Description

stphplot plots $-\ln\{-\ln(\text{survival})\}$ curves for each category of a nominal or ordinal covariate versus $\ln(\text{analysis time})$. These are often referred to as “log-log” plots. Optionally, these estimates can be adjusted for covariates. The proportional-hazards assumption is not violated when the curves are parallel.

stcoxkm plots Kaplan–Meier observed survival curves and compares them with the Cox predicted curves for the same variable. The closer the observed values are to the predicted, the less likely it is that the proportional-hazards assumption has been violated.

estat phtest tests the proportional-hazards assumption on the basis of Schoenfeld residuals after fitting a model with stcox.

Quick start

Log-log plot of survival

Check for parallel lines in plot of $-\ln\{-\ln(\text{survival})\}$ versus $\ln(\text{analysis time})$ for each category of covariate a using stset data

stphplot, by(a)

As above, but adjust for average values of covariates x1 and x2

stphplot, by(a) adjust(x1 x2)

Adjust for $x1 = 0$ and $x2 = 0$

stphplot, by(a) adjust(x1 x2) zero

Kaplan–Meier and predicted survival plot

Compare Kaplan–Meier survival curve with predicted survival from Cox model for each category of covariate a using stset data

stcoxkm, by(a)

As above, but create separate plots for each level of a

stcoxkm, by(a) separate

Test using Schoenfeld residuals

Test the proportional-hazards assumption after stcox x1 x2 x3

estat phtest

As above, and report separate test for each covariate

estat phtest, detail
Menu

stphplot
Statistics > Survival analysis > Regression models > Graphically assess proportional-hazards assumption

stcoxkm
Statistics > Survival analysis > Regression models > Kaplan-Meier versus predicted survival

estat phtest
Statistics > Survival analysis > Regression models > Test proportional-hazards assumption

Syntax

Check proportional-hazards assumption:

- Log-log plot of survival

 \[
 \text{stphplot [if }, \{\text{by(} \text{varname} \text{)} | \text{strata(} \text{varname} \text{)}\} \text{ [stphplot_options]} \]

- Kaplan–Meier and predicted survival plot

 \[
 \text{stcoxkm [if }, \text{ by(} \text{varname} \text{)} \text{ [stcoxkm_options]} \]

- Using Schoenfeld residuals

 \[
 \text{estat phtest [, phtest_options]} \]

stphplot_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>by(\text{varname})</td>
</tr>
<tr>
<td>strata(\text{varname})</td>
</tr>
<tr>
<td>adjust(\text{varlist})</td>
</tr>
<tr>
<td>zero</td>
</tr>
</tbody>
</table>

| **Options** |
nonegative	plot \(\ln(-\ln(\text{survival}))\)
nolntime	plot curves against analysis time
nosh	do not show st setting information

| **Plot** |
| plot#opts(stphplot_plot_options) | affect rendition of the #th connected line and #th plotted points |

| **Add plots** |
| addplot(\text{plot}) | add other plots to the generated graph |

Y axis, X axis, Titles, Legend, Overall

| twoway_options | any options other than \text{by()} documented in [G-3] \text{twoway_options} |

Either by(\text{varname}) or strata(\text{varname}) is required with stphplot.
stphplot_plot_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cline_options</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
</tbody>
</table>

stcoxkm_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>* by(varname)</td>
</tr>
<tr>
<td>ties(breslow)</td>
</tr>
<tr>
<td>ties(efron)</td>
</tr>
<tr>
<td>ties(exactm)</td>
</tr>
<tr>
<td>ties(exactp)</td>
</tr>
<tr>
<td>separate</td>
</tr>
<tr>
<td>nosh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>obsopts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>obs#opts(stcoxkm_plot_options)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>predopts(stcoxkm_plot_options)</td>
</tr>
<tr>
<td>pred#opts(stcoxkm_plot_options)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Add plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>addplot(plot)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y axis, X axis, Titles, Legend, Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoway_options</td>
</tr>
<tr>
<td>byopts(byopts)</td>
</tr>
</tbody>
</table>

* by(varname) is required with stcoxkm.

stcoxkm_plot_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connect_options</td>
</tr>
<tr>
<td>marker_options</td>
</tr>
</tbody>
</table>

You must stset your data before using stphplot and stcoxkm; see [ST] stset.

fweights, iweights, and pweights may be specified using stset; see [ST] stset.
4 stcox PH-assumption tests — Tests of proportional-hazards assumption

\begin{verbatim}
\textbf{phtest} \textbf{options} \hspace{1cm} \textbf{Description}
\end{verbatim}

\begin{itemize}
\item \textbf{Main}
 \begin{itemize}
 \item \textbf{log} \hspace{1cm} use natural logarithm time-scaling function
 \item \textbf{km} \hspace{1cm} use $1 - \text{KM}$ product-limit estimate as the time-scaling function
 \item \textbf{rank} \hspace{1cm} use rank of analysis time as the time-scaling function
 \item \textbf{time}(varname) \hspace{1cm} use \text{varname} containing a monotone transformation of analysis time as the time-scaling function
 \item \textbf{plot}(varname) \hspace{1cm} plot smoothed, scaled Schoenfeld residuals versus time
 \item \textbf{bwidth}(#) \hspace{1cm} use bandwidth of #; default is bwidth(0.8)
 \item \textbf{detail} \hspace{1cm} test proportional-hazards assumption separately for each covariate
 \end{itemize}
\item \textbf{Scatterplot}
 \begin{itemize}
 \item \textbf{marker} \textit{options} \hspace{1cm} change look of markers (color, size, etc.)
 \item \textbf{marker} \textit{label} \textit{options} \hspace{1cm} add marker labels; change look or position
 \end{itemize}
\item \textbf{Smoothed line}
 \begin{itemize}
 \item \textbf{lineopts}($\text{cline} \textit{options}$) \hspace{1cm} affect rendition of the smoothed line
 \end{itemize}
\end{itemize}

\textit{Y axis, X axis, Titles, Legend, Overall}

\textbf{twoway} \textit{options} \hspace{1cm} any options other than \textit{by}() documented in \[G-3]\textbf{twoway} \textit{options}

\texttt{estat phtest} is not appropriate after estimation with \texttt{svy}.

\section*{Options}

Options are presented under the following headings:

\begin{itemize}
\item \textit{Options for stphplot}
\item \textit{Options for stcoxkm}
\item \textit{Options for estat phtest}
\end{itemize}

\section*{Options for stphplot}

\begin{itemize}
\item \textbf{Main}
 \begin{itemize}
 \item \textbf{by}(varname) \hspace{1cm} specifies the nominal or ordinal covariate. Either \textit{by}() or \textit{strata}() is required with \textit{stphplot}.
 \item \textbf{strata}(varname) \hspace{1cm} is an alternative to \textit{by}(). Rather than fitting separate Cox models for each value of \textit{varname}, \textit{strata()} fits one stratified Cox model. You must also specify \textit{adjust}(varlist) with the \textit{strata}(varname) option; see \[ST\] \texttt{sts graph}.
 \item \textbf{adjust}(varlist) \hspace{1cm} adjusts the estimates to that for the average values of the \textit{varlist} specified. The estimates can also be adjusted to zero values of \textit{varlist} by specifying the \textit{zero} option. \textbf{adjust}(varlist) can be specified with \textit{by}(); it is required with \textit{strata}(varname).
 \item \textbf{zero} \hspace{1cm} is used with \textit{adjust}() to specify that the estimates be adjusted to the 0 values of the \textit{varlist} rather than to average values.
 \end{itemize}
\item \textbf{Options}
 \begin{itemize}
 \item \textbf{nongenative} \hspace{1cm} specifies that $\ln\{-\ln(\text{survival})\}$ be plotted instead of $-\ln\{-\ln(\text{survival})\}$.
 \end{itemize}
\end{itemize}
nolntime specifies that curves be plotted against analysis time instead of against ln(analysis time). noshow prevents stphplot from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

plot#opts(stphplot_plot_options) affects the rendition of the #th connected line and #th plotted points; see [G-3] cline_options and [G-3] marker_options.

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Options for stcoxkm

by(varname) specifies the nominal or ordinal covariate. by() is required.

ties(breslow|efron|exactm|exactp) specifies one of the methods available to stcox for handling tied failures. If none is specified, ties(breslow) is assumed; see [ST] stcox.

separate produces separate plots of predicted and observed values for each value of the variable specified with by(). noshow prevents stcoxkm from showing the key st variables. This option is seldom used because most people type stset, show or stset, noshow to set whether they want to see these variables mentioned at the top of the output of every st command; see [ST] stset.

obsopts(stcoxkm_plot_options) affects the rendition of the observed curve; see [G-3] connect_options and [G-3] marker_options.

obs#opts(stcoxkm_plot_options) affects the rendition of the #th observed curve; see [G-3] connect_options and [G-3] marker_options. This option is not allowed with separate.

predopts(stcoxkm_connect_options) affects the rendition of the predicted curve; see [G-3] connect_options and [G-3] marker_options.

pred#opts(stcoxkm_connect_options) affects the rendition of the #th predicted curve; see [G-3] connect_options and [G-3] marker_options. This option is not allowed with separate.

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.
Y axis, X axis, Titles, Legend, Overall

\texttt{twoway} \texttt{options} are any of the options documented in \texttt{[G-3 \ twoway \ options]}, excluding \texttt{by()}. These include options for titling the graph (see \texttt{[G-3 \ title \ options]}) and for saving the graph to disk (see \texttt{[G-3 \ saving \ option]}).

\texttt{byopts} (\texttt{byopts}) affects the appearance of the combined graph when \texttt{by()} and \texttt{separate} are specified, including the overall graph title and the organization of subgraphs. See \texttt{[G-3 \ by \ option]}.

\section*{Options for \texttt{estat phtest}}

\begin{itemize}
 \item \texttt{log}, \texttt{km}, \texttt{rank}, and \texttt{time()} are used to specify the time scaling function.

 By default, \texttt{estat phtest} performs the tests using the identity function, that is, analysis time itself.

 \texttt{log} specifies that the natural log of analysis time be used.

 \texttt{km} specifies that 1 minus the Kaplan–Meier product-limit estimate be used.

 \texttt{rank} specifies that the rank of analysis time be used.

 \texttt{time(\textit{varname})} specifies a variable containing an arbitrary monotonic transformation of analysis time. You must ensure that \textit{varname} is a monotonic transform.

 \item \texttt{plot(\textit{varname})} specifies that a scatterplot and smoothed plot of scaled Schoenfeld residuals versus time be produced for the covariate specified by \textit{varname}. By default, the smoothing is performed using the running-mean method implemented in \texttt{lowess}, \texttt{mean noweight}; see \texttt{[R \ lowess]}.

 \item \texttt{bwidth(\#)} specifies the bandwidth. Centered subsets of \texttt{bwidth()} × \texttt{N} observations are used for calculating smoothed values for each point in the data except for endpoints, where smaller, uncentered subsets are used. The greater the \texttt{bwidth()}, the greater the smoothing. The default is \texttt{bwidth(0.8)}.

 \item \texttt{detail} specifies that a separate test of the proportional-hazards assumption be produced for each covariate in the Cox model. By default, \texttt{estat phtest} produces only the global test.

\end{itemize}

\begin{itemize}
 \item \texttt{marker \ options} affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see \texttt{[G-3 \ marker \ options]}.

 \item \texttt{marker \ label \ options} specify if and how the markers are to be labeled; see \texttt{[G-3 \ marker \ label \ options]}.

\end{itemize}

\begin{itemize}
 \item \texttt{lineopts(\textit{cline \ options})} affects the rendition of the smoothed line; see \texttt{[G-3 \ cline \ options]}.

\end{itemize}

\begin{itemize}
 \item \texttt{Y axis, X axis, Titles, Legend, Overall} \texttt{twoway \ options} are any of the options documented in \texttt{[G-3 \ twoway \ options]}, excluding \texttt{by()}. These include options for titling the graph (see \texttt{[G-3 \ title \ options]}) and for saving the graph to disk (see \texttt{[G-3 \ saving \ option]}).

\end{itemize}
Cox proportional hazards models assume that the hazard ratio is constant over time. Suppose that a group of cancer patients on an experimental treatment is monitored for 10 years. If the hazard of dying for the nontreated group is twice the rate as that of the treated group ($HR = 2.0$), the proportional-hazards assumption implies that this ratio is the same at 1 year, at 2 years, or at any point on the time scale. Because the Cox model, by definition, is constrained to follow this assumption, it is important to evaluate its validity. If the assumption fails, alternative modeling choices would be more appropriate (for example, a stratified Cox model, time-varying covariates). For examples of testing the proportional-hazards assumption using Stata, see Allison (2014).

`stphplot` and `stcoxkm` provide graphical methods for assessing violations of the proportional-hazards assumption. Although using graphs to assess the validity of the assumption is subjective, it can be a helpful tool.

`stphplot` plots $-\ln(-\ln(survival))$ curves for each category of a nominal or ordinal covariate versus \ln(analysis time). These are often referred to as “log–log” plots. Optionally, these estimates can be adjusted for covariates. If the plotted lines are reasonably parallel, the proportional-hazards assumption has not been violated, and it would be appropriate to base the estimate for that variable on one baseline survivor function.

Another graphical method of evaluating the proportional-hazards assumption, though less common, is to plot the Kaplan–Meier observed survival curves and compare them with the Cox predicted curves for the same variable. This plot is produced with `stcoxkm`. When the predicted and observed curves are close together, the proportional-hazards assumption has not been violated. See Garrett (1997) for more details.

Many popular tests for proportional hazards are, in fact, tests of nonzero slope in a generalized linear regression of the scaled Schoenfeld residuals on time (see Grambsch and Therneau [1994]). The `estat phtest` command tests, for individual covariates and globally, the null hypothesis of zero slope, which is equivalent to testing that the log hazard-ratio function is constant over time. Thus rejection of the null hypothesis of a zero slope indicates deviation from the proportional-hazards assumption. The `estat phtest` command allows three common time-scaling options (`log`, `km`, and `rank`) and also allows you to specify a user-defined function of time through the `time()` option. When no option is specified, the tests are performed using analysis time without further transformation.

Example 1

These examples use data from a leukemia remission study (Garrett 1997). The data consist of 42 patients who are monitored over time to see how long (weeks) it takes them to go out of remission (`relapse`: 1 = yes, 0 = no). Half the patients receive a new experimental drug, and the other half receive a standard drug (`treatment1`: 1 = drug A, 0 = standard). White blood cell count, a strong indicator of the presence of leukemia, is divided into three categories (`wbc3cat`: 1 = normal, 2 = moderate, 3 = high).
stcox PH-assumption tests — Tests of proportional-hazards assumption

. use https://www.stata-press.com/data/r16/leukemia
(Leukemia Remission Study)
.
.describe
Contains data from https://www.stata-press.com/data/r16/leukemia.dta
obs: 42 Leukemia Remission Study
vars: 8 23 Mar 2018 10:39

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>weeks</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>Weeks in Remission</td>
</tr>
<tr>
<td>relapse</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>Relapse</td>
</tr>
<tr>
<td>treatment1</td>
<td>byte</td>
<td>%8.0g</td>
<td>trt1lbl</td>
<td>Treatment I</td>
</tr>
<tr>
<td>treatment2</td>
<td>byte</td>
<td>%8.0g</td>
<td>trt2lbl</td>
<td>Treatment II</td>
</tr>
<tr>
<td>wbc3cat</td>
<td>byte</td>
<td>%9.0g</td>
<td>wbc1lbl</td>
<td>White Blood Cell Count</td>
</tr>
<tr>
<td>wbc1</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>wbc3cat==Normal</td>
</tr>
<tr>
<td>wbc2</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>wbc3cat==Moderate</td>
</tr>
<tr>
<td>wbc3</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>wbc3cat==High</td>
</tr>
</tbody>
</table>

Sorted by: weeks

. stset weeks, failure(relapse)

 failure event: relapse != 0 & relapse < .
 obs. time interval: (0, weeks]
 exit on or before: failure

 42 total observations
 0 exclusions

 42 observations remaining, representing
 30 failures in single-record/single-failure data
 541 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 35

In this example, we examine whether the proportional-hazards assumption holds for drug A versus the standard drug (treatment1). First, we will use stphplot, followed by stcoxkm.
. stphplot, by(treatment1)
 failure _d: relapse
 analysis time _t: weeks

Figure 1.

. stcoxkm, by(treatment1) legend(cols(1))
 failure _d: relapse
 analysis time _t: weeks

Figure 2.

Figure 1 (stphplot) displays lines that are parallel, implying that the proportional-hazards assumption for treatment1 has not been violated. This is confirmed in figure 2 (stcoxkm), where the observed values and predicted values are close together.

The graph in figure 3 is the same as the one in figure 1, adjusted for white blood cell count (using two dummy variables). The adjustment variables were centered temporarily by stphplot before the adjustment was made.
The lines in figure 3 are still parallel, although they are somewhat closer together. Examining the proportional-hazards assumption on a variable without adjusting for covariates is usually adequate as a diagnostic tool before using the Cox model. However, if you know that adjustment for covariates in a final model is necessary, you may wish to reexamine whether the proportional-hazards assumption still holds.

Another variable in this dataset measures a different drug (treatment2: 1 = drug B, 0 = standard). We wish to examine the proportional-hazards assumption for this variable.

```
. stphplot, by(treatment2)
    failure _d: relapse
    analysis time _t: weeks
```
This variable violates the proportional-hazards assumption. In figure 4, we see that the lines are not only nonparallel but also cross in the data region. In figure 5, we see that there are considerable differences between the observed and predicted values. We have overestimated the positive effect of drug B for the first half of the study and have underestimated it in the later weeks. One hazard ratio describing the effect of this drug would be inappropriate. We definitely would want to stratify on this variable in our Cox model.

Example 2: estat phtest

In this example, we use estat phtest to examine whether the proportional-hazards assumption holds for a model with covariates treatment1, wbc2, and wbc3. After stsetting the data, we first run stcox with these three variables as regressors. Then we use estat phtest:

```
. stset weeks, failure(relapse)
    failure event: relapse != 0 & relapse < .
    obs. time interval: (0, weeks]
    exit on or before: failure

42  total observations
0   exclusions
42  observations remaining, representing
30  failures in single-record/single-failure data
541 total analysis time at risk and under observation
   at risk from t = 0
   earliest observed entry t = 0
   last observed exit t = 35
```
. stcox treatment1 wbc2 wbc3, nolog
 failure _d: relapse
 analysis time _t: weeks
Cox regression -- Breslow method for ties
No. of subjects = 42
No. of failures = 30
Time at risk = 541
LR chi2(3) = 33.02
Log likelihood = -77.476905
\begin{eqnarray*}
\text{LR chi2(3)} & = & 33.02
\text{Log likelihood} & = & -77.476905
\end{eqnarray*}
\begin{center}
\begin{tabular}{l|cccc}
\hline
_t & Haz. Ratio & Std. Err. & z & P>|z| & [95\% Conf. Interval] \\
\hline
treatment1 & .2834551 & .1229874 & -2.91 & 0.004 & .1211042 .6634517 \\
wbc2 & 3.637825 & 2.201306 & 2.13 & 0.033 & 1.111134 11.91015 \\
wbc3 & 10.92214 & 7.088783 & 3.68 & 0.000 & 3.06093 38.97284 \\
\hline
\end{tabular}
\end{center}
\begin{eqnarray*}
\text{rho} & & \text{chi2} & & \text{df} & & \text{Prob>chi2} \\
\hline
treatment1 & -0.07019 & 0.15 & 1 & 0.6948 \\
wbc2 & -0.03223 & 0.03 & 1 & 0.8650 \\
wbc3 & 0.01682 & 0.01 & 1 & 0.9237 \\
\hline
\text{global test} & & 0.33 & 3 & 0.9551 \\
\hline
\end{eqnarray*}

Because we specified the detail option with the \texttt{estat phtest} command, both covariate-specific and global tests were produced. We can see that there is no evidence that the proportional-hazards assumption has been violated.

Another variable in this dataset measures a different drug (\texttt{treatment2}: 1 = drug B, 0 = standard). We now wish to examine the proportional-hazards assumption for the previous model by substituting \texttt{treatment2} for \texttt{treatment1}.

We fit a new Cox model and perform the test for proportional hazards:

. stcox treatment2 wbc2 wbc3, nolog
 failure _d: relapse
 analysis time _t: weeks
Cox regression -- Breslow method for ties
No. of subjects = 42
No. of failures = 30
Time at risk = 541
LR chi2(3) = 23.93
Log likelihood = -82.019053
\begin{eqnarray*}
\text{LR chi2(3)} & = & 23.93
\text{Log likelihood} & = & -82.019053
\end{eqnarray*}
\begin{center}
\begin{tabular}{l|cccc}
\hline
_t & Haz. Ratio & Std. Err. & z & P>|z| & [95\% Conf. Interval] \\
\hline
treatment2 & .8483777 & .3469054 & -0.40 & 0.688 & .3806529 1.890816 \\
wbc2 & 3.409628 & 2.050784 & 2.04 & 0.041 & 1.048905 11.08353 \\
wbc3 & 14.0562 & 8.873693 & 4.19 & 0.000 & 4.078529 48.44314 \\
\hline
\end{tabular}
\end{center}

Because we specified the detail option with the \texttt{estat phtest} command, both covariate-specific and global tests were produced. We can see that there is no evidence that the proportional-hazards assumption has been violated.

Another variable in this dataset measures a different drug (\texttt{treatment2}: 1 = drug B, 0 = standard). We now wish to examine the proportional-hazards assumption for the previous model by substituting \texttt{treatment2} for \texttt{treatment1}.

We fit a new Cox model and perform the test for proportional hazards:
. estat phtest, detail

Test of proportional-hazards assumption
Time: Time

<table>
<thead>
<tr>
<th></th>
<th>rho</th>
<th>chi2</th>
<th>df</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>treatment2</td>
<td>-0.51672</td>
<td>10.19</td>
<td>1</td>
<td>0.0014</td>
</tr>
<tr>
<td>wbc2</td>
<td>-0.09860</td>
<td>0.29</td>
<td>1</td>
<td>0.5903</td>
</tr>
<tr>
<td>wbc3</td>
<td>-0.03559</td>
<td>0.04</td>
<td>1</td>
<td>0.8448</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>global test</td>
<td>10.24</td>
<td>3</td>
<td></td>
<td>0.0166</td>
</tr>
</tbody>
</table>

treatment2 violates the proportional-hazards assumption. A single hazard ratio describing the effect of this drug is inappropriate.

The test of the proportional-hazards assumption is based on the principle that, for a given regressor, the assumption restricts $\beta(t_j) = \beta$ for all t_j. This implies that a plot of $\beta(t_j)$ versus time will have a slope of zero. Grambsch and Therneau (1994) showed that $E(s_j^*) + \hat{\beta} \approx \beta(t_j)$, where s_j^* is the scaled Schoenfeld residual at failure time t_j and $\hat{\beta}$ is the estimated coefficient from the Cox model. Thus a plot of $s_j^* + \hat{\beta}$ versus some function of time provides a graphical assessment of the assumption.

Continuing from above, if you type

```
.predict sch*, scaledsch
```

you obtain three variables—sch1, sch2, and sch3—corresponding to the three regressors, treatment2, wbc2, and wbc3. Given the utility of $s_j^* + \hat{\beta}$, what is stored in variable sch1 is actually $s_{j1}^* + \hat{\beta}_1$ and not just the scaled Schoenfeld residual for the first variable, s_{j1}^*, itself. The estimated coefficient, $\hat{\beta}_1$, is added automatically. The same holds true for the second created variable representing the second regressor, $sch2 = s_{j2}^* + \hat{\beta}_2$, and so on.

As such, a graphical assessment of the proportional-hazards assumption for the first regressor is as simple as

```
.scatter sch1 _t || lfit sch1 _t
```

which plots a scatter of $s_{j1}^* + \hat{\beta}_1$ versus analysis time, _t, and overlays a linear fit. Is the slope zero? The answer is no for the first regressor, treatment2, and that agrees with our results from estat phtest.

Technical note

The tests of the proportional-hazards assumption assume homogeneity of variance across risk sets. This allows the use of the estimated overall (pooled) variance–covariance matrix in the equations. Although these tests have been shown by Grambsch and Therneau (1994) to be fairly robust to departures from this assumption, exercise care where this assumption may not hold, particularly when performing a stratified Cox analysis. In such cases, we recommend that you check the proportional-hazards assumption separately for each stratum.
Video example

How to fit a Cox proportional hazards model and check proportional-hazards assumption

Stored results

`estat phtest` stores the following in `r()`:

Scalars
- `r(df)` global test degrees of freedom
- `r(chi2)` global test χ^2
- `r(p)` global test p-value

Matrices
- `r(phtest)` separate tests for each covariate

Methods and formulas

For one covariate, x, the Cox proportional hazards model reduces to

$$h(t; x) = h_0(t) \exp(x\beta)$$

where $h_0(t)$ is the baseline hazard function from the Cox model. Let $S_0(t)$ and $H_0(t)$ be the corresponding Cox baseline survivor and baseline cumulative hazard functions, respectively.

The proportional-hazards assumption implies that

$$H(t) = H_0(t) \exp(x\beta)$$

or

$$\ln H(t) = \ln H_0(t) + x\beta$$

where $H(t)$ is the cumulative hazard function. Thus, under the proportional-hazards assumption, the logs of the cumulative hazard functions at each level of the covariate have equal slope. This is the basis for the method implemented in `stphplot`.

The proportional-hazards assumption also implies that

$$S(t) = S_0(t)^{\exp(x\beta)}$$

Let $\hat{S}(t)$ be the estimated survivor function based on the Cox model. This function is a step function like the Kaplan–Meier estimate and, in fact, reduces to the Kaplan–Meier estimate when $x = 0$. Thus for each level of the covariate of interest, we can assess violations of the proportional-hazards assumption by comparing these survival estimates with estimates calculated independently of the model. See Kalbfleisch and Prentice (2002) or Hess (1995).

`stcoxkm` plots Kaplan–Meier estimated curves for each level of the covariate together with the Cox model predicted baseline survival curve. The closer the observed values are to the predicted values, the less likely it is that the proportional-hazards assumption has been violated.

Grambsch and Therneau (1994) presented a scaled adjustment for the Schoenfeld residuals that permits the interpretation of the smoothed residuals as a nonparametric estimate of the log hazard-ratio function. These scaled Schoenfeld residuals, r^*_S, can be obtained directly with `predict’s scaledsch` option; see [ST] `stcox postestimation`.
Scaled Schoenfeld residuals are centered at $\hat{\beta}$ for each covariate and, when there is no violation of proportional hazards, should have slope zero when plotted against functions of time. The `estat phtest` command uses these residuals, tests the null hypothesis that the slope is equal to zero for each covariate in the model, and performs the global test proposed by Grambsch and Therneau (1994). The test of zero slope is equivalent to testing that the log hazard-ratio function is constant over time.

For a specified function of time, $g(t)$, the statistic for testing the pth individual covariate is,

$$
\chi^2_c = \frac{\left(\sum_{i=1}^{N} \{\delta_i g(t_i) - \bar{g}(t)\} r_{sp_i}^*\right)^2}{d \ Var(\hat{\beta}_p) \sum_{i=1}^{N} \{\delta_i g(t_i) - \bar{g}(t)\}^2}
$$

which is asymptotically distributed as χ^2 with 1 degree of freedom. $r_{sp_i}^*$ is the scaled Schoenfeld residual for observation i, and δ_i indicates failure for observation i, with $d = \sum \delta_i$.

The statistic for the global test is calculated as

$$
\chi^2_g = \left[\sum_{i=1}^{N} \{\delta_i g(t_i) - \bar{g}(t)\} r_{Si}\right]' \left[\frac{d \ Var(\hat{\beta})}{\sum_{i=1}^{N} \{\delta_i g(t_i) - \bar{g}(t)\}^2}\right] \left[\sum_{i=1}^{N} \{\delta_i g(t_i) - \bar{g}(t)\} r_{Si}\right]
$$

for r_{Si}, a vector of the m (unscaled) Schoenfeld residuals for the ith observation; see [ST] stcox postestimation. The global test statistic is asymptotically distributed as χ^2 with m degrees of freedom.

The equations for the scaled Schoenfeld residuals and the two test statistics just described assume homogeneity of variance across risk sets. Although these tests are fairly robust to deviations from this assumption, care must be exercised, particularly when dealing with a stratified Cox model.

Acknowledgment

The original versions of stphplot and stcoxkm were written by Joanne M. Garrett at the University of North Carolina at Chapel Hill. We also thank Garrett for her contributions to the `estat phtest` command.

References

Also see

[ST] *stcox* — Cox proportional hazards model
[ST] *sts* — Generate, graph, list, and test the survivor and cumulative hazard functions
[ST] *stset* — Declare data to be survival-time data
[U] 20 Estimation and postestimation commands