝑡𝑗, 𝑑𝑗), representing a period of
observation, (𝑡0𝑗, 𝑡𝑗], ending in either failure (𝑑𝑗 = 1) or right-censoring (𝑑𝑗 = 0). This structure allows

analysis of a wide variety of models and may be used to account for delayed entry, gaps, time-varying

covariates, and multiple failures per subject. Regardless of the structure of the data, once they are stset,
the data may be treated in a common manner by streg: the stset-created variable t0 holds the 𝑡0𝑗,

t holds the 𝑡𝑗, and d holds the 𝑑𝑗.

For a given survivor function, 𝑆(𝑡), the density function is obtained as

𝑓(𝑡) = − 𝑑
𝑑𝑡

𝑆(𝑡)

and the hazard function (the instantaneous rate of failure) is obtained as ℎ(𝑡) = 𝑓(𝑡)/𝑆(𝑡). Avail-

able forms for 𝑆(𝑡) are listed in table 1. For a set of covariates from the 𝑗th observation, x𝑗, define

𝑆𝑗(𝑡) = 𝑆(𝑡|x = x𝑗), and similarly define ℎ𝑗(𝑡) and 𝑓𝑗(𝑡). For example, in a Weibull PH model,

𝑆𝑗(𝑡) = exp{− exp(x𝑗β)𝑡𝑝}.

Parameter estimation
In this command, β and the ancillary parameters are estimated via maximum likelihood. A subject

known to fail at time 𝑡𝑗 contributes to the likelihood function the value of the density at time 𝑡𝑗 conditional

on the entry time 𝑡0𝑗, 𝑓𝑗(𝑡𝑗)/𝑆𝑗(𝑡0𝑗). A censored observation, known to survive only up to time 𝑡𝑗,
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contributes 𝑆𝑗(𝑡𝑗)/𝑆𝑗(𝑡0𝑗), which is the probability of surviving beyond time 𝑡𝑗 conditional on the entry

time, 𝑡0𝑗. The log likelihood is thus given by

log𝐿 =
𝑛

∑
𝑗=1

{𝑑𝑗 log𝑓𝑗(𝑡𝑗) + (1 − 𝑑𝑗) log𝑆𝑗(𝑡𝑗) − log𝑆𝑗(𝑡0𝑗)}

Implicit in the above log-likelihood expression are the regression parameters, β, and the ancillary pa-

rameters because both are components of the chosen 𝑆𝑗(𝑡) and its corresponding 𝑓𝑗(𝑡); see table 1.

streg reports maximum likelihood estimates of β and of the ancillary parameters (if any for the chosen

model). The reported log-likelihood value is log𝐿𝑟 = log𝐿 + 𝑇, where 𝑇 = ∑ log(𝑡𝑗) is summed over
uncensored observations. The adjustment removes the time units from log𝐿. Whether the adjustment

is made makes no difference to any test or result since such tests and results depend on differences in

log-likelihood functions or their second derivatives, or both.

Specifying ancillary(), anc2(), or strata() will parameterize the ancillary parameter(s) by us-

ing the linear predictor, z𝑗α𝑧, where the covariates, z𝑗, need not be distinct from x𝑗. Here streg will

report estimates of α𝑧 in addition to estimates of β. The log likelihood here is simply the log likelihood
given above, with z𝑗α𝑧 substituted for the ancillary parameter. If the ancillary parameter is constrained

to be strictly positive, its logarithm is parameterized instead; that is, we substitute the linear predictor for

the logarithm of the ancillary parameter in the above log likelihood. The gamma model has two ancillary

parameters, 𝜎 and 𝜅; we parameterize 𝜎 by using ancillary() and 𝜅 by using anc2(), and the linear
predictors used for each may be distinct. Specifying strata() includes factor levels for the strata in

the main equation and uses the factor levels to parameterize any ancillary parameters that exist for the

chosen model.

Unshared-frailty models have a log likelihood of the above form, with 𝑆𝜃(𝑡) and 𝑓𝜃(𝑡) substituted for
𝑆(𝑡) and 𝑓(𝑡), respectively. Equivalently, for gamma-distributed frailties,

log𝐿 =
𝑛

∑
𝑗=1

[𝜃−1 log{1 − 𝜃 log𝑆𝑗(𝑡0𝑗)} − (𝜃−1 + 𝑑𝑗) log{1 − 𝜃 log𝑆𝑗(𝑡𝑗)} + 𝑑𝑗 logℎ𝑗(𝑡𝑗)]

and for inverse-Gaussian–distributed frailties,

log𝐿 =
𝑛

∑
𝑗=1

[𝜃−1 {1 − 2𝜃 log𝑆𝑗(𝑡0𝑗)}
1/2 − 𝜃−1 {1 − 2𝜃 log𝑆𝑗(𝑡𝑗)}

1/2

+ 𝑑𝑗 logℎ𝑗(𝑡𝑗) − 1
2

𝑑𝑗 log{1 − 2𝜃 log𝑆𝑗(𝑡𝑗)}]

In a shared-frailty model, the frailty is common to a group of observations. Thus, to form an un-

conditional likelihood, the frailties must be integrated out at the group level. The data are organized as

𝑖 = 1, . . . , 𝑛 groups with the 𝑖th group comprising 𝑗 = 1, . . . , 𝑛𝑖 observations. The log likelihood is the

sum of the log-likelihood contributions for each group. Define 𝐷𝑖 = ∑𝑗 𝑑𝑖𝑗 as the number of failures

in the 𝑖th group. For gamma frailties, the log-likelihood contribution for the 𝑖th group is

log𝐿𝑖 =
𝑛𝑖

∑
𝑗=1

𝑑𝑖𝑗 logℎ𝑖𝑗(𝑡𝑖𝑗) − (1/𝜃 + 𝐷𝑖) log{1 − 𝜃
𝑛𝑖

∑
𝑗=1

log
𝑆𝑖𝑗(𝑡𝑖𝑗)
𝑆𝑖𝑗(𝑡0𝑖𝑗)

}

+ 𝐷𝑖 log𝜃 + logΓ(1/𝜃 + 𝐷𝑖) − logΓ(1/𝜃)

This formula corresponds to the log-likelihood contribution for multiple-record data. For single-record

data, the denominator 𝑆𝑖𝑗(𝑡0𝑖𝑗) is equal to 1. This formula is not applicable to data with delayed entries
or gaps.
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For inverse-Gaussian frailties, define

𝐶𝑖 = {1 − 2𝜃
𝑛𝑖

∑
𝑗=1

log
𝑆𝑖𝑗(𝑡𝑖𝑗)
𝑆𝑖𝑗(𝑡0𝑖𝑗)

}
−1/2

The log-likelihood contribution for the 𝑖th group then becomes

log𝐿𝑖 = 𝜃−1(1 − 𝐶−1
𝑖 ) + 𝐵(𝜃𝐶𝑖, 𝐷𝑖) +

𝑛𝑖

∑
𝑗=1

𝑑𝑖𝑗 { logℎ𝑖𝑗(𝑡𝑖𝑗) + log𝐶𝑖}

The function 𝐵(𝑎, 𝑏) is related to the modified Bessel function of the third kind, commonly known as

the BesselK function; see Wolfram (2003, 775–776). In particular,

𝐵(𝑎, 𝑏) = 𝑎−1 + 1
2

{ log( 2
𝜋

) − log𝑎} + logBesselK(1
2

− 𝑏, 𝑎−1)

For both unshared- and shared-frailty models, estimation of 𝜃 takes place jointly with the estimation of

β and the ancillary parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas. If observations in the dataset represent repeated obser-

vations on the same subjects (that is, there are time-varying covariates), the assumption of independence

of the observations is highly questionable, meaning that the conventional estimate of variance is not

appropriate. We strongly advise that you use the vce(robust) and vce(cluster clustvar) options

here. (streg knows to specify vce(cluster clustvar) if you specify vce(robust).) vce(robust)
and vce(cluster clustvar) do not apply in shared-frailty models, where the correlation within groups

is instead modeled directly.

streg also supports estimationwith survey data. For details onVCEs with survey data, see [SVY]Vari-
ance estimation.� �
Benjamin Gompertz (1779–1865) came from a Jewish family who left Holland and settled in Eng-

land. Excluded from a university education, he was self-educated in mathematics. In 1819, his

publications in mathematics earned him an invitation to join the Royal Society. In 1824, he was

appointed as actuary and head clerk of the Alliance Assurance Company.

Gompertz carried out pioneering work on the application of differential calculus to actuarial ques-

tions, particularly the dependence of mortality on age. He is credited with introducing, in 1825,

the concept that mortality is a continuous function over time. From this idea came the notion of a

survival function, and ultimately, parametric survival-time analysis. Gompertz’s work also had a

strong influence on the practice of demography, where it is used in the study of parity and fertility.

Aside from his work in actuarial sciences, Gompertz contributed to astronomy and the study of

astronomical instruments. He was amember of theAstronomical Society nearly from its founding in

1820. The society’s memoirs recognize him as an important contributor to the study of the aberration

of light. He also helped to develop the society’s catalog of the stars and make improvements to its

instruments, including the convertible pendulum, transit instruments for studying the position of

stars, and the differential sextant, his own invention.� �
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� �
Ernst Hjalmar Waloddi Weibull (1887–1979) was a Swedish applied physicist most famous for his

work on the statistics of material properties. He worked in Germany and Sweden as an inventor

and a consulting engineer, publishing his first paper on the propagation of explosive waves in 1914,

thereafter becoming a full professor at the Royal Institute of Technology in 1924. Weibull wrote two

important papers, “Investigations into strength properties of brittlematerials” and “The phenomenon

of rupture in solids”, which discussed his ideas about the statistical distributions of material strength.

These articles came to the attention of engineers in the late 1930s.� �
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[ST] sts — Generate, graph, list, and test the survivor and related functions

[ST] stset — Declare data to be survival-time data

[BAYES] bayes: streg — Bayesian parametric survival models

[CAUSAL] stteffects — Treatment-effects estimation for observational survival-time data

[FMM] fmm: streg — Finite mixtures of parametric survival models

[ME] mestreg — Multilevel mixed-effects parametric survival models

[MI] Estimation — Estimation commands for use with mi estimate
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