
stgen — Generate variables reflecting entire histories

Description Quick start Menu Syntax
Functions Remarks and examples Also see

Description
stgen provides a convenient way to generate new variables reflecting entire histories. These functions

are intended for use with multiple-record survival data but may be used with single-record data. With

single-record data, each function reduces to one generate, and generate would be a more natural way

to approach the problem.

stgen can be used with single- or multiple-failure st data.

If you want to generate calculated values, such as the survivor function, see [ST] sts.

Quick start
Create binary indicator newv1 equal to 1 in all records for a subject if v1 = 1 at any time using multiple-

record stset data

stgen newv1 = ever(v1==1)

Create newv2 containing the time when v2 is first greater than 5 for the subject

stgen newv2 = when(v2>5)

Same as above, but assume v2 > 5 becomes true at the beginning instead of at the end of the correspond-

ing record

stgen newv2 = when0(v2>5)

Create newv3 containing the cumulative number of records with v1 = 1 for the subject

stgen newv3 = count(v1==1)

Same as above, but assume v1 = 1 becomes true at the beginning instead of at the end of the correspond-

ing record

stgen newv3 = count0(v1==1)

Create newv4 containing the cumulative number of gaps for the subject

stgen newv4 = ngaps()

Menu
Statistics > Survival analysis > Setup and utilities > Generate variable reflecting entire histories

1

https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/ststs.pdf#ststs
https://www.stata.com/manuals/ststset.pdf#ststset

stgen — Generate variables reflecting entire histories 2

Syntax
stgen [type] newvar = function

where function is
ever(exp)
never(exp)
always(exp)
min(exp)
max(exp)
when(exp)
when0(exp)
count(exp)
count0(exp)
minage(exp)
maxage(exp)
avgage(exp)
nfailures()
ngaps()
gaplen()
hasgap()

You must stset your data before using stgen; see [ST] stset.

Functions
In the description of the functions below, time units refer to the same units as timevar from stset

timevar, For instance, if timevar is the number of days since 01 January 1960 (a Stata date), time

units are days. If timevar is in years—years since 1960, years since diagnosis, or whatever—time units

are years.

When we say variable X records a “time”, we mean a variable that records when something occurred

in the same units and with the same base as timevar. If timevar is a Stata date, “time” is correspondingly

a Stata date.

𝑡 units, or analysis-time units, refer to a variable in the units timevar/scale() from stset timevar,
scale(...) If you did not specify a scale(), 𝑡 units are the same as time units. Alternatively,
say that timevar is recorded as a Stata date and you specified scale(365.25). Then 𝑡 units are years.
If you specified a nonconstant scale—scale(myvar), where myvar varies from subject to subject—𝑡
units are different for every subject.

“An analysis time” refers to the time something occurred, recorded in the units (timevar-
origin())/scale(). We speak about analysis time only in terms of the beginning and end of each

time-span record.

Although in Description above we said that stgen creates variables reflecting entire histories, stgen
restricts itself to the stset observations, so “entire history” means the entire history as it is currently

stset. If you really want to use entire histories as recorded in the data, type streset, past or

streset, past future before using stgen. Then type streset to reset to the original analysis sample.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststgen.pdf#ststgenDescription

stgen — Generate variables reflecting entire histories 3

The following functions are available:

ever(exp) creates newvar containing 1 (true) if the expression is ever true (nonzero) and 0 otherwise.

For instance,

. stgen everlow = ever(bp<100)

would create everlow containing, for each subject, uniformly 1 or 0. Every record for a subject would
contain everlow = 1 if, on any stset record for the subject, bp < 100; otherwise, everlow would

be 0.

never(exp) is the reverse of ever(); it creates newvar containing 1 (true) if the expression is always

false (0) and 0 otherwise. For instance,

. stgen neverlow = never(bp<100)

would create neverlow containing, for each subject, uniformly 1 or 0. Every record for a subject

would contain neverlow = 1 if, on every stset record for the subject, bp < 100 is false.

always(exp) creates newvar containing 1 (true) if the expression is always true (nonzero) and 0 other-

wise. For instance,

. stgen lowlow = always(bp<100)

would create lowlow containing, for each subject, uniformly 1 or 0. Every record for a subject would

contain lowlow = 1 if, on every stset record for a subject, bp < 100.

min(exp) and max(exp) create newvar containing the minimum or maximum nonmissing value of exp

within id(). min() and max() are often used with variables recording a time (see definition above),

such as min(visitdat).

when(exp) and when0(exp) create newvar containing the time when exp first became true within the

previously stset id(). The result is in time, not 𝑡 units; see the definition above.
when() and when0() differ about when the exp became true. Records record time spans

(time0, time1]. when() assumes that the expression became true at the end of the time span, time1.

when0() assumes that the expression became true at the beginning of the time span, time0.

Assume that you previously stset myt, failure(eventvar =...) when() would be appropri-

ate for use with eventvar, and, presumably, when0() would be appropriate for use with the remaining

variables.

count(exp) and count0(exp) create newvar containing the number of occurrences when exp is true

within id().

count() and count0() differ in when they assume that exp occurs. count() assumes that exp

corresponds to the end of the time-span record. Thus even if exp is true in this record, the count

would remain unchanged until the next record.

count0() assumes that exp corresponds to the beginning of the time-span record. Thus if exp is true

in this record, the count is immediately updated.

For example, assume that you previously stset myt, failure(eventvar=...) count()
would be appropriate for use with eventvar, and, presumably, count0() would be appropriate for

use with the remaining variables.

minage(exp), maxage(exp), and avgage(exp) return the elapsed time, in time units, because exp is at

the beginning, end, or middle of the record, respectively. exp is expected to evaluate to a time in time

units. minage(), maxage(), and avgage() would be appropriate for use with the result of when(),
when0(), min(), and max(), for instance.

https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststgen.pdf#ststgenFunctions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststgen.pdf#ststgenFunctions
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

stgen — Generate variables reflecting entire histories 4

Also see [ST] stsplit; stsplit will divide the time-span records into new time-span records that

record specified intervals of ages.

nfailures() creates newvar containing the cumulative number of failures for each subject as of the

entry time for the observation. nfailures() is intended for use with multiple-failure data; with

single-failure data, nfailures() is always 0. In multiple-failure data,

. stgen nfail = nfailures()

might create, for a particular subject, the following:

id time0 time1 fail x nfail
93 0 20 0 1 0
93 20 30 1 1 0
93 30 40 1 2 1
93 40 60 0 1 2
93 60 70 0 2 2
93 70 80 1 1 2

The total number of failures for this subject is 3, and yet the maximum of the new variable nfail is

2. At time 70, the beginning of the last record, there had been two failures previously, and there were

two failures up to but not including time 80.

ngaps() creates newvar containing the cumulative number of gaps for each subject as of the entry time

for the record. Delayed entry (an opening gap) is not considered a gap. For example,

. stgen ngap = ngaps()

might create, for a particular subject, the following:

id time0 time1 fail x ngap
94 10 30 0 1 0
94 30 40 0 2 0
94 50 60 0 1 1
94 60 70 0 2 1
94 82 90 1 1 2

gaplen() creates newvar containing the time on gap, measured in analysis-time units, for each subject

as of the entry time for the observation. Delayed entry (an opening gap) is not considered a gap.

Continuing with the previous example,

. stgen gl = gaplen()

would produce

id time0 time1 fail x ngap gl
94 10 30 0 1 0 0
94 30 40 0 2 0 0
94 50 60 0 1 1 10
94 60 70 0 2 1 0
94 82 90 1 1 2 12

hasgap() creates newvar containing uniformly 1 if the subject ever has a gap and 0 otherwise. Delayed

entry (an opening gap) is not considered a gap.

https://www.stata.com/manuals/ststsplit.pdf#ststsplit
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

stgen — Generate variables reflecting entire histories 5

Remarks and examples
stgen does nothing you cannot do in other ways, but it is convenient.

Consider how you would obtain results like those created by stgen should you need something that

stgen will not create for you. Say that we have an st dataset for which we have previously

. stset t, failure(d) id(id)

Assume that these are some of the data:

id t d bp
27 30 0 90
27 50 0 110
27 60 1 85
28 11 0 120
28 40 1 130

If we were to type

. stgen everlow = ever(bp<100)

the new variable, everlow, would contain for these two subjects

id t d bp everlow
27 30 0 90 1
27 50 0 110 1
27 60 1 85 1
28 11 0 120 0
28 40 1 130 0

Variable everlow is 1 for subject 27 because, in two of the three observations, bp < 100, and everlow
is 0 for subject 28 because everlow is never less than 100 in either observation.

Here is one way we could have created everlow for ourselves:

. generate islow = bp<100

. sort id

. by id: generate sumislow = sum(islow)

. by id: generate everlow = sumislow[_N]>0

. drop islow sumislow

The generic term for code like this is explicit subscripting; see [U] 13.7 Explicit subscripting.

Anyway, that is what stgen did for us, although, internally, stgen used denser code that was equiv-

alent to

. by id, sort: generate everlow=sum(bp<100)

. by id: replace everlow = everlow[_N]>0

Obtaining things like the time on gap is no more difficult. When we stset the data, stset created

variable t0 to record the entry time. stgen’s gaplen() function is equivalent to

. sort id _t

. by id: generate gaplen = _t0-_t[_n-1]

. by id: replace gaplen = 0 if _n == 1

https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting

stgen — Generate variables reflecting entire histories 6

Seeing this, you should realize that if all you wanted was the cumulative length of the gap before the

current record, you could type

. sort id _t

. by id: generate curgap = sum(_t0-_t[_n-1])

If, instead, you wanted a variable that was 1 if there were a gap just before this record and 0 otherwise,

you could type

. sort id _t

. by id: generate iscurgap = (_t0-_t[_n-1])>0

Example 1
Let’s use the stgen commands to real effect. We have a multiple-record, multiple-failure dataset.

. use https://www.stata-press.com/data/r19/mrmf, clear

. st
-> stset t, id(id) failure(d) time0(t0) exit(time .) noshow
Survival-time data settings

ID variable: id
Failure event: d!=0 & d<.

Observed time interval: (t0, t]
Exit on or before: time .

. stdescribe
Per subject

Category Total Mean Min Median Max

Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 6
Time on gap 411 68.5 16 57.5 133
Time at risk 435444 470.2419 1 477 960
Failures 808 .8725702 0 1 3

Also in this dataset are two covariates, x1 and x2. We wish to fit a Cox model on these data but wish to

assume that the baseline hazard for first failures is different from that for second and later failures.

Our data contain six subjects with gaps. Because failures might have occurred during the gap, we

begin by dropping those six subjects:

. stgen hg = hasgap()

. drop if hg
(14 observations deleted)

The six subjects had 14 records among them. We can now create variable nf containing the number

of failures and, from that, create variable group, which will be 0 when subjects have experienced no

previous failures and 1 thereafter:

. stgen nf = nfailures()

. generate byte group = nf>0

stgen — Generate variables reflecting entire histories 7

We can now fit our stratified model:

. stcox x1 x2, strata(group) vce(robust)
Iteration 0: Log pseudolikelihood = -4499.9966
Iteration 1: Log pseudolikelihood = -4444.7797
Iteration 2: Log pseudolikelihood = -4444.4596
Iteration 3: Log pseudolikelihood = -4444.4596
Refining estimates:
Iteration 0: Log pseudolikelihood = -4444.4596
Stratified Cox regression with Breslow method for ties
Strata variable: group
No. of subjects = 920 Number of obs = 1,720
No. of failures = 800
Time at risk = 432,153

Wald chi2(2) = 102.78
Log pseudolikelihood = -4444.4596 Prob > chi2 = 0.0000

(Std. err. adjusted for 920 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.087903 .1961725 7.84 0.000 1.736738 2.510074
x2 .2765613 .052277 -6.80 0.000 .1909383 .4005806

Also see
[ST] stci — Confidence intervals for means and percentiles of survival time

[ST] sts — Generate, graph, list, and test the survivor and related functions

[ST] stset — Declare data to be survival-time data

[ST] stvary — Report variables that vary over time

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/ststci.pdf#ststci
https://www.stata.com/manuals/ststs.pdf#ststs
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststvary.pdf#ststvary
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

