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Postestimation commands
The following postestimation commands are of special interest after stcox:

Command Description

∗ estat concordance compute the concordance probability

estat phtest test the proportional-hazards assumption
∗ estat gofplot produce goodness-of-fit plot

stcoxkm plot Kaplan–Meier observed survival and Cox predicted curves

stcurve plot the survivor, failure, hazard, or cumulative hazard function

stphplot plot −ln{−ln(survival)} curves

lassogof calculate goodness-of-fit predictions

∗estat concordance and estat gofplot are not appropriate with svy estimation results.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

linktest link test for model specification
∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict hazard ratios, survivor functions, influence statistics, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as hazard ratios; linear predictions; stan-

dard errors; baseline survivor, cumulative hazard, and hazard functions; martingale, Cox–Snell, de-

viance, efficient score, Schoenfeld, and scaled Schoenfeld residuals; likelihood displacement values;

LMAX measures of influence; log frailties; and DFBETAmeasures of influence.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , sv statistic atfrailty[ (varname | #) ]

nooffset partial ]

predict [ type ] { stub* | newvarlist } [ if ] [ in ], mv statistic [ partial ]

sv statistic Description

Main

hr predicted hazard ratio, also known as the relative hazard; the default

xb linear prediction x𝑗β̂

stdp standard error of the linear prediction; SE(x𝑗β̂)
∗ basesurv baseline survivor function
∗ basechazard baseline cumulative hazard function
∗ basehc baseline hazard contributions
∗ mgale martingale residuals
∗ csnell Cox–Snell residuals
∗ deviance deviance residuals
∗ ldisplace likelihood displacement values
∗ lmax LMAX measures of influence
∗ effects log frailties

mv statistic Description

Main
∗ scores efficient score residuals
∗ esr synonym for scores
∗ dfbeta DFBETAmeasures of influence
∗ schoenfeld Schoenfeld residuals
∗ scaledsch scaled Schoenfeld residuals

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample. Starred statistics are calculated only for the estimation sample, even when e(sample)
is not specified. nooffset is allowed only with unstarred statistics.

mgale, csnell, deviance, ldisplace, lmax, dfbeta, schoenfeld, and scaledsch are not allowed with svy
estimation results.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictsvstat
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictmvstat
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Options for predict

� � �
Main �

hr, the default, calculates the relative hazard (hazard ratio), that is, the exponentiated linear prediction,
exp(x𝑗β̂).

xb calculates the linear prediction from the fitted model. That is, you fit the model by estimating a set of

parameters, 𝛽1, 𝛽2, . . . , 𝛽𝑘, and the linear prediction is
̂𝛽1𝑥1𝑗 + ̂𝛽2𝑥2𝑗 + · · · + ̂𝛽𝑘𝑥𝑘𝑗, often written

in matrix notation as x𝑗β̂.

The 𝑥1𝑗, 𝑥2𝑗, . . . , 𝑥𝑘𝑗 used in the calculation are obtained from the data currently in memory and need

not correspond to the data on the independent variables used in estimating β.

stdp calculates the standard error of the prediction, that is, the standard error of x𝑗β̂.

basesurv calculates the baseline survivor function. In the null model, this is equivalent to the Ka-

plan–Meier product-limit estimate. If stcox’s strata() option was specified, baseline survivor

functions for each stratum are provided.

basechazard calculates the cumulative baseline hazard. If stcox’s strata() option was specified,

cumulative baseline hazards for each stratum are provided.

basehc calculates the baseline hazard contributions. These are used to construct the product-limit type

estimator for the baseline survivor function generated by basesurv. If stcox’s strata() option

was specified, baseline hazard contributions for each stratum are provided.

mgale calculates the martingale residuals. For multiple-record-per-subject data, by default only one

value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial martingale residuals, one for each record within

subject; see partial below. Partial martingale residuals are the additive contributions to a subject’s

overall martingale residual. In single-record-per-subject data, the partial martingale residuals are the

martingale residuals.

csnell calculates the Cox–Snell generalized residuals. For multiple-record data, by default only one

value per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial Cox–Snell residuals, one for each record within

subject; see partial below. Partial Cox–Snell residuals are the additive contributions to a subject’s

overall Cox–Snell residual. In single-record data, the partial Cox–Snell residuals are the Cox–Snell

residuals.

deviance calculates the deviance residuals. Deviance residuals are martingale residuals that have been

transformed to be more symmetric about zero. For multiple-record data, by default only one value

per subject is calculated, and it is placed on the last record for the subject.

Adding the partial optionwill produce partial deviance residuals, one for each recordwithin subject;
see partial below. Partial deviance residuals are transformed partial martingale residuals. In single-
record data, the partial deviance residuals are the deviance residuals.

ldisplace calculates the likelihood displacement values. A likelihood displacement value is an influ-

ence measure of the effect of deleting a subject on the overall coefficient vector. For multiple-record

data, by default only one value per subject is calculated, and it is placed on the last record for the

subject.

https://www.stata.com/manuals/ststcox.pdf#ststcoxOptionsstrata()
https://www.stata.com/manuals/ststcox.pdf#ststcoxOptionsstrata()
https://www.stata.com/manuals/ststcox.pdf#ststcoxOptionsstrata()
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
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Adding the partial option will produce partial likelihood displacement values, one for each record

within subject; see partial below. Partial displacement values are interpreted as effects due to

deletion of individual records rather than deletion of individual subjects. In single-record data, the

partial likelihood displacement values are the likelihood displacement values.

lmax calculates the LMAX measures of influence. LMAX values are related to likelihood displacement

values because they also measure the effect of deleting a subject on the overall coefficient vector. For

multiple-record data, by default only one LMAX value per subject is calculated, and it is placed on the

last record for the subject.

Adding the partial option will produce partial LMAX values, one for each record within subject; see

partial below. Partial LMAX values are interpreted as effects due to deletion of individual records

rather than deletion of individual subjects. In single-record data, the partial LMAX values are the

LMAX values.

effects is for use after stcox, shared() and provides estimates of the log frailty for each group. The

log frailties are random group-specific offsets to the linear predictor that measure the group effect on

the log relative-hazard.

scores calculates the efficient score residuals for each regressor in the model. For multiple-record data,

by default only one score per subject is calculated, and it is placed on the last record for the subject.

Adding the partial option will produce partial efficient score residuals, one for each record within

subject; see partial below. Partial efficient score residuals are the additive contributions to a sub-

ject’s overall efficient score residual. In single-record data, the partial efficient score residuals are the

efficient score residuals.

One efficient score residual variable is created for each regressor in the model; the first new variable

corresponds to the first regressor, the second to the second, and so on.

esr is a synonym for scores.

dfbeta calculates the DFBETAmeasures of influence for each regressor in the model. The DFBETA value

for a subject estimates the change in the regressor’s coefficient due to deletion of that subject. For

multiple-record data, by default only one value per subject is calculated, and it is placed on the last

record for the subject.

Adding the partial option will produce partial DFBETAs, one for each record within subject; see

partial below. Partial DFBETAs are interpreted as effects due to deletion of individual records rather

than deletion of individual subjects. In single-record data, the partial DFBETAs are the DFBETAs.

One DFBETA variable is created for each regressor in the model; the first new variable corresponds to

the first regressor, the second to the second, and so on.

schoenfeld calculates the Schoenfeld residuals. This option may not be used after stcox with the

exactm or exactp option. Schoenfeld residuals are calculated and reported only at failure times.

One Schoenfeld residual variable is created for each regressor in the model; the first new variable

corresponds to the first regressor, the second to the second, and so on.

scaledsch calculates the scaled Schoenfeld residuals. This option may not be used after stcox with

the exactm or exactp option. Scaled Schoenfeld residuals are calculated and reported only at failure

times.

One scaled Schoenfeld residual variable is created for each regressor in the model; the first new

variable corresponds to the first regressor, the second to the second, and so on.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationpredictpartial
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Note: The easiest way to use the preceding four options is, for example,

. predict double stub*, scores

where stub is a short name of your choosing. Stata then creates variables stub1, stub2, etc. You

may also specify each variable name explicitly, in which case there must be as many (and no more)

variables specified as there are regressors in the model.

atfrailty or atfrailty(varname | #) is allowed only with basesurv, basechazard, and basehc
and is relevant only if you specified shared(varname) for stcox. It modifies the computations of
baseline functions so that values for the frailties are included in the computation.

Specifying atfrailty allows you to use the estimates of the frailty for each group, which are the

exponentiation of the results calculated by predict, effects. atfrailty(varname | #) allows you
to specify your own frailty values; # must be a positive number.

nooffset is allowed only with hr, xb, and stdp, and is relevant only if you specified offset(varname)
for stcox. It modifies the calculations made by predict so that they ignore the offset variable; the

linear prediction is treated as x𝑗β̂ rather than x𝑗β̂ + offset𝑗.

partial is relevant only for multiple-record data and is valid with mgale, csnell, deviance,
ldisplace, lmax, scores, esr, and dfbeta. Specifying partial will produce “partial” versions

of these statistics, where one value is calculated for each record instead of one for each subject. The

subjects are determined by the id() option to stset.

Specify partial if you wish to perform diagnostics on individual records rather than on individual

subjects. For example, a partial DFBETA would be interpreted as the effect on a coefficient due to

deletion of one record, rather than the effect due to deletion of all records for a given subject.

margins

Description for margins
margins estimates margins of response for hazard ratios and linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststset.pdf#ststsetOptionsid()
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
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statistic Description

hr predicted hazard ratio, also known as the relative hazard; the default

xb linear prediction x𝑗β̂
stdp not allowed with margins
basesurv not allowed with margins
basechazard not allowed with margins
basehc not allowed with margins
mgale not allowed with margins
csnell not allowed with margins
deviance not allowed with margins
ldisplace not allowed with margins
lmax not allowed with margins
effects not allowed with margins
scores not allowed with margins
esr not allowed with margins
dfbeta not allowed with margins
schoenfeld not allowed with margins
scaledsch not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

estat

Description for estat
estat concordance calculates the concordance probability, which is defined as the probability

that predictions and outcomes are concordant. estat concordance provides two measures of the

concordance probability: Harrell’s 𝐶 and Gönen and Heller’s 𝐾 concordance coefficients. estat
concordance also reports the Somers’s 𝐷 rank correlation, which is obtained by calculating 2𝐶 − 1

or 2𝐾 − 1.

Menu for estat
Statistics > Postestimation

https://www.stata.com/manuals/rmargins.pdf#rmargins
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Syntax for estat
estat concordance [ if ] [ in ] [ , concordance options ]

concordance options Description

Main

harrell compute Harrell’s 𝐶 coefficient; the default

gheller compute Gönen and Heller’s concordance coefficient

se compute asymptotic standard error of Gönen and Heller’s coefficient

all compute statistic for all observations in the data

noshow do not show st setting information

collect is allowed; see [U] 11.1.10 Prefix commands.

Options for estat

� � �
Main �

harrell, the default, calculates Harrell’s 𝐶 coefficient, which is defined as the proportion of all usable

subject pairs in which the predictions and outcomes are concordant.

gheller calculates Gönen and Heller’s 𝐾 concordance coefficient instead of Harrell’s 𝐶 coefficient.

The harrell and gheller options may be specified together to obtain both concordance measures.

se calculates the smoothed version of Gönen and Heller’s 𝐾 concordance coefficient and its asymptotic

standard error. The se option requires the gheller option.

all requests that the statistic be computed for all observations in the data. By default, estat
concordance computes over the estimation subsample.

noshow prevents estat concordance from displaying the identities of the key st variables above its

output.

Remarks and examples
Remarks are presented under the following headings:

Baseline functions
Making baseline reasonable
Residuals and diagnostic measures
Multiple records per subject
Predictions after stcox with the tvc() option
Predictions after stcox with the shared() option
estat concordance

Baseline functions
predict after stcox provides estimates of the baseline survivor and baseline cumulative hazard func-

tion, among other things. Here the term baseline means that these are the functions when all covariates

are set to zero, that is, they reflect (perhaps hypothetical) individuals who have zero-valued measure-

ments. When you specify predict’s basechazard option, you obtain the baseline cumulative hazard.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands


stcox postestimation — Postestimation tools for stcox 8

When you specify basesurv, you obtain the baseline survivor function. Additionally, when you spec-
ify predict’s basehc option, you obtain estimates of the baseline hazard contribution at each failure

time, which are factors used to develop the product-limit estimator for the survivor function generated

by basesurv.

Although in theory 𝑆0(𝑡) = exp{−𝐻0(𝑡)}, where 𝑆0(𝑡) is the baseline survivor function and 𝐻0(𝑡)
is the baseline cumulative hazard, the estimates produced by basechazard and basesurv do not ex-

actly correspond in this manner, although they closely do. The reason is that predict after stcox uses

different estimation schemes for each; the exact formulas are given in Methods and formulas.

When the Cox model is fit with the strata() option, you obtain estimates of the baseline functions

for each stratum.

Example 1: Baseline survivor function
Baseline functions refer to the values of the functions when all covariates are set to 0. Let’s graph the

survival curve for the Stanford heart transplant model that we fit in example 3 of [ST] stcox, and to make

the baseline curve reasonable, let’s do that at age = 40 and year = 70.

Thus we will begin by creating variables that, when 0, correspond to the baseline values we desire,

and then we will fit our model with these variables instead. We then predict the baseline survivor function

and graph it:

. use https://www.stata-press.com/data/r19/stan3
(Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70
. stcox age40 posttran surg year70, nolog

Failure _d: died
Analysis time _t: t1

ID variable: id
Cox regression with Breslow method for ties
No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age40 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796
year70 .8873107 .059808 -1.77 0.076 .7775022 1.012628

. predict s, basesurv

. summarize s
Variable Obs Mean Std. dev. Min Max

s 172 .6291871 .2530009 .130666 .9908968

Our recentering of age and year did not affect the estimation, a fact you can verify by refitting the model
with the original age and year variables.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex_stcox_heart
https://www.stata.com/manuals/ststcox.pdf#ststcox
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To see how the values of the baseline survivor function are stored, we first sort according to analysis

time and then list some observations.

. sort _t id

. list id _t0 _t _d s in 1/20

id _t0 _t _d s

1. 3 0 1 0 .9908968
2. 15 0 1 1 .9908968
3. 20 0 1 0 .9908968
4. 45 0 1 0 .9908968
5. 39 0 2 0 .9633915

6. 43 0 2 1 .9633915
7. 46 0 2 0 .9633915
8. 61 0 2 1 .9633915
9. 75 0 2 1 .9633915

10. 95 0 2 0 .9633915

11. 6 0 3 1 .9356873
12. 23 0 3 0 .9356873
13. 42 0 3 1 .9356873
14. 54 0 3 1 .9356873
15. 60 0 3 0 .9356873

16. 68 0 3 0 .9356873
17. 72 0 4 0 .9356873
18. 94 0 4 0 .9356873
19. 38 0 5 0 .9264087
20. 70 0 5 0 .9264087

At time t = 2, the baseline survivor function is 0.9634, or more precisely, 𝑆0(2+Δ𝑡) = 0.9634. What

we mean by 𝑆0(𝑡 + Δ𝑡) is the probability of surviving just beyond 𝑡. This is done to clarify that the

probability includes escaping failure at precisely time 𝑡.
The above also indicates that our estimate of 𝑆0(𝑡) is a step function, and that the steps occur only at

times when failure is observed—our estimated 𝑆0(𝑡) does not change from t = 3 to t = 4 because

no failure occurred at time 4. This behavior is analogous to that of the Kaplan–Meier estimate of the

survivor function; see [ST] sts.

https://www.stata.com/manuals/ststs.pdf#ststs
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Here is a graph of the baseline survival curve:

. line s _t, sort c(J)
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This graph was easy enough to produce because we wanted the survivor function at baseline. To graph

survivor functions after stcox with covariates set to any value (baseline or otherwise), use stcurve; see
[ST] stcurve.

The similarity to Kaplan–Meier is not limited to the fact that both are step functions that change only

when failure occurs. They are also calculated in much the same way, with predicting basesurv after

stcox having the added benefit that the result is automatically adjusted for all the covariates in your Cox

model. When you have no covariates, both methods are equivalent. If you continue from the previous

example, you will find that

. sts generate s1 = s

and

. stcox, estimate

. predict double s2, basesurv

produce the identical variables s1 and s2, both containing estimates of the overall survivor function,

unadjusted for covariates. We used type double for s2 to precisely match sts generate, which gives
results in double precision.

If we had fit a stratified model by using the strata() option, the recorded survivor-function estimate

on each observation would be for the stratum of that observation. That is, what you get is one variable

that holds not an overall survivor curve, but instead a set of stratum-specific curves.

Example 2: Baseline cumulative hazard
Obtaining estimates of the baseline cumulative hazard, 𝐻0(𝑡), is just as easy as obtaining the baseline

survivor function. Using the same data as previously,

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70

https://www.stata.com/manuals/ststcurve.pdf#ststcurve
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. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard

. line ch _t, sort c(J)
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The estimated baseline cumulative hazard is also a step function with the steps occurring at the ob-

served times of failure. When there are no covariates in your Cox model, what you obtain is equivalent

to the Nelson–Aalen estimate of the cumulative hazard (see [ST] sts), but using predict, basechazard
after stcox allows you to also adjust for covariates.

To obtain cumulative hazard curves at values other than baseline, you could either recenter your

covariates—as we did previously with age and year—so that the values in which you are interested

become baseline, or simply use stcurve; see [ST] stcurve.

Example 3: Baseline hazard contributions
Mathematically, a baseline hazard contribution, ℎ𝑖 = (1 − 𝛼𝑖) (see Kalbfleisch and Prentice 2002,

115), is defined at every analytic time 𝑡𝑖 at which a failure occurs and is undefined at other times. Stata

stores ℎ𝑖 in observations where a failure occurred and stores missing values in the other observations.

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. generate age40 = age - 40
. generate year70 = year - 70
. stcox age40 posttran surg year70
(output omitted )

. predict double h, basehc
(97 missing values generated)

https://www.stata.com/manuals/ststs.pdf#ststs
https://www.stata.com/manuals/ststcurve.pdf#ststcurve
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. list id _t0 _t _d h in 1/10

id _t0 _t _d h

1. 1 0 50 1 .01503465
2. 2 0 6 1 .02035303
3. 3 0 1 0 .
4. 3 1 16 1 .03339642
5. 4 0 36 0 .

6. 4 36 39 1 .01365406
7. 5 0 18 1 .01167142
8. 6 0 3 1 .02875689
9. 7 0 51 0 .

10. 7 51 675 1 .06215003

At time t = 50, the hazard contribution ℎ1 is 0.0150. At time t = 6, the hazard contribution ℎ2
is 0.0204. In observation 3, no hazard contribution is stored. Observation 3 contains a missing value

because observation 3 did not fail at time 1. We also see that values of the hazard contributions are

stored only in observations that are marked as failing.

Hazard contributions by themselves have no substantive interpretation, and in particular they should

not be interpreted as estimating the hazard function at time 𝑡. Hazard contributions are simply mass

points that are used as components to calculate the survivor function; see Methods and formulas. You

can also use hazard contributions to estimate the hazard, but because they are only mass points, they need

to be smoothed first. This smoothing is done automatically with stcurve; see [ST] stcurve. In summary,
hazard contributions in their raw form serve no purpose other than to help replicate calculations done by

Stata, and we demonstrate this below simply for illustrative purposes.

When we created the new variable h for holding the hazard contributions, we used type double
because we plan on using h in some further calculations below and we wish to be as precise as possible.

In contrast with the baseline hazard contributions, the baseline survivor function, 𝑆0(𝑡), is defined at
all values of 𝑡: its estimate changes its value when failures occur, and at times when no failures occur,

the estimated 𝑆0(𝑡) is equal to its value at the time of the last failure.
Continuing with our example, we now predict the baseline survivor function:

. predict double s, basesurv

. list id _t0 _t _d h s in 1/10

id _t0 _t _d h s

1. 1 0 50 1 .01503465 .68100303
2. 2 0 6 1 .02035303 .89846438
3. 3 0 1 0 . .99089681
4. 3 1 16 1 .03339642 .84087361
5. 4 0 36 0 . .7527663

6. 4 36 39 1 .01365406 .73259264
7. 5 0 18 1 .01167142 .82144038
8. 6 0 3 1 .02875689 .93568733
9. 7 0 51 0 . .6705895

10. 7 51 675 1 .06215003 .26115633

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcurve.pdf#ststcurve
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In the above, we sorted by id, but it is easier to see how h and s are related if we sort by t and put

the failures on top:

. gsort +_t -_d

. list id _t0 _t _d h s in 1/18

id _t0 _t _d h s

1. 15 0 1 1 .00910319 .99089681
2. 3 0 1 0 . .99089681
3. 45 0 1 0 . .99089681
4. 20 0 1 0 . .99089681
5. 75 0 2 1 .02775802 .96339147

6. 61 0 2 1 .02775802 .96339147
7. 43 0 2 1 .02775802 .96339147
8. 39 0 2 0 . .96339147
9. 46 0 2 0 . .96339147

10. 95 0 2 0 . .96339147

11. 42 0 3 1 .02875689 .93568733
12. 54 0 3 1 .02875689 .93568733
13. 6 0 3 1 .02875689 .93568733
14. 23 0 3 0 . .93568733
15. 68 0 3 0 . .93568733

16. 60 0 3 0 . .93568733
17. 94 0 4 0 . .93568733
18. 72 0 4 0 . .93568733

The baseline hazard contribution is stored on every failure record—if multiple failures occur at a given

time, the value of the hazard contribution is repeated—and the baseline survivor is stored on every

record. (More correctly, baseline values are stored on records that meet the criterion and that were

used in estimation. If some observations are explicitly or implicitly excluded from the estimation, their

baseline values will be set to missing, no matter what.)

With this listing, we can better understand how the hazard contributions are used to calculate the

survivor function. Because the patient with id = 15 died at time 𝑡1 = 1, the hazard contribution for that

patient is ℎ15 = 0.00910319. Because that was the only death at 𝑡1 = 1, the estimated survivor function

at this time is 𝑆0(1) = 1− ℎ15 = 1− 0.00910319 = 0.99089681. The next death occurs at time 𝑡1 = 2,

and the hazard contribution at this time for patient 43 (or patient 61 or patient 75, it does not matter) is

ℎ43 = 0.02775802. Multiplying the previous survivor function value by 1 − ℎ43 gives the new survivor

function at 𝑡1 = 2 as 𝑆0(2) = 0.96339147. The other survivor function values are then calculated in

succession, using this method at each failure time. At times when no failures occur, the survivor function

remains unchanged.

Technical note
Consider manually obtaining the estimate of 𝑆0(𝑡) from the ℎ𝑖:

. sort _t _d

. by _t: keep if _d & _n==_N

. generate double s2 = 1-h

. replace s2 = s2[_n-1]*s2 if _n>1
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s2 will be equivalent to s as produced above. If you had obtained stratified estimates, the code would be

. sort group _t _d

. by group _t: keep if _d & _n==_N

. generate double s2 = 1-h

. by group: replace s2 = s2[_n-1]*s2 if _n>1

Making baseline reasonable
When predicting with basesurv or basechazard, for numerical accuracy reasons, the baseline func-

tions must correspond to something reasonable in your data. Remember, the baseline functions corre-

spond to all covariates equal to 0 in your Cox model.

Consider, for instance, a Cox model that includes the variable calendar year among the covariates.

Say that year varies between 1980 and 1996. The baseline functions would correspond to year 0, almost

2,000 years in the past. Say that the estimated coefficient on year is −0.2, meaning that the hazard ratio

for one year to the next is a reasonable 0.82.

Think carefully about the contribution to the predicted log cumulative hazard: it would be approxi-

mately −0.2 × 2,000 = −400. Now 𝑒−400 ≈ 10−173, which on a digital computer is so close to 0 that

there is simply no hope that 𝐻0(𝑡)𝑒−400 will produce an accurate estimate of 𝐻(𝑡).
Even with less extreme numbers, problems arise, even in the calculation of the baseline survivor

function. Baseline hazard contributions near 1 produce baseline survivor functions with steps differing

by many orders of magnitude because the calculation of the survivor function is cumulative. Producing

a meaningful graph of such a survivor function is hopeless, and adjusting the survivor function to other

values of the covariates is too much work.

For these reasons, covariate values of 0 must be meaningful if you are going to specify the

basechazard or basesurv option. As the baseline values move to absurdity, the first problem you

will encounter is a baseline survivor function that is too hard to interpret, even though the baseline haz-

ard contributions are estimated accurately. Further out, the procedure Stata uses to estimate the baseline

hazard contributions will break down—it will produce results that are exactly 1. Hazard contributions

that are exactly 1 produce survivor functions that are uniformly 0, and they will remain 0 even after

adjusting for covariates.

This, in fact, occurs with the Stanford heart transplant data:

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. stcox age posttran surg year
(output omitted )

. predict ch, basechazard

. predict s, basesurv

. summarize ch s
Variable Obs Mean Std. dev. Min Max

ch 172 745.1134 682.8671 11.88239 2573.637
s 172 1.45e-07 9.43e-07 0 6.24e-06
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The hint that there are problems is that the values of ch are huge and the values of s are close to 0.

In this dataset, age (which ranges from 8 to 64 with a mean value of 45) and year (which ranges from

67 to 74) are the problems. The baseline functions correspond to a newborn at the turn of the century on

the waiting list for a heart transplant!

To obtain accurate estimates of the baseline functions, type

. drop ch s

. generate age40 = age - 40

. generate year70 = year - 70

. stcox age40 posttran surg year70
(output omitted )

. predict ch, basechazard

. predict s, basesurv

. summarize ch s
Variable Obs Mean Std. dev. Min Max

ch 172 .5685743 .521076 .0090671 1.963868
s 172 .6291871 .2530009 .130666 .9908968

Adjusting the variables does not affect the coefficient (and, hence, hazard-ratio) estimates, but it changes

the values at which the baseline functions are estimated to be within the range of the data.

Technical note
Above we demonstrated what can happen to predicted baseline functions when baseline values rep-

resent a departure from what was observed in the data. In the above example, the Cox model fit was fine

and only the baseline functions lacked accuracy. As baseline values move even further toward absurdity,

the risk-set accumulations required to fit the Coxmodel will also break down. If you are having difficulty

getting stcox to converge or you obtain missing coefficients, one possible solution is to recenter your

covariates just as we did above.

Residuals and diagnostic measures
Stata can calculate Cox–Snell residuals, martingale residuals, deviance residuals, efficient score resid-

uals (esr), Schoenfeld residuals, scaled Schoenfeld residuals, likelihood displacement values, LMAX val-

ues, and DFBETA influence measures.

Although the uses of residuals vary and depend on the data and user preferences, traditional and sug-

gested uses are the following: Cox–Snell residuals are useful in assessing overall model fit. Martingale

residuals are useful in determining the functional form of covariates to be included in the model and are

occasionally useful in identifying outliers. Deviance residuals are useful in examining model accuracy

and identifying outliers. Schoenfeld and scaled Schoenfeld residuals are useful for checking and test-

ing the proportional-hazards assumption. Likelihood displacement values and LMAX values are useful

in identifying influential subjects. DFBETAs also measure influence, but they do so on a coefficient-by-

coefficient basis. Likelihood displacement values, LMAX values, and DFBETAs are all based on efficient

score residuals.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesMakingbaselinereasonable
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Example 4: Cox–Snell residuals
Let’s first examine the use of Cox–Snell residuals. Using the cancer data introduced in example 2 in

[ST] stcox, we first perform a Cox regression and then predict the Cox–Snell residuals.

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stset studytime, failure(died)
(output omitted )

. stcox age drug, nolog
Failure _d: died

Analysis time _t: studytime
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.120325 .0417711 3.05 0.002 1.041375 1.20526
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622

. predict cs, csnell

The csnell option tells predict to output the Cox–Snell residuals to a new variable, cs. If the

Cox regression model fits the data, these residuals should have a standard censored exponential distri-

bution with hazard ratio 1. We can verify the model’s fit by calculating—based, for example, on the

Kaplan–Meier estimated survivor function or the Nelson–Aalen estimator—an empirical estimate of

the cumulative hazard function, using the Cox–Snell residuals as the time variable and the data’s orig-

inal censoring variable. If the model fits the data, the plot of the cumulative hazard versus cs should

approximate a straight line with slope 1.

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex_stcox_cancer
https://www.stata.com/manuals/ststcox.pdf#ststcox
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To do this, we first re-stset the data, specifying cs as our new failure-time variable and died as

the failure/censoring indicator. We then use the sts generate command to generate the H variable

containing the Nelson–Aalen cumulative hazard estimates and plot it against cs.

. stset cs, failure(died)
(output omitted )

. sts generate H = na

. line H cs cs, sort ytitle(””) clstyle(. refline)
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We specified cs twice in the graph command above so that a reference 45∘ line is plotted. Comparing

the jagged line with the reference line, we observe that the Cox model does not fit these data too badly.

We could have used estat gofplot to automate the above steps, creating the goodness-of-fit plot

for a Cox model with the following:

. quietly stset studytime, failure(died)

. quietly stcox age drug

. estat gofplot

Technical note
The statement that “if the Cox regression model fits the data, the Cox–Snell residuals have a standard

censored exponential distribution with hazard ratio 1” holds only if the true parameters, β, and the true
cumulative baseline hazard function, 𝐻0(𝑡), are used in calculating the residuals. Because we use esti-
mates β̂ and 𝐻0(𝑡), deviations from the 45∘ line in the above plots could be due in part to uncertainty

about these estimates. This is particularly important for small sample sizes and in the right-hand tail

of the distribution, where the baseline hazard is more variable because of the reduced effective sample

caused by prior failures and censoring.
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Example 5: Martingale residuals
Let’s now examine themartingale residuals. Martingale residuals are useful in assessing the functional

form of a covariate to be entered into a Cox model. Sometimes the covariate may need transforming so

that the transformed variable will satisfy the assumptions of the proportional hazards model. To find

the appropriate functional form of a variable, we fit a Cox model excluding the variable and then plot a

lowess smooth of the martingale residuals against some transformation of the variable in question. If

the transformation is appropriate, then the smooth should be approximately linear.

We apply this procedure to our cancer data to find an appropriate transformation of age (or to verify

that age need not be transformed).

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stset studytime, failure(died)
(output omitted )

. stcox drug
(output omitted )

. predict mg, mgale

. lowess mg age, mean noweight title(””) note(””) m(o)
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We used the lowess command with the mean and noweight options to obtain a plot of the running-

mean smoother to ease interpretation. A lowess smoother or other smoother could also be used; see

[R] lowess. The smooth appears nearly linear, supporting the inclusion of the untransformed version of

age in our Cox model. Had the smooth not been linear, we would have tried smoothing the martingale

residuals against various transformations of age until we found one that produced a near-linear smooth.

Martingale residuals can also be interpreted as the difference over time of the observed number of

failures minus the difference predicted by the model. Thus a plot of the martingale residuals versus the

linear predictor may be used to detect outliers.

Plots of martingale residuals are sometimes difficult to interpret, however, because these residuals are

skewed, taking values in (−∞, 1). For this reason, deviance residuals are preferred for examining model
accuracy and identifying outliers.

https://www.stata.com/manuals/rlowess.pdf#rlowess
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� �
Originally, “à la martingale” was a French expression meaning in the fashion of Martigues, a town

in Provence. People from that town evidently had a reputation, no doubt unjustified, for their extrav-

agance. Later the term was applied to a betting method in which a gambler doubles the stakes after

each loss, which is not a strategy that StataCorp will endorse on your behalf. The current meaning in

probability theory is more prosaic. In a fair game, knowing past events cannot help predict winnings

in the future. By extension, a martingale is a stochastic process in time for which the expectation of

the next value equals the present value, even given knowledge of all previous values. The original

reference to fashion survives in equestrian and nautical terms referring to straps or stays.� �
Example 6: Deviance residuals

Deviance residuals are a rescaling of the martingale residuals so that they are symmetric about 0

and thus are more like residuals obtained from linear regression. Plots of these residuals against the

linear predictor, survival time, rank order of survival, or observation number can be useful in identifying

aberrant observations and assessing model fit. We continue from the previous example, but we need to

first refit the Cox model with age included:

. drop mg

. stcox drug age
(output omitted )

. predict mg, mgale

. predict xb, xb

. scatter mg xb
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https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesex5
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. predict dev, deviance

. scatter dev xb
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We first plotted the martingale residuals versus the linear predictor and then plotted the deviance residu-

als versus the linear predictor. Given their symmetry about 0, deviance residuals are easier to interpret,

although both graphs yield the same information. With uncensored data, deviance residuals should re-

semble white noise if the fit is adequate. Censored observations would be represented as clumps of

deviance residuals near 0 (Klein and Moeschberger 2003, 381). Given what we see above, there do not

appear to be any outliers.

In evaluating the adequacy of the fitted model, we must determine if any one subject has a dispro-

portionate influence on the estimated parameters. This is known as influence or leverage analysis. The

preferred method of performing influence or leverage analysis is to compare the estimated parameter, β̂,

obtained from the full data, with estimated parameters β̂𝑖, obtained by fitting the model to the 𝑁 − 1

subjects remaining after the ith subject is removed. If β̂ − β̂𝑖 is close to 0, the 𝑖th subject has little

influence on the estimate. The process is repeated for all subjects included in the original model. To

compute these differences for a dataset with N subjects, we would have to execute stcox 𝑁 additional

times, which could be impractical for large datasets.

To avoid fitting 𝑁 additional Cox models, an approximation to β̂ − β̂𝑖 can be made based on the

efficient score residuals; see Methods and formulas. The difference β̂ − β̂𝑖 is commonly referred to as

DFBETA in the literature; see [R] regress postestimation.

Example 7: DFBETAs
You obtain DFBETAs by using predict’s dfbeta option:

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stset studytime, failure(died)
(output omitted )

. stcox age drug
(output omitted )

. predict df*, dfbeta

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/rregresspostestimation.pdf#rregresspostestimation
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The last command stores the estimates of DFBETA𝑖 = β̂ − β̂𝑖 for 𝑖 = 1, . . . , 𝑁 in the variables df1
and df2. We can now plot these versus either time or subject (observation) number to identify subjects

with disproportionate influence. To maximize the available information, we plot versus time and label

the points by their subject numbers.

. generate obs = _n

. scatter df1 studytime, yline(0) mlabel(obs)
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. scatter df2 studytime, yline(0) mlabel(obs)
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From the second graph we see that observation 35, if removed, would decrease the coefficient on drug
by approximately 0.15 or, equivalently, decrease the hazard ratio for drug by a factor of approximately

exp(−0.15) = 0.861.

DFBETAs as measures of influence have a straightforward interpretation. Their only disadvantage is

that the number of values to examine grows both with sample size and with the number of regressors.
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Two alternative measures of influence are likelihood displacement values and LMAX values, and both

measure each subject’s influence on the coefficient vector as a whole. Thus, for each, you have only

one value per subject regardless of the number of regressors. As was the case with DFBETAs, likeli-

hood displacement and LMAX calculations are also based on efficient score residuals; see Methods and

formulas.

Likelihood displacement values measure influence by approximating what happens to the model log

likelihood (more precisely, twice the log likelihood) when you omit subject 𝑖. Formally, the likelihood
displacement value for subject 𝑖 approximates the quantity

2 { log𝐿 (β̂) − log𝐿 (β̂𝑖)}

where β̂ and β̂𝑖 are defined as previously and 𝐿(⋅) is the partial likelihood for the Cox model estimated
from all the data. In other words, when you calculate 𝐿(⋅), you use all the data, but you evaluate at the
parameter estimates ̂𝛽𝑖 obtained by omitting the 𝑖th subject. Note that because β̂ represents an optimal

solution, likelihood displacement values will always be nonnegative.

That likelihood displacements measure influence can be seen through the following logic: if subject

𝑖 is influential, then the vector β̂𝑖 will differ substantially from β̂. When that occurs, evaluating the log

likelihood at such a suboptimal solution will give you a very different log likelihood.

LMAX values are closely related to likelihood displacements and are derived from an eigensystem

analysis of the matrix of efficient score residuals; see Methods and formulas for details.

Both likelihood displacement and LMAX values measure each subject’s overall influence, but they are

not directly comparable with each other. Likelihood displacement values should be compared only with

other likelihood displacement values, and LMAX values only with other LMAX values.

Example 8: Likelihood displacement and LMAX values
You obtain likelihood displacement values with predict’s ldisplace option, and you obtain LMAX

values with the lmax option. Continuing from the previous example:

. predict ld, ldisplace

. predict lmax, lmax

. list _t0 _t _d ld lmax in 1/10

_t0 _t _d ld lmax

1. 0 1 1 .0059511 .0735375
2. 0 1 1 .032366 .1124505
3. 0 2 1 .0038388 .0686295
4. 0 3 1 .0481942 .0113989
5. 0 4 1 .0078195 .0331513

6. 0 4 1 .0019887 .0308102
7. 0 5 1 .0069245 .0614247
8. 0 5 1 .0051647 .0763283
9. 0 8 1 .0021315 .0353402

10. 0 8 0 .0116187 .1179539

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesex7
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We can plot the likelihood displacement values versus time and label the points by observation number:

. scatter ld studytime, mlabel(obs)
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The above shows subjects 16 and 46 to be somewhat influential. Aplot of LMAX values will show subject

16 as influential but not subject 46, a fact we leave to you to verify.

Schoenfeld residuals and scaled Schoenfeld residuals are most often used to test the proportional-

hazards assumption, as described in [ST] PH plots (right-censored).

Multiple records per subject
In the previous section, we analyzed data from a cancer study, and in doing so we were very loose in

differentiating “observations” versus “subjects”. In fact, we used both terms interchangeably. We were

able to get away with that because in that dataset each subject (patient) was represented by only one

observation—the subjects were the observations.

Oftentimes, however, subjects need representation by multiple observations, or records. For example,

if a patient leaves the study for some time only to return later, at least one additional record will be needed

to denote the subject’s return to the study and the gap in their history. If the covariates of interest for a

subject change during the study (for example, transitioning from smoking to nonsmoking), then this will

also require representation by multiple records.

Multiple records per subject are not a problem for Stata; you simply specify an id() variable when

stsetting your data, and this id() variable tells Stata which records belong to which subjects. The other
commands in Stata’s st suite know how to then incorporate this information into your analysis.

For predict after stcox, by default Stata handles diagnostic measures as always being at the subject
level, regardless of whether that subject comprises one observation or multiple ones.

https://www.stata.com/manuals/stphplotsright-censored.pdf#stPHplots(right-censored)
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Example 9: Stanford heart transplant data
As an example, consider, as we did previously, data from the Stanford heart transplant study:

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. stset
-> stset t1, id(id) failure(died)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31,938.1 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,799

. list id _t0 _t _d age posttran surgery year in 1/10

id _t0 _t _d age posttran surgery year

1. 1 0 50 1 30 0 0 67
2. 2 0 6 1 51 0 0 68
3. 3 0 1 0 54 0 0 68
4. 3 1 16 1 54 1 0 68
5. 4 0 36 0 40 0 0 68

6. 4 36 39 1 40 1 0 68
7. 5 0 18 1 20 0 0 68
8. 6 0 3 1 54 0 0 68
9. 7 0 51 0 50 0 0 68

10. 7 51 675 1 50 1 0 68

The data come to us already stset, andwe type stsetwithout arguments to examine the current settings.
We verify that the id variable has been set as the patient id. We also see that we have 172 records

representing 103 subjects, implying multiple records for some subjects. From our listing, we see that

multiple records are necessary to accommodate changes in patients’heart-transplant status (pretransplant

versus posttransplant).
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Residuals and other diagnostic measures, where applicable, will by default take place at the subject

level, meaning that (for example) there will be 103 likelihood displacement values for detecting influen-

tial subjects (not observations, but subjects).

. stcox age posttran surg year
(output omitted )

. predict ld, ldisplace
(69 missing values generated)
. list id _t0 _t _d age posttran surgery year ld in 1/10

id _t0 _t _d age posttran surgery year ld

1. 1 0 50 1 30 0 0 67 .0596877
2. 2 0 6 1 51 0 0 68 .0154667
3. 3 0 1 0 54 0 0 68 .
4. 3 1 16 1 54 1 0 68 .0298421
5. 4 0 36 0 40 0 0 68 .

6. 4 36 39 1 40 1 0 68 .0359712
7. 5 0 18 1 20 0 0 68 .1260891
8. 6 0 3 1 54 0 0 68 .0199614
9. 7 0 51 0 50 0 0 68 .

10. 7 51 675 1 50 1 0 68 .0659499

Because here we are not interested in predicting any baseline functions, it is perfectly safe to leave

age and year uncentered. The “(69 missing values generated)” message after predict tells us that only

103 out of the 172 observations of ldwere filled in; that is, we received only one likelihood displacement
per subject. Regardless of the current sorting of the data, the ld value for a subject is stored in the last

chronological record for that subject as determined by analysis time, t.

Patient 4 has two records in the data, one pretransplant and one posttransplant. As such, the ld value

for that patient is interpreted as the change in twice the log likelihood due to deletion of both of these

observations, that is, the deletion of patient 4 from the study. The interpretation is at the patient level,

not the record level.

If, instead, you want likelihood displacement values that you can interpret at the observation level

(that is, changes in twice the log likelihood due to deleting one record), you simply add the partial
option to the predict command above:

. predict ld, ldisplace partial

We do not think these kinds of observation-level diagnostics are generally what you would want, but

they are available.

In the above, we discussed likelihood displacement values, but the same issue concerning subject-

level versus observation-level interpretation also exists with Cox–Snell residuals, martingale residuals,

deviance residuals, efficient score residuals, LMAX values, and DFBETAs. Regardless of which diagnostic

you examine, this issue of interpretation is the same.

There is one situation where you do want to use the partial option. If you are using martingale

residuals to determine functional form and the variable you are thinking of adding varies within subject,

then you want to graph the partial martingale residuals against that new variable. Because the variable

changes within subject, the martingale residuals should also change accordingly.
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Predictions after stcox with the tvc() option
The residuals and diagnostics discussed previously are not available after estimation with stcox with

the tvc() option, which is a convenience option for handling time-varying covariates:

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stcox drug age, tvc(age) nolog

Failure _d: died
Analysis time _t: studytime

Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

tvc
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tvc equation interacted with _t.
. predict dev, deviance
this prediction is not allowed after estimation with tvc();
see tvc note for an alternative to the tvc() option
r(198);

The above fits a Cox model to the cancer data and includes an interaction of age with analysis time, t.
Such interactions are useful for testing the proportional-hazards assumption: significant interactions are

violations of the proportional-hazards assumption for the variable being interacted with analysis time (or

some function of analysis time). That is not the situation here.

In any case, models with tvc() interactions do not allow predicting the residuals and diagnostics

discussed thus far. The solution in such situations is to forgo the use of tvc(), expand the data, and use
factor variables to specify the interaction:

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)


stcox postestimation — Postestimation tools for stcox 27

. generate id = _n

. streset, id(id)
(output omitted )

. stsplit, at(failures)
(21 failure times)
(534 observations (episodes) created)
. stcox drug age c.age#c._t, nolog

Failure _d: died
Analysis time _t: studytime

ID variable: id
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 582
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

c.age#c._t .9970966 .0042415 -0.68 0.494 .988818 1.005445

. predict dev, deviance
(534 missing values generated)
. summarize dev

Variable Obs Mean Std. dev. Min Max

dev 48 .0658485 1.020993 -1.804876 2.065424

We split the observations, currently one per subject, so that the interaction term is allowed to vary over

time. Splitting the observations requires that we first establish a subject id variable. Once that is done,

we split the observations with stsplit and the at(failures) option, which splits the records only at

the observed failure times. This amount of splitting is the minimal amount required to reproduce our

previous Cox model. We then include the interaction term c.age#c. t in our model, verify that our

Cox model is the same as before, and obtain our 48 deviance residuals, one for each subject.

Predictions after stcox with the shared() option
ACox shared frailty model is a Cox model with added group-level random effects such that

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡) exp(x𝑖𝑗β + 𝜈𝑖)

with 𝜈𝑖 representing the added effect due to being in group 𝑖; see Cox regression with shared frailty in

[ST] stcox for more details. You fit this kind of model by specifying the shared(varname) option with

stcox, where varname identifies the groups. stcox will produce an estimate of β, its covariance matrix,
and an estimate of the variance of the 𝜈𝑖. What it will not produce are estimates of the 𝜈𝑖 themselves.

These you can obtain postestimation with predict.

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesCoxregressionwithsharedfrailty
https://www.stata.com/manuals/ststcox.pdf#ststcox
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Example 10: Shared frailty models
In example 10 of [ST] stcox, we fit a shared frailty model to data from 38 kidney dialysis patients,

measuring the time to infection at the catheter insertion point. Two recurrence times (in days) were

measured for each patient.

The estimated 𝜈𝑖 are not displayed in the stcox coefficient table but may be retrieved postestimation

by using predict with the effects option:

. use https://www.stata-press.com/data/r19/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. quietly stcox age female, shared(patient)
. predict nu, effects
. sort nu
. list patient nu in 1/2

patient nu

1. 21 -2.448707
2. 21 -2.448707

. list patient nu in 75/L

patient nu

75. 7 .5187159
76. 7 .5187159

From the results above, we estimate that the least frail patient is patient 21, with ̂𝜈21 = −2.45, and

that the frailest patient is patient 7, with ̂𝜈7 = 0.52.

Technical note
When used with shared-frailty models, predict’s basehc, basesurv, and basechazard options

produce estimates of baseline quantities that are based on the last-step penalized Cox model fit. There-

fore, without the atfrailty or atfrailty() option, the term “baseline” means that not only the co-

variates are set to 0 but also the 𝜈𝑖. If the atfrailty option is specified, all the covariates are set to 0,

but the frailties are set to exp(𝜈𝑖).
Other predictions, such as martingale residuals, are conditional on the estimated frailty variance being

fixed and known at the onset.

estat concordance
estat concordance calculates the concordance probability, which is defined as the probability that

predictions and outcomes are concordant. estat concordance provides two measures of the concor-

dance probability: Harrell’s 𝐶 and Gönen and Heller’s 𝐾 concordance coefficients. Harrell’s 𝐶, which
is defined as the proportion of all usable subject pairs in which the predictions and outcomes are concor-

dant, is computed by default. Gönen and Heller (2005) propose an alternative measure of concordance,

computed when the gheller option is specified, that is not sensitive to the degree of censoring, unlike

Harrell’s 𝐶 coefficient. This estimator is not dependent on the observed event or the censoring time and

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex_stcox_kidney
https://www.stata.com/manuals/ststcox.pdf#ststcox
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is a function of only the regression parameters and the covariate distribution, which leads to the asymp-

totic unbiasedness. estat concordance also reports the Somers’s 𝐷 rank correlation, which is derived

by calculating 2𝐶 − 1 for Harrell’s 𝐶 and 2𝐾 − 1 for Gönen and Heller’s 𝐾.

estat concordance may not be used after a Cox regression model with time-varying covariates

and may not be applied to weighted data or to data with delayed entries. The computation of Gönen and

Heller’s 𝐾 coefficient is not supported for shared-frailty models, stratified estimation, or multiple-record

data.

Example 11: Harrell’s C
Using our cancer data, we wish to evaluate the predictive value of the measurement of drug and age.

After fitting a Cox regression model, we use estat concordance to calculate Harrell’s 𝐶 index.

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stcox drug age

Failure _d: died
Analysis time _t: studytime

Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.551879
Iteration 2: Log likelihood = -83.324009
Iteration 3: Log likelihood = -83.323546
Refining estimates:
Iteration 0: Log likelihood = -83.323546
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance, noshow
Harrell’s C concordance statistic

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15

Harrell’s C = (E + T/2) / P = 0.8086
Somers’ D = 0.6172

The result of stcox shows that the drug results in a lower hazard and therefore a longer survival time,

controlling for age and older patients being more likely to die. The value of Harrell’s 𝐶 is 0.8086, which

indicates that we can correctly order survival times for pairs of patients 81% of the time on the basis of

measurement of drug and age. See Methods and formulas for the full definition of concordance.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
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Technical note
estat concordance does not work after a Cox regressionmodel with time-varying covariates. When

the covariates are varying with time, the prognostic score, PS = xβ, will not capture or condense the
information in given measurements, in which case it does not make sense to calculate the rank correlation

between PS and survival time.

Example 12: Gönen and Heller’s K
Alternatively, we can obtain Gönen and Heller’s estimate of the concordance probability, 𝐾. To do

so, we specify the gheller option with estat concordance:

. estat concordance, noshow gheller
Gonen and Heller’s K concordance statistic

Number of subjects (N) = 48
Gonen and Heller’s K = 0.7748

Somers’ D = 0.5496

Gönen and Heller’s concordance coefficient may be preferred to Harrell’s𝐶when censoring is present

because Harrell’s 𝐶 can be biased. Because 17 of our 48 subjects are censored, we prefer Gönen and

Heller’s concordance to Harrell’s 𝐶.

Stored results
estat concordance stores the following in r():
Scalars

r(N) number of observations

r(n P) number of comparison pairs

r(n E) number of orderings as expected

r(n T) number of tied predictions

r(C) Harrell’s 𝐶 coefficient

r(K) Gönen and Heller’s 𝐾 coefficient

r(K s) smoothed Gönen and Heller’s 𝐾 coefficient

r(K s se) standard error of the smoothed 𝐾 coefficient

r(D) Somers’s 𝐷 coefficient for Harrell’s 𝐶
r(D K) Somers’s 𝐷 coefficient for Gönen and Heller’s 𝐾

r(n P), r(n E), and r(n T) are returned only when strata are not specified.

Methods and formulas
Let x𝑖 be the row vector of covariates for the time interval (𝑡0𝑖, 𝑡𝑖 ] for the 𝑖th observation in the dataset

(𝑖 = 1, . . . , 𝑁). The Cox partial log-likelihood function, using the default Peto–Breslow method for tied

failures is

log𝐿breslow =
𝐷

∑
𝑗=1

∑
𝑖∈𝐷𝑗

[𝑤𝑖(x𝑖β + offset𝑖) − 𝑤𝑖 log{ ∑
ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ + offsetℓ)}]

where 𝑗 indexes the ordered failure times 𝑡𝑗 ( 𝑗 = 1, . . . , 𝐷), 𝐷𝑗 is the set of 𝑑𝑗 observations that fail at 𝑡𝑗,

𝑑𝑗 is the number of failures at 𝑡𝑗, and 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡𝑗 (that is, all

𝑘 such that 𝑡0𝑘 < 𝑡𝑗 ≤ 𝑡𝑘). 𝑤𝑖 and offset𝑖 are, respectively, the weight and linear offset for observation

𝑖, if specified.
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If the Efron method for ties is specified at estimation, the partial log likelihood is

log𝐿efron =
𝐷

∑
𝑗=1

∑
𝑖∈𝐷𝑗

[x𝑖β + offset𝑖 − 𝑑−1
𝑗

𝑑𝑗−1

∑
𝑘=0

log{ ∑
ℓ∈𝑅𝑗

exp(xℓβ + offsetℓ) − 𝑘𝐴𝑗}]

for 𝐴𝑗 = 𝑑−1
𝑗 ∑ℓ∈𝐷𝑗

exp(xℓβ + offsetℓ). Weights are not supported with the Efron method.

At estimation, Stata also supports the exact marginal and exact partial methods for handling ties, but

only the Peto–Breslow and Efron methods are supported in regard to the calculation of residuals, diag-

nostics, and other predictions. As such, only the partial log-likelihood formulas for those two methods

are presented above, for easier reference in what follows.

If you specified efron at estimation, all predictions are carried out using the Efron method; that is, the
handling of tied failures is done analogously to the way it was done when calculating log𝐿efron. If you

specified breslow (or nothing, because breslow is the default), exactm, or exactp, all predictions are
carried out using the Peto–Breslow method. That is not to say that if you specify exactm at estimation,

your predictions will be the same as if you had specified breslow. The formulas used will be the same,
but the parameter estimates at which they are evaluated will differ because those were based on different

ways of handling ties.

Define 𝑧𝑖 = x𝑖β̂ + offset𝑖. Schoenfeld residuals for the 𝑝th variable using the Peto–Breslow method

are given by

𝑟𝑆𝑝𝑖
= 𝛿𝑖 (𝑥𝑝𝑖 − 𝑎𝑝𝑖)

where

𝑎𝑝𝑖 =
∑ℓ∈𝑅𝑖

𝑤ℓ𝑥𝑝ℓ exp(𝑧ℓ)
∑ℓ∈𝑅𝑖

𝑤ℓ exp(𝑧ℓ)

𝛿𝑖 indicates failure for observation 𝑖, and 𝑥𝑝𝑖 is the 𝑝th element of x𝑖. For the Efron method, Schoenfeld

residuals are

𝑟𝑆𝑝𝑖
= 𝛿𝑖 (𝑥𝑝𝑖 − 𝑏𝑝𝑖)

where

𝑏𝑝𝑖 = 𝑑−1
𝑖

𝑑𝑖−1

∑
𝑘=0

∑ℓ∈𝑅𝑖
𝑥𝑝ℓ exp(𝑧ℓ) − 𝑘𝑑−1

𝑖 ∑ℓ∈𝐷𝑖
𝑥𝑝ℓ exp(𝑧ℓ)

∑ℓ∈𝑅𝑖
exp(𝑧ℓ) − 𝑘𝑑−1

𝑖 ∑ℓ∈𝐷𝑖
exp(𝑧ℓ)

Schoenfeld residuals are derived from the first derivative of the log likelihood, with

𝜕 log𝐿
𝜕𝛽𝑝

∣
β̂

=
𝑁

∑
𝑖=1

𝑟𝑆𝑝𝑖
= 0

and only those observations that fail (𝛿𝑖 = 1) contribute a Schoenfeld residual to the derivative.
For censored observations, Stata stores a missing value for the Schoenfeld residual even though the

above implies a value of 0. This is to emphasize that no calculation takes place when the observation is

censored.

Scaled Schoenfeld residuals are given by

r∗
𝑆𝑖

= β̂ + 𝑑 Var(β̂)r𝑆𝑖

where r𝑆𝑖
= (𝑟𝑆1𝑖

, . . . , 𝑟𝑆𝑚𝑖
)′, 𝑚 is the number of regressors, and 𝑑 is the total number of failures.
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In what follows, we assume the Peto–Breslow method for handling ties. Formulas for the Efron

method, while tedious, can be obtained by applying similar principles of averaging across risk sets, as

demonstrated above with Schoenfeld residuals.

Efficient score residuals are obtained by

𝑟𝐸𝑝𝑖
= 𝑟𝑆𝑝𝑖

− exp(𝑧𝑖) ∑
𝑗∶𝑡0𝑖<𝑡𝑗≤𝑡𝑖

𝛿𝑗𝑤𝑗(𝑥𝑝𝑖 − 𝑎𝑝𝑗)
∑ℓ∈𝑅𝑗

𝑤ℓ exp(𝑧ℓ)

Like Schoenfeld residuals, efficient score residuals are also additive components of the first derivative

of the log likelihood. Whereas Schoenfeld residuals are the contributions of each failure, efficient score

residuals are the contributions of each observation. Censored observations contribute to the log likelihood

(and its derivative) because they belong to risk sets at times when other observations fail. As such, an

observation’s contribution is twofold: 1) If the observation ends in failure, a risk assessment is triggered,

that is, a term in the log likelihood is computed. 2)Whether failed or censored, an observation contributes

to risk sets for other observations that do fail. Efficient score residuals reflect both contributions.

The above computes efficient score residuals at the observation level. If you have multiple records

per subject and do not specify the partial option, then the efficient score residual for a given subject is

calculated by summing the efficient scores over the observations within that subject.

Martingale residuals are

𝑟𝑀𝑖
= 𝛿𝑖 − exp(𝑧𝑖) ∑

𝑗∶𝑡0𝑖<𝑡𝑗≤𝑡𝑖

𝑤𝑗𝛿𝑗

∑ℓ∈𝑅𝑗
𝑤ℓ exp(𝑧ℓ)

The above computes martingale residuals at the observation level. If you have multiple records per

subject and do not specify the partial option, then the martingale residual for a given subject is calcu-

lated by summing 𝑟𝑀𝑖
over the observations within that subject.

Martingale residuals are in the range (−∞, 1). Deviance residuals are transformations of martingale
residuals designed to have a distribution that is more symmetric about zero. Deviance residuals are

calculated using

𝑟𝐷𝑖
= sign(𝑟𝑀𝑖

)[ − 2 {𝑟𝑀𝑖
+ 𝛿𝑖 log(𝛿𝑖 − 𝑟𝑀𝑖

)} ]
1/2

These residuals are expected to be symmetric about zero but do not necessarily sum to zero.

The above computes deviance residuals at the observation level. If you have multiple records per

subject and do not specify the partial option, then the deviance residual for a given subject is calculated
by applying the above transformation to the subject-level martingale residual.

The estimated baseline hazard contribution is obtained at each failure time as ℎ𝑗 = 1− ̂𝛼𝑗, where ̂𝛼𝑗
is the solution to

∑
𝑘∈𝐷𝑗

exp(𝑧𝑘)
1 − ̂𝛼exp(𝑧𝑘)

𝑗

= ∑
ℓ∈𝑅𝑗

exp(𝑧ℓ)

(Kalbfleisch and Prentice 2002, eq. 4.34, 115).
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The estimated baseline survivor function is

̂𝑆0(𝑡) = ∏
𝑗∶𝑡𝑗≤𝑡

̂𝛼𝑗

When estimated with no covariates, ̂𝑆0(𝑡) is the Kaplan–Meier estimate of the survivor function.

The estimated baseline cumulative hazard function, if requested, is related to the baseline survivor

function calculation, yet the values of ̂𝛼𝑗 are set at their starting values and are not iterated. Equivalently,

𝐻0(𝑡) = ∑
𝑗∶𝑡𝑗≤𝑡

𝑑𝑗

∑ℓ∈𝑅𝑗
exp(𝑧ℓ)

When estimated with no covariates, 𝐻0(𝑡) is the Nelson–Aalen estimate of the cumulative hazard.
Cox–Snell residuals are calculated with

𝑟𝐶𝑖
= 𝛿𝑖 − 𝑟𝑀𝑖

where 𝑟𝑀𝑖
are the martingale residuals. Equivalently, Cox–Snell residuals can be obtained with

𝑟𝐶𝑖
= exp(𝑧𝑖)𝐻0(𝑡𝑖)

The above computes Cox–Snell residuals at the observation level. If you have multiple records per

subject and do not specify the partial option, then the Cox–Snell residual for a given subject is calcu-

lated by summing 𝑟𝐶𝑖
over the observations within that subject.

DFBETAs are calculated with

DFBETA𝑖 = r𝐸𝑖
Ṽar(β̂)

where r𝐸𝑖
= (𝑟𝐸1𝑖

, . . . , 𝑟𝐸𝑚𝑖
) is a row vector of efficient score residuals with one entry for each regres-

sor, and Ṽar(β̂) is the model-based variance matrix of β̂.
Likelihood displacement values are calculated with

LD𝑖 = r𝐸𝑖
Var(β̂)r′

𝐸𝑖

(Collett 2015, 156). In both of the above, r𝐸𝑖
can represent either one observation or, in multiple-record

data, the cumulative efficient score for an entire subject. For the former, the interpretation is that due to

deletion of one record; for the latter, the interpretation is that due to deletion of all of a subject’s records.

Following Collett (2015, 156), LMAX values are obtained from an eigensystem analysis of

B = 𝚯 Var(β̂) 𝚯′

where𝚯 is the𝑁 ×𝑚matrix of efficient score residuals, with element (𝑖, 𝑗) representing the 𝑗th regressor
and the 𝑖th observation (or subject). LMAX values are then the absolute values of the elements of the unit-

length eigenvector associated with the largest eigenvalue of the 𝑁 × 𝑁 matrix B.
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For shared-frailty models, the data are organized into 𝐺 groups, with the 𝑖th group consisting of 𝑛𝑖
observations, 𝑖 = 1, . . . , 𝐺. From Therneau and Grambsch (2000, 253–255), for fixed 𝜃, estimates of β
and 𝜈1, . . . , 𝜈𝐺 are obtained by maximizing

log𝐿(𝜃) = log𝐿Cox(β, 𝜈1, . . . , 𝜈𝐺) +
𝐺

∑
𝑖=1

[1
𝜃

{𝜈𝑖 − exp(𝜈𝑖)} +

(1
𝜃

+ 𝐷𝑖) {1 − log(1
𝜃

+ 𝐷𝑖)} − log𝜃
𝜃

+ logΓ (1
𝜃

+ 𝐷𝑖) − logΓ (1
𝜃

)]

where𝐷𝑖 is the number of death events in group 𝑖, and log𝐿Cox(β, 𝜈1, . . . , 𝜈𝐺) is the standard Cox partial
log likelihood, with the 𝜈𝑖 treated as the coefficients of indicator variables identifying the groups. That

is, the 𝑗th observation in the 𝑖th group has log relative-hazard x𝑖𝑗β + 𝜈𝑖.

You obtain the estimates of 𝜈1, . . . , 𝜈𝐺 with predict’s effects option after stcox, shared().

estat concordance
Harrell’s 𝐶 was proposed by Harrell et al. (1982) and was developed to evaluate the results of a med-

ical test. The 𝐶 index is defined as the proportion of all usable subject pairs in which the predictions and

outcomes are concordant. The 𝐶 index may be applied to ordinary continuous outcomes, dichotomous

diagnostic outcomes, ordinal outcomes, and censored time-until-event response variables.

In predicting the time until death, 𝐶 is calculated by considering all comparable patient pairs. A

pair of patients is comparable if either 1) the two have different values on the time variable, and the

one with the lowest value presents a failure, or 2) the two have the same value on the time variable,

and exactly one of them presents a failure. If the predicted survival time is larger for the patient who

lived longer, the predictions for the pair are said to be concordant with the outcomes. From Fibrinogen

Studies Collaboration (2009), Harrell’s 𝐶 is defined as ∑𝑘(𝐸𝑘 +𝑇𝑘/2)/ ∑𝑘(𝐷𝑘), where 𝐷𝑘 is the total

number of pairs usable for comparison in stratum 𝑘, 𝐸𝑘 is the number of pairs for which the predictions

are concordant with the outcomes and the predictions are not identical in stratum 𝑘, and 𝑇𝑘 is the number

of usable pairs for which the predictions are identical in stratum 𝑘. If there are no strata specified, then
the formula for Harrell’s 𝐶 reduces to (𝐸 + 𝑇 /2)/𝐷.

For a Cox proportional hazards model, the probability that the patient survives past time 𝑡 is given
by 𝑆0(𝑡) raised to the exp(xβ) power, where 𝑆0(𝑡) is the baseline survivor function, x denotes a set of
measurements for the patient, and β is the vector of coefficients. A Cox regression model is fit by the

stcox command. The hazard ratio, exp(xβ), is obtained by predict after stcox. Because the predicted
survival time and the predicted survivor function are one-to-one functions of each other, the predicted

survivor function can be used to calculate𝐶 instead of the predicted survival time. The predicted survivor

function decreases when the predicted hazard ratio increases; therefore, Harrell’s 𝐶 can be calculated by

computing 𝐸, 𝑇, and 𝐷, based on the observed outcomes and the predicted hazard ratios.

𝐶 takes a value between 0 and 1. A value of 0.5 indicates no predictive discrimination, and values

of 0 or 1.0 indicate perfect separation of subjects with different outcomes. See Harrell, Lee, and Mark

(1996) for more details. Somers’s 𝐷 rank correlation is calculated by 2𝐶 − 1; see Newson (2002) for a

discussion of Somers’s 𝐷.

In the presence of censoring, Harrell’s𝐶 coefficient tends to be biased. An alternative measure of con-

cordance that is asymptotically unbiased with censored data was proposed by Gönen and Heller (2005).

This estimator does not depend on observed time directly and is a function of only the regression param-

eters and the covariate distribution, which leads to its asymptotic unbiasedness and thus robustness to

the degree of censoring.
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Let Δx𝑖𝑗 be the pairwise difference x𝑖 − x𝑗. Then Gönen and Heller’s concordance probability esti-

mator is given by

𝐾 ≡ 𝐾𝑁(β̂) = 2
𝑁(𝑁 − 1)

∑
𝑖<𝑗

∑ {
𝐼(Δx𝑗𝑖β̂ ≤ 0)

1 + exp(Δx𝑗𝑖β̂)
+

𝐼(Δx𝑖𝑗β̂ < 0)
1 + exp(Δx𝑖𝑗β̂)

} (1)

where 𝐼(⋅) is the indicator function. Somers’s 𝐷 rank correlation is calculated by 2𝐾 − 1.

The concordance probability estimator (1) involves indicator functions and thus is a nonsmooth func-

tion for which the asymptotic standard error cannot be computed directly. To obtain the standard error, a

smooth approximation to this estimator is considered:

𝐾 ≡ 𝐾𝑁(β̂) = 2
𝑁(𝑁 − 1)

∑
𝑖<𝑗

∑ {
Φ(−Δx𝑗𝑖β̂/ℎ)

1 + exp(Δx𝑗𝑖β̂)
+

Φ(−Δx𝑖𝑗β̂/ℎ)
1 + exp(Δx𝑖𝑗β̂)

} (2)

where Φ(⋅) is a standard normal distribution function, ℎ = 0.5𝜎̂𝑁−1/3 is a smoothing bandwidth, and 𝜎̂
is the estimated standard deviation of the subject-specific linear predictors x𝑖β̂.

The asymptotic standard error is then computed using a first-order Taylor series expansion of (2)

around the true parameter β; see Gönen and Heller (2005) for computational details.
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Also see
[ST] stcox — Cox proportional hazards model

[ST] estat gofplot — Goodness-of-fit plots after streg, stcox, stintreg, stintcox, or stmgintcox

[ST] PH plots (right-censored) — PH-assumption plots for right-censored data

[ST] stcurve — Plot the survivor or related function after streg, stcox, and more

[LASSO] lassogof — Goodness of fit after lasso for prediction
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