Description

strate tabulates rates by one or more categorical variables declared in varlist. You can also save an optional summary dataset, which includes event counts and rate denominators, for further analysis or display. The combination of the commands stsplit and strate implements most of, if not all, the functions of the special-purpose person-years programs in widespread use in epidemiology; see [ST] stsplit.

stmh calculates stratified rate ratios and significance tests by using a Mantel–Haenszel-type method.

stmc calculates rate ratios that are stratified finely by time by using the Mantel–Cox method. The corresponding significance test (the log-rank test) is also calculated.

Both stmh and stmc can estimate the failure-rate ratio for two categories of the explanatory variable specified by the first argument of varlist. You can define categories to be compared by specifying them with the compare() option. The remaining variables in varlist before the comma are categorical variables, which are to be “controlled for” using stratification. Strata are defined by cross-classification of these variables.

You can also use stmh and stmc to carry out trend tests for a metric explanatory variable. Here a one-step Newton approximation to the log-linear Poisson regression coefficient is computed.

Quick start

Table of failure rates using stset data
strate

As above, but calculate failure rates at each level of categorical variable catvar
strate catvar

Graph rates against catvar
strate catvar, graph

Table of SMRs per 1,000 with reference rates stored in variable rvar
strate catvar, per(1000) smr(rvar)

Stratified failure-rate ratios with test for unequal rate ratios using Mantel–Haenszel method, comparing category 0 with 1 in binary variable a
stmh a

As above, but compare 4 to 3 in multivalued b at each level of catvar
stmh b, compare(4,3) by(catvar)

Failure-rate ratio using Mantel–Cox method and controlling for values of catvar
stmc b catvar, compare(4,3)
Menu

strate
Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate failure rates and rate ratios

stmh
Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Haenszel rate ratios

stmc
Statistics > Survival analysis > Summary statistics, tests, and tables > Tabulate Mantel-Cox rate ratios

Syntax

Tabulate failure rates

strate [varlist] [if] [in] [, strate_options]

Calculate rate ratios with the Mantel–Haenszel method

stmh varname [varlist] [if] [in] [, options]

Calculate rate ratios with the Mantel–Cox method

stmc varname [varlist] [if] [in] [, options]
strate_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>per(#)</td>
</tr>
<tr>
<td>smr(varname)</td>
</tr>
<tr>
<td>cluster(varname)</td>
</tr>
<tr>
<td>jackknife</td>
</tr>
<tr>
<td>missing</td>
</tr>
<tr>
<td>level(#)</td>
</tr>
<tr>
<td>output(filename[, replace])</td>
</tr>
<tr>
<td>nolist</td>
</tr>
<tr>
<td>graph</td>
</tr>
<tr>
<td>nowisker</td>
</tr>
<tr>
<td>Plot</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
<tr>
<td>marker_label_options</td>
</tr>
<tr>
<td>cline_options</td>
</tr>
<tr>
<td>CI plot</td>
</tr>
<tr>
<td>ciopts(rspike_options)</td>
</tr>
<tr>
<td>Add plots</td>
</tr>
<tr>
<td>addplot(plot)</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
</tr>
<tr>
<td>twoway_options</td>
</tr>
</tbody>
</table>

options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>by(varlist)</td>
</tr>
<tr>
<td>compare(num1,den2)</td>
</tr>
<tr>
<td>missing</td>
</tr>
<tr>
<td>level(#)</td>
</tr>
</tbody>
</table>

You must `stset` your data before using `strate`, `stmh`, and `stmc`; see [ST] stset. `by` is allowed with `stmh` and `stmc`; see [D] by. `fweights`, `iweights`, and `pweights` may be specified using `stset`; see [ST] stset.

Options for strate

- **per(#)**: specifies the units to be used in reported rates. For example, if the analysis time is in years, specifying `per(1000)` results in rates per 1,000 person-years.
- **smr(varname)**: specifies a reference-rate variable. `strate` then calculates SMRs rather than rates. This option will usually follow `stsplit` to separate the follow-up records by age bands and possibly calendar periods.
cluster(varname) defines a categorical variable that indicates clusters of data to be used by the jackknife. If the jackknife option is selected and this option is not specified, the cluster variable is taken as the id variable defined in the st data. Specifying cluster() implies jackknife.

jackknife specifies that jackknife confidence intervals be produced. This is the default if weights were specified when the dataset was stset.

missing specifies that missing values of the explanatory variables be treated as extra categories. The default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see[U] 20.8 Specifying the width of confidence intervals.

output(filename [, replace]) saves a summary dataset in filename. The file contains counts of failures and person-time, rates (or SMRs), confidence limits, and all the categorical variables in the varlist. This dataset could be used for further calculations or simply as input to the table command; see[R] table.

replace specifies that filename be overwritten if it exists. This option is not shown in the dialog box.

nolist suppresses the output. This is used only when saving results to a file specified by output().

graph produces a graph of the rate against the numerical code used for the categories of varname.

nowhisker omits the confidence intervals from the graph.

Plot

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see[G-3] marker_options.

marker_label_options specify if and how the markers are to be labeled; see[G-3] marker_label_options.

cline_options affect whether lines connect the plotted points and the rendition of those lines; see[G-3] cline_options.

CI plot

ciopts(rspike_options) affects the rendition of the confidence intervals (whiskers); see[G-3] rspike_options.

Add plots

addplot(plot) provides a way to add other plots to the generated graph; see[G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall

twoway_options are any of the options documented in[G-3] twoway_options, excluding by(). These include options for titling the graph (see[G-3] title_options) and for saving the graph to disk (see[G-3] saving_option).

Options for stmh and stmc

by(varlist) specifies categorical variables by which the rate ratio is to be tabulated.

A separate rate ratio is produced for each category or combination of categories of varlist, and a test for unequal rate ratios (effect modification) is displayed.
compare(num1, den2) specifies the categories of the exposure variable to be compared. The first code defines the numerator categories, and the second code defines the denominator categories.

When compare() is not specified and there are only two categories, the larger category is compared with the smaller one; when compare() is specified and there are more than two categories, the log-linear trend is analyzed.

missing specifies that missing values of the explanatory variables be treated as extra categories. The default is to exclude such observations.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

Remarks are presented under the following headings:

- Tabulation of rates by using strate
- Stratified rate ratios using stmh
- Log-linear trend test for metric explanatory variables using stmh
- Controlling for age with fine strata by using strmc

Tabulation of rates by using strate

strate tabulates the rate, formed from the number of failures divided by the person-time, by different levels of one or more categorical explanatory variables specified by varlist. Confidence intervals for the rate are also given. By default, the confidence intervals are calculated using the quadratic approximation to the Poisson log likelihood for the log-rate parameter. However, whenever the Poisson assumption is questionable, jackknife confidence intervals can also be calculated. The jackknife option also allows for multiple records for the same cluster (usually subject).

strate can also calculate and report SMRs if the data have been merged with a suitable file of reference rates.

The summary dataset can be saved to a file specified with the output() option for further analysis or more elaborate graphical display.

If weights were specified when the dataset was stset, strate calculates jackknife confidence intervals by default.

Example 1

Using the diet data (Clayton and Hills 1993) described in example 1 of [ST] stssplit, we will use strate to tabulate age-specific coronary heart disease (CHD). In this dataset, CHD has been coded as fail = 1, 3, or 13.

We first stset the data: failure codes for CHD are specified; origin is set to date of birth, making age analysis time; and the scale is set to 365.25, so analysis time is measured in years.
. use https://www.stata-press.com/data/r16/diet
(Diet data with dates)
. stset dox, origin(time doe) id(id) scale(365.25) fail(fail==1 3 13)
 id: id
 failure event: fail == 1 3 13
 obs. time interval: (dox[_n-1], dox]
 exit on or before: failure
 t for analysis: (time-origin)/365.25
 origin: time doe

337 total observations
0 exclusions

337 observations remaining, representing
337 subjects
46 failures in single-failure-per-subject data
4,603.669 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 20.04107

Now we stsplit the data into 10-year age bands.

. stsplit ageband, at(40(10)70) after(time=dob) trim
(26 + 0 obs. trimmed due to lower and upper bounds)
(418 observations (episodes) created)
stsplit added 418 observations to the dataset in memory and generated a new variable, ageband, which identifies each observation’s age group.

The CHD rate per 1,000 person-years can now be tabulated for categories of ageband:

. strate ageband, per(1000) graph
 failure _d: fail == 1 3 13
 analysis time _t: (dox-origin)/365.25
 origin: time doe
 id: id
 note: ageband<=40 trimmed

Estimated failure rates
Number of records = 729

<table>
<thead>
<tr>
<th>ageband</th>
<th>D</th>
<th>Y</th>
<th>Rate</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6</td>
<td>0.9070</td>
<td>6.6152</td>
<td>2.9719</td>
<td>14.7246</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>2.1070</td>
<td>8.5428</td>
<td>5.3823</td>
<td>13.5591</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>1.4933</td>
<td>14.7325</td>
<td>9.7007</td>
<td>22.3746</td>
</tr>
</tbody>
</table>

Notes: Rate = D/Y = failures/person-time (per 1000).
Lower and Upper are bounds of 95% confidence intervals.
Because we specified the `graph` option, `strate` also generated a plot of the estimated rates and confidence intervals.

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected from age-specific reference rates. This expected number can be found by first expanding on age, using `stsplit`, and then multiplying the person-years in each age band by the reference rate for that band. `merge` (see [D merge]) can be used to add the reference rates to the dataset. Using the `smr` option to define the variable containing the reference rates, `strate` calculates SMRs and confidence intervals. You must specify the `per()` option. For example, if the reference rates were per 100,000, you would specify `per(100000)`. When reference rates are available by age and calendar period, you must call `stsplit` twice to expand on both time scales before merging the data with the reference-rate file.

Example 2

In `smrchd.dta`, we have age-specific CHD rates per 1,000 person-years for a reference population. We can merge these data with our current data and use `strate` to obtain SMRs and confidence intervals.
Tabulate failure rates and rate ratios

```
. strate ageband
. merge m:1 ageband using https://www.stata-press.com/data/r16/smrchd
   (note: variable ageband was byte, now float to accommodate using data's values)

<table>
<thead>
<tr>
<th>Result</th>
<th># of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>not matched</td>
<td>26</td>
</tr>
<tr>
<td>from master</td>
<td>26</td>
</tr>
<tr>
<td>from using</td>
<td>0</td>
</tr>
<tr>
<td>matched</td>
<td>729</td>
</tr>
</tbody>
</table>

. strate ageband, per(1000) smr(rate)
   failure _d: fail == 1 3 13
   analysis time _t: (dox-origin)/365.25
   origin: time doe
   id: id
   note: ageband<=40 trimmed

Estimated standardized mortality rates
Reference-rate variable: rate
Number of records = 729

<table>
<thead>
<tr>
<th>ageband</th>
<th>D</th>
<th>E</th>
<th>SMR</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6</td>
<td>5.62</td>
<td>1.0670</td>
<td>0.4793</td>
<td>2.3749</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>18.75</td>
<td>0.9599</td>
<td>0.6048</td>
<td>1.5235</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>22.85</td>
<td>0.9629</td>
<td>0.6340</td>
<td>1.4624</td>
</tr>
</tbody>
</table>

Notes: SMR = D/E = failures/expected failures (per 1000).
       Lower and Upper are bounds of 95% confidence intervals.
```

Stratified rate ratios using stmh

The stmh command is used for estimating rate ratios, controlled for confounding, using stratification. You can use it to estimate the ratio of the rates of failure for two categories of the explanatory variable. Categories to be compared may be defined by specifying the codes of the levels with compare().

The first variable listed on the command line after stmh is the explanatory variable used in comparing rates, and any remaining variables, if any, are categorical variables, which are to be controlled for by using stratification.

Example 3

To illustrate this command, let’s return to the diet data. The variable hienergy is coded 1 if the total energy consumption is more than 2.75 Mcal and 0 otherwise. We want to compare the rate for hienergy level 1 with the rate for level 0, controlled for ageband.

To do this, we first stset and stsplit the data into age bands as before, and then we use stmh:

```
. use https://www.stata-press.com/data/r16/diet, clear
   (Diet data with dates)
. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
   > fail(fail==1 3 13)
   (output omitted)
. stsplit ageband, at(40(10)70) after(time=dob) trim
   (26 + 0 obs. trimmed due to lower and upper bounds)
   (418 observations (episodes) created)
```
Mantel-Haenszel estimates of the rate ratio comparing hienergy==1 vs. hienergy==0 by \textbf{ageband}

<table>
<thead>
<tr>
<th>ageband</th>
<th>Rate ratio</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1.24</td>
<td>0.23</td>
<td>6.76</td>
</tr>
<tr>
<td>50</td>
<td>0.43</td>
<td>0.16</td>
<td>1.16</td>
</tr>
<tr>
<td>60</td>
<td>0.50</td>
<td>0.21</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Note: Lower and Upper are bounds of 95% confidence intervals.

Overall Mantel-Haenszel estimate, controlling for \textbf{ageband}

<table>
<thead>
<tr>
<th>Rate ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.534</td>
<td>4.36</td>
<td>0.0369</td>
<td>0.293 0.972</td>
</tr>
</tbody>
</table>

Approx. test for unequal RRs (effect modification): $\text{chi2}(2) = 1.19$
$\text{Pr}>\text{chi2} = 0.5514$

Because the rate-ratio estimates are approximate, the test for unequal rate ratios is also approximate.

We can also compare the effect of \textit{hienergy} between jobs, controlling for \textit{ageband}.

Mantel-Haenszel estimates of the rate ratio comparing hienergy==1 vs. hienergy==0 controlling for \textbf{ageband} by \textbf{job}

<table>
<thead>
<tr>
<th>job</th>
<th>Rate ratio</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.42</td>
<td>0.13</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>0.64</td>
<td>0.22</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>0.21</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Note: Lower and Upper are bounds of 95\% confidence intervals.

Overall Mantel-Haenszel estimate, controlling for \textbf{ageband} and \textbf{job}

<table>
<thead>
<tr>
<th>Rate ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.521</td>
<td>4.88</td>
<td>0.0271</td>
<td>0.289 0.939</td>
</tr>
</tbody>
</table>

Approx. test for unequal RRs (effect modification): $\text{chi2}(2) = 0.28$
$\text{Pr}>\text{chi2} = 0.8695$
Log-linear trend test for metric explanatory variables using stmh

stmh may also be used to carry out trend tests for a metric explanatory variable. A one-step Newton approximation to the log-linear Poisson regression coefficient is also computed.

The diet dataset contains the height for each patient recorded in the variable height. We can test for a trend of heart disease rates with height controlling for ageband by typing

```
stmh height ageband
```

```
failure _d: fail == 1 3 13
analysis time _t: (dox-origin)/365.25
origin: time dob
enter on or after: time doe
id: id
note: ageband<=40 trimmed
```

Score test for trend of rates with height

Overall Mantel-Haenszel estimate, controlling for ageband

<table>
<thead>
<tr>
<th>Rate ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.906</td>
<td>18.60</td>
<td>0.0000</td>
<td>0.866 0.948</td>
</tr>
</tbody>
</table>

Note: The Rate ratio estimate is an approximation to the rate ratio for a one-unit increase in height.

stmh tested for trend of heart disease rates with height within age bands and provided a rough estimate of the rate ratio for a 1-cm increase in height—this estimate is a one-step Newton approximation to the maximum likelihood estimate. It is not consistent, but it does provide a useful indication of the size of the effect.

The rate ratio is significantly less than 1, so there is clear evidence for a decreasing rate with increasing height (about 9% decrease in rate per centimeter increase in height).

Controlling for age with fine strata by using stmc

The stmc (Mantel–Cox) command is used to control for variation of rates on a time scale by breaking up time into short intervals, or clicks.

Usually this approach is used only to calculate significance tests, but the rate ratio estimated remains just as useful as in the coarsely stratified analysis from stmh. The method may be viewed as an approximate form of Cox regression.

The rate ratio produced by stmc is controlled for analysis time separately for each level of the variables specified with by() and then combined to give a rate ratio controlled for both time and the by() variables.

Example 4

For example, to obtain the effect of high energy controlled for age by stratifying finely, we first stset the data specifying the date of birth, dob, as the origin (so analysis time is age), and then we use stmc:

```
. stset dox, origin(time dob) enter(time doe) id(id) scale(365.25)
> fail(fail==1 3 13)
(output omitted)
```
Mantel-Cox estimate of the rate ratio
comparing hienergy==1 vs. hienergy==0
controlling for time (clicks)

<table>
<thead>
<tr>
<th>Rate ratio</th>
<th>chi2</th>
<th>P>chi2</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.537</td>
<td>4.20</td>
<td>0.0403</td>
<td>0.293 0.982</td>
</tr>
</tbody>
</table>

The rate ratio of 0.537 is close to that obtained with \texttt{stmh} when controlling for age by using 10-year age bands.

Stored results

\texttt{stmh} and \texttt{stmc} store the following in \texttt{r}():

Scalars
- \texttt{r(ratio)}: overall rate ratio
- \texttt{e(chi2)}: \(\chi^2\)
- \texttt{e(p)}: \(p\)-value
- \texttt{r(level)}: confidence level
- \texttt{r(lb)}: lower bound of confidence interval
- \texttt{r(ub)}: upper bound of confidence interval
- \texttt{r(chi2_unequal)}: \(\chi^2\) for test of unequal rate ratios with by()
- \texttt{r(p_unequal)}: \(p\)-value for test of unequal rate ratios with by()

Macros
- \texttt{r(expvar)}: explanatory variable
- \texttt{r(explevels)}: levels of binary explanatory variable
- \texttt{r(controlvars)}: control variables
- \texttt{r(byvars)}: by() variables
- \texttt{r(test)}: type of test

Matrices
- \texttt{r(table)}: group-specific rate ratios

Nathan Mantel (1919–2002) was an American biostatistician who grew up in New York. He worked at the National Cancer Institute from 1947 to 1974 on a wide range of medical problems and was also later affiliated with George Washington University and the American University in Washington.

William M. Haenszel (1910–1998) was an American biostatistician and epidemiologist who graduated from the University of Buffalo. He also worked at the National Cancer Institute and later at the University of Illinois.
Acknowledgments

The original versions of `strate`, `stmh`, and `stmc` were written by David Clayton (retired) of the Cambridge Institute for Medical Research and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine.

References

Also see

`[ST] stci` — Confidence intervals for means and percentiles of survival time

`[ST] stir` — Report incidence-rate comparison

`[ST] stptime` — Calculate person-time, incidence rates, and SMR

`[ST] stset` — Declare data to be survival-time data