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Description
stcox fits, via maximum likelihood, proportional hazards models on st data. stcox can be used with

single- or multiple-record or single- or multiple-failure st data.

Quick start
Cox proportional hazards model with covariates x1 and x2 using stset data

stcox x1 x2

Same as above, but using Efron method for tied failures

stcox x1 x2, efron

Different baseline hazards for strata defined by levels of svar
stcox x1 x2, strata(svar)

Adjust for complex survey design using svyset and stset data

svy: stcox x1 x2

Menu
Statistics > Survival analysis > Regression models > Cox proportional hazards (PH) model

1

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/svysvyset.pdf#svysvyset
https://www.stata.com/manuals/ststset.pdf#ststset
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Syntax
stcox [ indepvars ] [ if ] [ in ] [ , options ]

options Description

Model

estimate fit model without covariates

strata(varnames) strata ID variables

shared(varname) shared-frailty ID variable

offset(varname) include varname in model with coefficient constrained to 1

breslow use Breslow method to handle tied failures; the default

efron use Efron method to handle tied failures

exactm use exact marginal-likelihood method to handle tied failures

exactp use exact partial-likelihood method to handle tied failures

Time varying

tvc(varlist) specify covariates to be interacted with a function of time

texp(exp) specify a function of time; default is texp( t)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

noadjust do not use standard degree-of-freedom adjustment

Reporting

level(#) set confidence level; default is level(95)
nohr report coefficients, not hazard ratios

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

You must stset your data before using stcox; see [ST] stset.
varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, fp, jackknife, mfp, mi estimate, nestreg, statsby, stepwise, and svy are allowed; see
[U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

estimate, shared(), efron, exactm, exactp, tvc(), texp(), vce(), and noadjust are not allowed with the svy prefix;
see [SVY] svy.

fweights, iweights, and pweights may be specified using stset; see [ST] stset. Weights are not supported with efron
and exactp. Also weights may not be specified if you are using the bootstrap prefix with the stcox command.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/ststcox.pdf#ststcoxOptionsdisplay_options
https://www.stata.com/manuals/ststcox.pdf#ststcoxOptionsmaxopts
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

estimate forces fitting of the null model. All Stata estimation commands redisplay results when the

command name is typed without arguments. So does stcox. What if you wish to fit a Cox model on

x𝑗β, where x𝑗β is defined as 0? Logic says that you would type stcox. There are no explanatory

variables, so there is nothing to type after the command. Unfortunately, this looks the same as stcox
typed without arguments, which is a request to redisplay results.

To fit the null model, type stcox, estimate.

strata(varnames) specifies up to five strata variables. Observations with equal values of the strata

variables are assumed to be in the same stratum. Stratified estimates (equal coefficients across strata

but with a baseline hazard distinct for each stratum) are then obtained.

shared(varname) specifies that a Cox model with shared frailty be fit. Observations with equal value

of varname are assumed to have shared (the same) frailty. Across groups, the frailties are assumed to

be gamma-distributed latent random effects that affect the hazard multiplicatively, or, equivalently,

the logarithm of the frailty enters the linear predictor as a random offset. Think of a shared-frailty

model as a Cox model for panel data. varname is a variable in the data that identifies the groups.

shared() is not allowed in the presence of delayed entries or gaps.

Shared-frailty models are discussed more in Cox regression with shared frailty.

offset(varname); see [R] Estimation options.

breslow, efron, exactm, and exactp specify the method for handling tied failures in the calculation of

the log partial likelihood (and residuals). breslow is the default. Each method is described in Treat-

ment of tied failure times. efron and the exact methods require substantially more computer time than
the default breslow option. exactm and exactp may not be specified with tvc(), vce(robust),
or vce(cluster clustvar).

� � �
Time varying �

tvc(varlist) specifies the variables to be included in the model as an interaction with a function of time

to form time-varying covariates. During estimation, these variables are interacted with analysis time

or with a function of analysis time specified in the texp() option. This is a convenience option used

to speed up calculations and to avoid having to stsplit (see [ST] stsplit) the data over many failure

times.

Most predictions are not available after estimation with tvc(). These predictions require that the data
be stsplit to generate the requested information; see help tvc note.

texp(exp) is used in conjunction with tvc(varlist) to specify the function of analysis time that should

be used to multiply covariates specified in the tvc() option to include in the model time-varying co-

variates that are deterministic functions of time. For example, specifying texp(ln( t))would cause
the covariates in the tvc() option to be multiplied by the logarithm of analysis time. If tvc(varlist)
is used without texp(exp), Stata understands that you mean texp( t) and thus multiplies the co-

variates by the analysis time.

Both tvc(varlist) and texp(exp) are explained more in the section on Cox regression with time-

varying covariates using option tvc() below.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesCoxregressionwithsharedfrailty
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesTreatmentoftiedfailuretimes
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesTreatmentoftiedfailuretimes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststsplit.pdf#ststsplit
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesCoxregressionwithtime-varyingcovariatesusingoptiontvc()
https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesCoxregressionwithtime-varyingcovariatesusingoptiontvc()
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

noadjust is for use with vce(robust) or vce(cluster clustvar). noadjust prevents the estimated

variance matrix from being multiplied by 𝑁/(𝑁 −1) or 𝑔/(𝑔 −1), where 𝑔 is the number of clusters.
The default adjustment is somewhat arbitrary because it is not always clear how to count observations

or clusters. In such cases, however, the adjustment is likely to be biased toward 1, so we would still

recommend making it.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr specifies that coefficients be displayed rather than exponentiated coefficients or hazard ratios. This

option affects only how results are displayed and not how they are estimated. nohr may be specified

at estimation time or when redisplaying previously estimated results (which you do by typing stcox
without a variable list).

noshow prevents stcox from showing the key st variables. This option is seldom used because most

people type stset, show or stset, noshow to set whether theywant to see these variablesmentioned
at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, trace, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R]Maximize. These options are seldom used.

The following option is available with stcox but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Cox regression with uncensored data
Cox regression with censored data
Treatment of tied failure times
Cox regression with time-varying covariates in multiple-record data
Cox regression with time-varying covariates using option tvc()
Robust estimate of variance
Cox regression with multiple-failure data
Stratified estimation
Cox regression as Poisson regression
Cox regression with shared frailty

What follows is a summary of what can be done with stcox. For a complete tutorial, see Cleves,
Gould, and Marchenko (2016), which devotes three chapters to this topic.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions


stcox — Cox proportional hazards model 5

In the Cox proportional hazards model (Cox 1972), the hazard is assumed to be

ℎ(𝑡) = ℎ0(𝑡) exp(𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘)

The Cox model provides estimates of 𝛽1, . . . , 𝛽𝑘 but provides no direct estimate of ℎ0(𝑡)—the baseline

hazard. Formally, the function ℎ0(𝑡) is not directly estimated, but it is possible to recover an estimate of
the baseline cumulative hazard 𝐻0(𝑡) and, from that, an estimate of the baseline survivor function 𝑆0(𝑡).

stcox fits the Cox proportional hazards model; that is, it provides estimates of β and its vari-

ance–covariance matrix. Estimates of 𝐻0(𝑡), 𝑆0(𝑡), and other predictions and diagnostics are obtained
with predict after stcox; see [ST] stcox postestimation. For information on fitting a Cox model to

survey data, see Cleves, Gould, andMarchenko (2016, sec. 9.5), and for information on handling missing

data, see Cleves, Gould, and Marchenko (2016, sec. 9.6).

stcox with the strata() option will produce stratified Cox regression estimates. In the stratified

estimator, the hazard at time 𝑡 for a subject in group 𝑖 is assumed to be

ℎ𝑖(𝑡) = ℎ0𝑖(𝑡) exp(𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘)

That is, the coefficients are assumed to be the same, regardless of group, but the baseline hazard can be

group specific.

Regardless of whether you specify strata(), the default variance estimate is to calculate the con-

ventional, inverse matrix of negative second derivatives. The theoretical justification for this estimator is

based on likelihood theory. The vce(robust) option instead switches to the robust measure developed

by Lin and Wei (1989). This variance estimator is a variant of the estimator discussed in [U] 20.22 Ob-

taining robust variance estimates.

stcox with the shared() option fits a Cox model with shared frailty. A frailty is a group-specific

latent random effect that multiplies into the hazard function. The distribution of the frailties is gamma

with mean 1 and variance to be estimated from the data. Shared-frailty models are used to model within-

group correlation. Observations within a group are correlated because they share the same frailty.

We give examples below with uncensored, censored, time-varying, and recurring failure data, but

it does not matter in terms of what you type. Once you have stset your data, to fit a model you type

stcox followed by the names of the explanatory variables. You do this whether your dataset has single or
multiple records, includes censored observations or delayed entry, or even has single or multiple failures.

You use stset to describe the properties of the data, and then that information is available to stcox—and

all the other st commands—so that you do not have to specify it again.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
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Cox regression with uncensored data

Example 1
We wish to analyze an experiment testing the ability of emergency generators with a new-style bear-

ing to withstand overloads. For this experiment, the overload protection circuit was disabled, and the

generators were run overloaded until they burned up. Here are our data:

. use https://www.stata-press.com/data/r19/kva
(Generator experiment)
. list

failtime load bearings

1. 100 15 0
2. 140 15 1
3. 97 20 0
4. 122 20 1
5. 84 25 0

6. 100 25 1
7. 54 30 0
8. 52 30 1
9. 40 35 0

10. 55 35 1

11. 22 40 0
12. 30 40 1

Twelve generators, half with the new-style bearings and half with the old, were allocated to this destruc-

tive test. The first observation reflects an old-style generator (bearings = 0) under a 15-kVA overload.

It stopped functioning after 100 hours. The second generator had new-style bearings (bearings = 1)

and, under the same overload condition, lasted 140 hours. Paired experiments were also performed under

overloads of 20, 25, 30, 35, and 40 kVA.
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We wish to fit a Cox proportional hazards model in which the failure rate depends on the amount of

overload and the style of the bearings. That is, we assume that bearings and load do not affect the

shape of the overall hazard function, but they do affect the relative risk of failure. To fit this model, we

type

. stset failtime
(output omitted )

. stcox load bearings
Failure _d: 1 (meaning all fail)

Analysis time _t: failtime
Iteration 0: Log likelihood = -20.274897
Iteration 1: Log likelihood = -10.515114
Iteration 2: Log likelihood = -8.8700259
Iteration 3: Log likelihood = -8.5915211
Iteration 4: Log likelihood = -8.5778991
Iteration 5: Log likelihood = -8.577853
Refining estimates:
Iteration 0: Log likelihood = -8.577853
Cox regression with Breslow method for ties
No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39
Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

load 1.52647 .2188172 2.95 0.003 1.152576 2.021653
bearings .0636433 .0746609 -2.35 0.019 .0063855 .6343223

We find that after controlling for overload, the new-style bearings result in a lower hazard and therefore

a longer survivor time.

Once an stcox model has been fit, typing stcox without arguments redisplays the previous results.

Options that affect the display, such as nohr—which requests that coefficients rather than hazard ratios

be displayed—can be specified upon estimation or when results are redisplayed:

. stcox, nohr
Cox regression with Breslow method for ties
No. of subjects = 12 Number of obs = 12
No. of failures = 12
Time at risk = 896

LR chi2(2) = 23.39
Log likelihood = -8.577853 Prob > chi2 = 0.0000

_t Coefficient Std. err. z P>|z| [95% conf. interval]

load .4229578 .1433485 2.95 0.003 .1419999 .7039157
bearings -2.754461 1.173115 -2.35 0.019 -5.053723 -.4551981
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Technical note
stcox’s iteration log looks like a standard Stata iteration log up to where it says “Refining estimates”.

The Cox proportional-hazards likelihood function is indeed a difficult function, both conceptually and

numerically. Until Stata says “Refining estimates”, it maximizes the Cox likelihood in the standard way

by using double-precision arithmetic. Then just to be sure that the answers are accurate, Stata switches

to quad-precision routines (double double precision) and completes the maximization procedure from its

current location on the likelihood.

Cox regression with censored data

Example 2
We have data on 48 participants in a cancer drug trial. Of these 48, 28 receive treatment (drug = 1)

and 20 receive a placebo (drug = 0). The participants range in age from 47 to 67 years. We wish to

analyze time until death, measured in months. Our data include 1 observation for each patient. The

variable studytime records either the month of their death or the last month that they were known to be

alive. Some of the patients still live, so together with studytime is died, indicating their health status.
Persons known to have died—“noncensored” in the jargon—have died = 1, whereas the patients who

are still alive—“right-censored” in the jargon—have died = 0.

Here is an overview of our data:

. use https://www.stata-press.com/data/r19/drugtr
(Patient survival in drug trial)
. st
-> stset studytime, failure(died)
Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, studytime]

Exit on or before: failure
. summarize

Variable Obs Mean Std. dev. Min Max

studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1
age 48 55.875 5.659205 47 67
_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39

_t0 48 0 0 0 0
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We typed stset studytime, failure(died) previously; that is how st knew about this dataset. To

fit the Cox model, we type

. stcox drug age
Failure _d: died

Analysis time _t: studytime
Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.551879
Iteration 2: Log likelihood = -83.324009
Iteration 3: Log likelihood = -83.323546
Refining estimates:
Iteration 0: Log likelihood = -83.323546
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

We find that the drug results in a lower hazard—and therefore a longer survivor time—controlling for

age. Older patients are more likely to die. The model as a whole is statistically significant.

The hazard ratios reported correspond to a one-unit change in the corresponding variable. It is more

typical to report relative risk for 5-year changes in age. To obtain such a hazard ratio, we create a new

age variable such that a one-unit change indicates a 5-year change:

. replace age = age/5
variable age was byte now float
(48 real changes made)
. stcox drug age, nolog

Failure _d: died
Analysis time _t: studytime

Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323544 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.764898 .3290196 3.05 0.002 1.224715 2.543338
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Treatment of tied failure times
The proportional hazards model assumes that the hazard function is continuous and, thus, that there

are no tied survival times. Because of the way that time is recorded, however, tied events do occur in

survival data. In such cases, the partial likelihood must be modified. See Methods and formulas for more

details on the methods described below.

Stata provides four methods for handling tied failures in calculating the Cox partial likelihood through

the breslow, efron, exactm, and exactp options. If there are no ties in the data, the results are identical,
regardless of the method selected.

Cox regression is a series of comparisons of those subjects who fail to those subjects at risk of failing;

we refer to the latter set informally as a risk pool. When there are tied failure times, we must decide how

to calculate the risk pools for these tied observations. Assume that there are 2 observations that fail in

succession. In the calculation involving the second observation, the first observation is not in the risk

pool because failure has already occurred. If the two observations have the same failure time, we must

decide how to calculate the risk pool for the second observation and in which order to calculate the two

observations.

There are two views of time. In the first, time is continuous, so ties should not occur. If they have

occurred, the likelihood reflects the marginal probability that the tied-failure events occurred before the

nonfailure events in the risk pool (the order that they occurred is not important). This is called the exact

marginal likelihood (the exactm option).

In the second view, time is discrete, so ties are expected. The likelihood is changed to reflect this

discreteness and calculates the conditional probability that the observed failures are those that fail in the

risk pool given the observed number of failures. This is called the exact partial likelihood (the exactp
option).

Let’s assume that there are five subjects—𝑒1, 𝑒2, 𝑒3, 𝑒4, and 𝑒5—in the risk pool and that subjects

𝑒1 and 𝑒2 fail. Had we been able to observe the events at a better resolution, we might have seen that

𝑒1 failed from risk pool 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 and then 𝑒2 failed from risk pool 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5.

Alternatively, 𝑒2 might have failed first from risk pool 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5, and then 𝑒1 failed from

risk pool 𝑒1 + 𝑒3 + 𝑒4 + 𝑒5.

The Breslow method (the breslow option) for handling tied values simply says that because we do

not know the order, we will use the largest risk pool for each tied failure event. This method assumes that

both 𝑒1 and 𝑒2 failed from risk pool 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5. This approximation is fast and is the default

method for handling ties. If there are many ties in the dataset, this approximation will not be accurate

because the risk pools include too many observations. The Breslow method is an approximation of the

exact marginal likelihood.

The Efron method (the efron option) for handling tied values assumes that the first risk pool is

𝑒1 +𝑒2 +𝑒3 +𝑒4 +𝑒5 and the second risk pool is either 𝑒2 +𝑒3 +𝑒4 +𝑒5 or 𝑒1 +𝑒3 +𝑒4 +𝑒5. From this,

Efron noted that the 𝑒1 and 𝑒2 terms were in the second risk pool with probability 1/2 and so used for the

second risk pool .5(𝑒1 + 𝑒2) + 𝑒3 + 𝑒4 + 𝑒5. Efron’s approximation is a more accurate approximation

of the exact marginal likelihood than Breslow’s but takes longer to calculate.

The exact marginal method (the exactm option) is a misnomer in that the calculation performed is

also an approximation of the exact marginal likelihood. It is an approximation because it evaluates

the likelihood (and derivatives) by using 15-point Gauss–Laguerre quadrature. For small-to-moderate

samples, this is slower than the Efron approximation, but the difference in execution time diminishes

when samples become larger. Youmaywant to consider the quadrature when deciding to use this method.

https://www.stata.com/manuals/ststcox.pdf#ststcoxMethodsandformulas
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If the number of tied deaths is large (on average), the quadrature approximation of the function is not

well behaved. A little empirical checking suggests that if the number of tied deaths is larger (on average)

than 30, the quadrature does not approximate the function well.

When we view time as discrete, the exact partial method (the exactp option) is the final method

available. This approach is equivalent to computing conditional logistic regression where the groups are

defined by the risk sets and the outcome is given by the death variable. This is the slowest method to use

and can take a significant amount of time if the number of tied failures and the risk sets are large.

Cox regression with time-varying covariates in multiple-record data

Example 3
In [ST] stset, we introduce the Stanford heart transplant data in which there are one or two records per

patient depending on whether they received a new heart.

This dataset (Crowley and Hu 1977) consists of 103 patients admitted to the Stanford Heart Trans-

plantation Program. Patients were admitted to the program after review by a committee and then waited

for an available donor heart. While waiting, some patients died or were transferred out of the program,

but 67% received a transplant. The dataset includes the year the patient was accepted into the program

along with the patient’s age, whether the patient had other heart surgery previously, and whether the

patient received a transplant.

In the data, posttran becomes 1 when a patient receives a new heart, so it is a time-varying covariate.

That does not, however, affect what we type to fit the model:

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. stset t1, failure(died) id(id)
(output omitted )

. stcox age posttran surg year
Failure _d: died

Analysis time _t: t1
ID variable: id

Iteration 0: Log likelihood = -298.31514
Iteration 1: Log likelihood = -289.7344
Iteration 2: Log likelihood = -289.53498
Iteration 3: Log likelihood = -289.53378
Iteration 4: Log likelihood = -289.53378
Refining estimates:
Iteration 0: Log likelihood = -289.53378
Cox regression with Breslow method for ties
No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 17.56
Log likelihood = -289.53378 Prob > chi2 = 0.0015

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.030224 .0143201 2.14 0.032 1.002536 1.058677
posttran .9787243 .3032597 -0.07 0.945 .5332291 1.796416
surgery .3738278 .163204 -2.25 0.024 .1588759 .8796

year .8873107 .059808 -1.77 0.076 .7775022 1.012628

https://www.stata.com/manuals/ststset.pdf#ststset
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We find that older patients have higher hazards, that patients tend to do better over time, and that patients

with prior surgery do better. Whether a patient ultimately receives a transplant does not seem to make

much difference.

Cox regression with time-varying covariates using option tvc()
The basic proportional hazards regression assumes the relationship

ℎ(𝑡) = ℎ0(𝑡) exp(𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘)

where ℎ0(𝑡) is the baseline hazard function. For most purposes, this model is sufficient, but sometimes
we may wish to introduce variables of the form 𝑧𝑖(𝑡) = 𝑧𝑖𝑔(𝑡), which vary continuously with time so

that

ℎ(𝑡) = ℎ0(𝑡) exp {𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘 + 𝑔(𝑡)(𝛾1𝑧1 + · · · + 𝛾𝑚𝑧𝑚)} (1)

where 𝑧1, . . . , 𝑧𝑚 are baseline (constant) covariates and where estimation has the net effect of estimating,

say, a regression coefficient, 𝛾𝑖, for a covariate, 𝑔(𝑡)𝑧𝑖, which is a function of the current time.

Variables 𝑧1, . . . , 𝑧𝑚 are specified by using the tvc(varlist) option, and 𝑔(𝑡) is specified by using the
texp(exp) option, where 𝑡 in 𝑔(𝑡) is analysis time. For example, if we want 𝑔(𝑡) = log(𝑡), we would
use texp(log( t)) because t stores the analysis time once the data are stset.

Because the calculations in Cox regression are based on evaluations of the partial log likelihood at

the times when failures occur, the above results could also be achieved by using stsplit to split the

data at the observed failure times and manually generating the time-varying covariates. tvc() merely

represents a more convenient way to accomplish this. However, for large datasets with many distinct

failure times, using stsplit may produce datasets that are too large to fit in memory, and even if this

were not so, the estimation would take far longer to complete. For these reasons, the tvc() and texp()
options described above were introduced.
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Example 4
Consider a dataset consisting of 45 observations on recovery time fromwalking pneumonia. Recovery

time (in days) is recorded in the variable time, and there are measurements on the covariates age, drug1,
and drug2, where drug1 and drug2 interact a choice of treatment with initial dosage level. The study

was terminated after 30 days, so those who had not recovered by that time were censored (cured = 0).

. use https://www.stata-press.com/data/r19/drugtr2

. list age drug1 drug2 time cured in 1/12, separator(0)

age drug1 drug2 time cured

1. 36 0 50 20.6 1
2. 14 0 50 6.8 1
3. 43 0 125 8.6 1
4. 25 100 0 10 1
5. 50 100 0 30 0
6. 26 0 100 13.6 1
7. 21 150 0 5.4 1
8. 25 0 100 15.4 1
9. 32 125 0 8.6 1

10. 28 150 0 8.5 1
11. 34 0 100 30 0
12. 40 0 50 30 0

Patient 1 took 50 mg of drug number 2 and was cured after 20.6 days, whereas patient 5 took 100 mg of

drug number 1 and had yet to recover when the study ended and so was censored at 30 days.

We run a standard Cox regression after stsetting the data:

. stset time, failure(cured)
Survival-time data settings

Failure event: cured!=0 & cured<.
Observed time interval: (0, time]

Exit on or before: failure

45 total observations
0 exclusions

45 observations remaining, representing
36 failures in single-record/single-failure data

677.9 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 30



stcox — Cox proportional hazards model 14

. stcox age drug1 drug2
Failure _d: cured

Analysis time _t: time
Iteration 0: Log likelihood = -116.54385
Iteration 1: Log likelihood = -102.77311
Iteration 2: Log likelihood = -101.92794
Iteration 3: Log likelihood = -101.92504
Iteration 4: Log likelihood = -101.92504
Refining estimates:
Iteration 0: Log likelihood = -101.92504
Cox regression with Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9

LR chi2(3) = 29.24
Log likelihood = -101.92504 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age .8759449 .0253259 -4.58 0.000 .8276873 .9270162
drug1 1.008482 .0043249 1.97 0.049 1.000041 1.016994
drug2 1.00189 .0047971 0.39 0.693 .9925323 1.011337

The output includes 𝑝-values for the tests of the null hypotheses that each regression coefficient is 0
or, equivalently, that each hazard ratio is 1. That all hazard ratios are apparently close to 1 is a matter of

scale; however, we can see that drug number 1 significantly increases the risk of being cured and so is

an effective drug, whereas drug number 2 is ineffective (given the presence of age and drug number 1 in

the model).

Suppose now that we wish to fit a model in which we account for the effect that as time goes by, the

actual level of the drug remaining in the body diminishes, say, at an exponential rate. If it is known that

the half-life of both drugs is close to 2 days, we can say that the actual concentration level of the drug in

the patient’s blood is proportional to the initial dosage times, exp(−0.35𝑡), where 𝑡 is analysis time. We

now fit a model that reflects this change.

. stcox age, tvc(drug1 drug2) texp(exp(-0.35*_t)) nolog
Failure _d: cured

Analysis time _t: time

Cox regression with Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 36
Time at risk = 677.9

LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

main
age .8614636 .028558 -4.50 0.000 .8072706 .9192948

tvc
drug1 1.304744 .1135967 3.06 0.002 1.100059 1.547514
drug2 1.200613 .1113218 1.97 0.049 1.001103 1.439882

Note: Variables in tvc equation interacted with exp(-0.35*_t).
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The first equation, main, reports the results (hazard ratios) for the covariates that do not vary over

time; the second equation, tvc, reports the results for the time-varying covariates.

As the level of drug in the blood system decreases, the drug’s effectiveness diminishes. Accounting

for this serves to unmask the effects of both drugs in that we now see increased effects on both. In fact,

the effect on recovery time of drug number 2 now becomes significant.

Technical note
The interpretation of hazard ratios requires careful consideration here. For the first model, the hazard

ratio for, say, drug1 is interpreted as the proportional change in hazard when the dosage level of drug1
is increased by one unit. For the second model, the hazard ratio for drug1 is the proportional change in

hazard when the blood concentration level—that is, drug1*exp(−0.35𝑡)—increases by 1.

Because the number of observations in our data is relatively small, for illustrative purposes we can

stsplit the data at each recovery time, manually generate the blood concentration levels, and refit the

second model.

. generate id=_n

. streset, id(id)
(output omitted )

. stsplit, at(failures)
(31 failure times)
(812 observations (episodes) created)
. generate drug1emt = drug1*exp(-0.35*_t)
. generate drug2emt = drug2*exp(-0.35*_t)
. stcox age drug1emt drug2emt

Failure _d: cured
Analysis time _t: time

ID variable: id
Iteration 0: Log likelihood = -116.54385
Iteration 1: Log likelihood = -99.321912
Iteration 2: Log likelihood = -98.07369
Iteration 3: Log likelihood = -98.05277
Iteration 4: Log likelihood = -98.052763
Refining estimates:
Iteration 0: Log likelihood = -98.052763
Cox regression with Breslow method for ties
No. of subjects = 45 Number of obs = 857
No. of failures = 36
Time at risk = 677.9

LR chi2(3) = 36.98
Log likelihood = -98.052763 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age .8614636 .028558 -4.50 0.000 .8072706 .9192948
drug1emt 1.304744 .1135967 3.06 0.002 1.100059 1.547514
drug2emt 1.200613 .1113218 1.97 0.049 1.001103 1.439882

We get the same answer. However, this required more work both for Stata and for you.
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Above we used tvc() and texp() to demonstrate fitting models with time-varying covariates, but

these options can also be used to fit models with time-varying coefficients. For simplicity, consider a

version of (1) that contains only one fixed covariate, 𝑥1, and sets 𝑧1 = 𝑥1:

ℎ(𝑡) = ℎ0(𝑡) exp {𝛽1𝑥1 + 𝑔(𝑡)𝛾1𝑥1}

Rearranging terms results in

ℎ(𝑡) = ℎ0(𝑡) exp [{𝛽1 + 𝛾1𝑔(𝑡)} 𝑥1]

Given this new arrangement, we consider that 𝛽1 + 𝛾1𝑔(𝑡) is a (possibly) time-varying coefficient on the
covariate 𝑥1, for some specified function of time 𝑔(𝑡). The coefficient has a time-invariant component,
𝛽1, with 𝛾1 determining the magnitude of the time-dependent deviations from 𝛽1. As such, a test of

𝛾1 = 0 is a test of time invariance for the coefficient on 𝑥1.

Confirming that a coefficient is time invariant is one way of testing the proportional-hazards assump-

tion. Proportional hazards implies that the relative hazard (that is, 𝛽) is fixed over time, and this assump-
tion would be violated if a time interaction proved significant.

Example 5
Returning to our cancer drug trial, we now include a time interaction on age as a way of testing the

proportional-hazards assumption for that covariate:

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. stcox drug age, tvc(age)

Failure _d: died
Analysis time _t: studytime

Iteration 0: Log likelihood = -99.911448
Iteration 1: Log likelihood = -83.328648
Iteration 2: Log likelihood = -83.095631
Iteration 3: Log likelihood = -83.095036
Refining estimates:
Iteration 0: Log likelihood = -83.095036
Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(3) = 33.63
Log likelihood = -83.095036 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

main
drug .1059862 .0478178 -4.97 0.000 .0437737 .2566171
age 1.156977 .07018 2.40 0.016 1.027288 1.303037

tvc
age .9970966 .0042415 -0.68 0.494 .988818 1.005445

Note: Variables in tvc equation interacted with _t.

We used the default function of time, 𝑔(𝑡) = 𝑡, although we could have specified otherwise with the

texp() option. The estimation results are presented in terms of hazard ratios, and so 0.9971 is an estimate
of exp(𝛾age). Tests of hypotheses, however, are in terms of the original metric, and so 0.494 is the

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexampleseq1
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significance for the test of 𝐻0 ∶ 𝛾age = 0 versus the two-sided alternative. With respect to this specific

form of misspecification, there is not much evidence to dispute the proportionality of hazards when it

comes to age.

Robust estimate of variance
By default, stcox produces the conventional estimate for the variance–covariance matrix of the co-

efficients (and hence the reported standard errors). If, however, you specify the vce(robust) option,

stcox switches to the robust variance estimator (Lin and Wei 1989).

The key to the robust calculation is using the efficient score residual for each subject in the data for

the variance calculation. Even in simple single-record, single-failure survival data, the same subjects

appear repeatedly in the risk pools, and the robust calculation needs to account for that.

Example 6
Refitting the Stanford heart transplant data model with robust standard errors, we obtain

. use https://www.stata-press.com/data/r19/stan3
(Heart transplant data)
. stset t1, failure(died) id(id)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (t1[_n-1], t1]
Exit on or before: failure

172 total observations
0 exclusions

172 observations remaining, representing
103 subjects
75 failures in single-failure-per-subject data

31,938.1 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 1,799
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. stcox age posttran surg year, vce(robust)
Failure _d: died

Analysis time _t: t1
ID variable: id

Iteration 0: Log pseudolikelihood = -298.31514
Iteration 1: Log pseudolikelihood = -289.7344
Iteration 2: Log pseudolikelihood = -289.53498
Iteration 3: Log pseudolikelihood = -289.53378
Iteration 4: Log pseudolikelihood = -289.53378
Refining estimates:
Iteration 0: Log pseudolikelihood = -289.53378
Cox regression with Breslow method for ties
No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

Wald chi2(4) = 19.68
Log pseudolikelihood = -289.53378 Prob > chi2 = 0.0006

(Std. err. adjusted for 103 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

age 1.030224 .0148771 2.06 0.039 1.001474 1.059799
posttran .9787243 .2961736 -0.07 0.943 .5408498 1.771104
surgery .3738278 .1304912 -2.82 0.005 .1886013 .7409665

year .8873107 .0613176 -1.73 0.084 .7749139 1.01601

Note the word Robust above std. err. in the table and the phrase “Std. err. adjusted for 103 clusters

in id” above the table.

The hazard ratio estimates are the same as before, but the standard errors are slightly different.

Technical note
In the previous example, stcox knew to specify vce(cluster id) for us when we specified

vce(robust).

To see the importance of vce(cluster id), consider simple single-record, single-failure survival
data, a piece of which is

t0 t died x
0 5 1 1
0 9 0 1
0 8 0 0

and then consider the absolutely equivalent multiple-record survival data:

id t0 t died x
1 0 3 0 1
1 3 5 1 1
2 0 6 0 1
2 6 9 0 1
3 0 3 0 0
3 3 8 0 0

Both datasets record the same underlying data, and so both should produce the same numerical results.

This should be true regardless of whether vce(robust) is specified.

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex6
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In the second dataset, were we to ignore id, it would appear that there are 6 observations on 6 subjects.
The key ingredients in the robust calculation are the efficient score residuals, and viewing the data as 6

observations on 6 subjects produces different score residuals. Let’s call the 6 score residuals 𝑠1, 𝑠2, . . . ,

𝑠6 and the 3 score residuals that would be generated by the first dataset 𝑆1, 𝑆2, and 𝑆3. 𝑆1 = 𝑠1 + 𝑠2,

𝑆2 = 𝑠3 + 𝑠4, and 𝑆3 = 𝑠5 + 𝑠6.

That residuals sum is the key to understanding the vce(cluster clustvar) option. When you specify

vce(cluster id), Stata makes the robust calculation based not on the overly detailed 𝑠1, 𝑠2, . . . , 𝑠6 but

on 𝑆1 +𝑆2, 𝑆3 +𝑆4, and 𝑆5 +𝑆6. That is, Stata sums residuals within clusters before entering them into

subsequent calculations (where they are squared), so results estimated from the second dataset are equal

to those estimated from the first. In more complicated datasets with time-varying regressors, delayed

entry, and gaps, this action of summing within cluster, in effect, treats the cluster (which is typically a

subject) as a unified whole.

Because we had stset an id() variable, stcox knew to specify vce(cluster id) for us when we

specified vce(robust). You may, however, override the default clustering by specifying vce(cluster
clustvar) with a different variable from the one you used in stset, id(). This is useful in analyzing

multiple-failure data, where you need to stset a pseudo-ID establishing the time from the last failure as

the onset of risk.

Cox regression with multiple-failure data

Example 7
In [ST] stsum, we introduce a multiple-failure dataset:

. use https://www.stata-press.com/data/r19/mfail

. stdescribe
Per subject

Category Total Mean Min Median Max

Number of subjects 926
Number of records 1734 1.87257 1 2 4
Entry time (first) 0 0 0 0
Exit time (final) 470.6857 1 477 960
Subjects with gap 0
Time on gap 0 . . . .
Time at risk 435855 470.6857 1 477 960
Failures 808 .8725702 0 1 3

This dataset contains two variables—x1 and x2—which we believe affect the hazard of failure.

https://www.stata.com/manuals/ststsum.pdf#ststsum
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If we simply want to analyze these multiple-failure data as if the baseline hazard remains unchanged

as events occur (that is, the hazard may change with time, but time is measured from 0 and is independent

of when the last failure occurred), we can type

. stcox x1 x2, vce(robust)
Iteration 0: Log pseudolikelihood = -5034.9569
Iteration 1: Log pseudolikelihood = -4978.4198
Iteration 2: Log pseudolikelihood = -4978.1915
Iteration 3: Log pseudolikelihood = -4978.1914
Refining estimates:
Iteration 0: Log pseudolikelihood = -4978.1914
Cox regression with Breslow method for ties
No. of subjects = 926 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,855

Wald chi2(2) = 152.13
Log pseudolikelihood = -4978.1914 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.273456 .1868211 9.99 0.000 1.935259 2.670755
x2 .329011 .0523425 -6.99 0.000 .2408754 .4493951

We chose to fit this model with robust standard errors—we specified vce(robust)—but you can esti-

mate conventional standard errors if you wish.

In [ST] stsum, we discuss analyzing this dataset as the time since last failure. We wished to assume

that the hazard function remained unchanged with failure, except that one restarted the same hazard

function. To that end, we made the following changes to our data:

. stgen nf = nfailures()

. egen newid = group(id nf)

. sort newid t

. by newid: replace t = t - t0[1]
(808 real changes made)
. by newid: gen newt0 = t0 - t0[1]
. stset t, id(newid) failure(d) time0(newt0) noshow
Survival-time data settings

ID variable: newid
Failure event: d!=0 & d<.

Observed time interval: (newt0, t]
Exit on or before: failure

1,734 total observations
0 exclusions

1,734 observations remaining, representing
1,734 subjects

808 failures in single-failure-per-subject data
435,444 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0

Last observed exit t = 797

https://www.stata.com/manuals/ststsum.pdf#ststsum
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That is, we took each subject and made many newid subjects out of each, with each subject entering at

time 0 (nowmeaning the time of the last failure). id still identifies a real subject, but Stata thinks the iden-
tifier variable is newid because we stset, id(newid). If we were to fit a model with vce(robust),
we would get

. stcox x1 x2, vce(robust) nolog
Cox regression with Breslow method for ties
No. of subjects = 1,734 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444

Wald chi2(2) = 88.51
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. err. adjusted for 1,734 clusters in newid)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.002547 .1936906 7.18 0.000 1.656733 2.420542
x2 .2946263 .0569167 -6.33 0.000 .2017595 .4302382

Note carefully the message concerning the clustering: standard errors have been adjusted for clustering

on newid. We, however, want the standard errors adjusted for clustering on id, so we must specify the
vce(cluster clustvar) option:

. stcox x1 x2, vce(cluster id) nolog
Cox regression with Breslow method for ties
No. of subjects = 1,734 Number of obs = 1,734
No. of failures = 808
Time at risk = 435,444

Wald chi2(2) = 93.66
Log pseudolikelihood = -5062.5815 Prob > chi2 = 0.0000

(Std. err. adjusted for 926 clusters in id)

Robust
_t Haz. ratio std. err. z P>|z| [95% conf. interval]

x1 2.002547 .1920151 7.24 0.000 1.659452 2.416576
x2 .2946263 .0544625 -6.61 0.000 .2050806 .4232709

That is, if you are using vce(robust), you must remember to specify vce(cluster clustvar) for your-

self when

1. you are analyzing multiple-failure data and

2. you have reset time to time since last failure, so what Stata considers the subjects are really subsub-

jects.



stcox — Cox proportional hazards model 22

Stratified estimation
When you type

. stcox xvars, strata(svars)

you are allowing the baseline hazard functions to differ for the groups identified by svars. This is equiv-

alent to fitting separate Cox proportional hazards models under the constraint that the coefficients are

equal but the baseline hazard functions are not.

Example 8
Say that in the Stanford heart experiment data, there was a change in treatment for all patients, be-

fore and after transplant, in 1970 and then again in 1973. Further assume that the proportional-hazards

assumption is not reasonable for these changes in treatment—perhaps the changes result in short-run

benefit but little expected long-run benefit. Our interest in the data is not in the effect of these treatment

changes but in the effect of transplantation, for which we still find the proportional-hazards assumption

reasonable. We might fit our model to account for these fictional changes by typing

. use https://www.stata-press.com/data/r19/stan3, clear
(Heart transplant data)
. generate pgroup = year
. recode pgroup min/69=1 70/72=2 73/max=3
(172 changes made to pgroup)
. stcox age posttran surg year, strata(pgroup) nolog

Failure _d: died
Analysis time _t: t1

ID variable: id
Stratified Cox regression with Breslow method for ties
Strata variable: pgroup
No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31,938.1

LR chi2(4) = 20.67
Log likelihood = -213.35033 Prob > chi2 = 0.0004

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.027406 .0150188 1.85 0.064 .9983874 1.057268
posttran 1.075476 .3354669 0.23 0.816 .583567 1.982034
surgery .2222415 .1218386 -2.74 0.006 .0758882 .6508429

year .5523966 .1132688 -2.89 0.004 .3695832 .825638

Of course, we could obtain the robust estimate of variance by also including the vce(robust) option.
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Cox regression as Poisson regression

Example 9
In example 2, we fit the following Cox model to data from a cancer drug trial with 48 participants:

. use https://www.stata-press.com/data/r19/drugtr, clear
(Patient survival in drug trial)
. summarize

Variable Obs Mean Std. dev. Min Max

studytime 48 15.5 10.25629 1 39
died 48 .6458333 .4833211 0 1
drug 48 .5833333 .4982238 0 1
age 48 55.875 5.659205 47 67
_st 48 1 0 1 1

_d 48 .6458333 .4833211 0 1
_t 48 15.5 10.25629 1 39

_t0 48 0 0 0 0
. stcox drug age
(output omitted )

Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

In what follows, we discuss baseline hazard functions. Thus for clarity, we first fit the same model

with an alternate age variable so that “baseline” reflects someone in the control group who is 50 years

old and not a newborn; see Making baseline reasonable in [ST] stcox postestimation for more details.

. generate age50 = age - 50

. stcox drug age50
(output omitted )

Cox regression with Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age50 1.120325 .0417711 3.05 0.002 1.041375 1.20526

Because stcox does not estimate a baseline hazard function, our model and hazard ratios remain

unchanged.

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex_stcox_cancer
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesMakingbaselinereasonable
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
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Among others, Royston and Lambert (2011, sec. 4.5) show that you can obtain identical hazard ratios

by fitting a Poisson model on the above data after splitting on all observed failure times.

Because these data have already been stset, variable t0 contains the beginning of the time span

(which, for these simple data, is time zero for everyone), variable t contains the end of the time span,

and variable d indicates failure ( d == 1) or censoring ( d == 0).

As we did in example 4, we can split these single-record observations at each observed failure time,

thus creating a dataset with multiple records per subject. To do so, we must first create an ID variable

that identifies each observation as a distinct patient:

. generate id = _n

. streset, id(id)
-> stset studytime, id(id) failure(died)
Survival-time data settings

ID variable: id
Failure event: died!=0 & died<.

Observed time interval: (studytime[_n-1], studytime]
Exit on or before: failure

48 total observations
0 exclusions

48 observations remaining, representing
48 subjects
31 failures in single-failure-per-subject data

744 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 39

. stsplit, at(failures) riskset(interval)
(21 failure times)
(534 observations (episodes) created)

https://www.stata.com/manuals/ststcox.pdf#ststcoxRemarksandexamplesex4
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The output shows that we have 21 distinct failure times and that we created 534 new observations

for a total of 48 + 534 = 582 observations. Also created is the interval variable, which contains a

value of 1 for those records that span from time zero to the first failure time, 2 for those records that span

from the first failure time to the second failure time, all the way up to a value of 21 for those records that

span from the 20th failure time to the 21st failure time. To see this requires a little bit of sorting and data

manipulation:

. gsort _t -_d

. by _t: generate tolist = (_n==1) & _d

. list _t0 _t interval if tolist

_t0 _t interval

1. 0 1 1
49. 1 2 2
95. 2 3 3

140. 3 4 4
184. 4 5 5

226. 5 6 6
266. 6 7 7
303. 7 8 8
340. 8 10 9
371. 10 11 10

400. 11 12 11
426. 12 13 12
450. 13 15 13
473. 15 16 14
494. 16 17 15

517. 17 22 16
532. 22 23 17
545. 23 24 18
556. 24 25 19
566. 25 28 20

576. 28 33 21

Thus for example, interval 16 ranges from time 17 to time 22.

For this newly createdmultiple-record dataset, our Coxmodel fit will be identical because we have not

added any information to the data. If you do not believe us, feel free to now try the following command:

. stcox drug age50

At this point, it would seem that making the dataset bigger is a needless waste of space, but what it

grants us is the ability to directly estimate the baseline hazard function in addition to the hazard ratios

we previously obtained. We accomplish this by using Poisson regression.

Poisson regression models event counts, and so we use our event counter for these data, the failure

indicator d, as the response variable. That d is only valued as zero or one should not bother you—it

is still a count variable. We need to treat time spanned as the amount of exposure a subject had toward

failing; the longer the interval, the greater the exposure. As such, we create a variable that records the

length of each time span and include it as an exposure() variable in our Poisson model. We also include

indicator variables for each of the 21 time intervals, with no base level assumed; we use the ibn. factor-

variable specification and the noconstant option:
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. generate time_exposed = _t - _t0

. poisson _d ibn.interval drug age50, exposure(time_exposed) noconstant irr
Iteration 0: Log likelihood = -1239.0595
Iteration 1: Log likelihood = -114.23986
Iteration 2: Log likelihood = -100.13556
Iteration 3: Log likelihood = -99.938857
Iteration 4: Log likelihood = -99.937354
Iteration 5: Log likelihood = -99.937354
Poisson regression Number of obs = 573

Wald chi2(23) = 224.18
Log likelihood = -99.937354 Prob > chi2 = 0.0000

_d IRR Std. err. z P>|z| [95% conf. interval]

interval
1 .0360771 .0284092 -4.22 0.000 .0077081 .1688562
2 .0215286 .0225926 -3.66 0.000 .0027526 .1683778
3 .0228993 .0240269 -3.60 0.000 .0029289 .1790349
4 .0471539 .0366942 -3.92 0.000 .0102596 .2167234
5 .0596354 .045201 -3.72 0.000 .0134999 .2634375
6 .0749754 .0561057 -3.46 0.001 .017296 .3250055
7 .0396981 .0406826 -3.15 0.002 .0053267 .2958558
8 .1203377 .0744625 -3.42 0.001 .0357845 .4046762
9 .0276002 .0283969 -3.49 0.000 .003674 .207341

10 .1120012 .083727 -2.93 0.003 .0258763 .4847777
11 .1358135 .1024475 -2.65 0.008 .0309642 .5956972
12 .1007666 .1040271 -2.22 0.026 .0133221 .7621858
13 .0525547 .0540884 -2.86 0.004 .0069915 .395051
14 .1206462 .1250492 -2.04 0.041 .0158215 .919984
15 .1321868 .1357583 -1.97 0.049 .0176599 .9894363
16 .0670895 .0503478 -3.60 0.000 .0154122 .2920415
17 .5736017 .4415411 -0.72 0.470 .1268766 2.59322
18 .4636009 .5113227 -0.70 0.486 .0533731 4.026856
19 .5272168 .5810138 -0.58 0.561 .0608039 4.571377
20 .2074545 .2292209 -1.42 0.155 .023791 1.80898
21 .2101074 .2344194 -1.40 0.162 .0235909 1.871275

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age50 1.120325 .0417711 3.05 0.002 1.041375 1.20526

ln(time_e~d) 1 (exposure)

The incidence-rate ratios from poisson (obtained with the irr option) are identical to the hazard

ratios we previously obtained. Additionally, the incidence-rate ratio for each of the 21 intervals is an

estimate of the baseline hazard function for that time interval.

poisson gives us an estimated baseline hazard function (the hazard for someone aged 50 in the control
group) as a piecewise-constant function. If we had continued to use stcox, estimating the baseline hazard
function would have required that we apply a kernel smoother to the estimated baseline contributions;

see example 3 of [ST] stcox postestimation for details. In other words, estimating a baseline hazard

after stcox is not easy, and it requires choosing a kernel function and bandwidth. As such, the title

of this section is technically a misnomer; the models are not exactly the same, only the “hazard ratios”

are. Using poisson instead of stcox carries the added assumption that the baseline hazard is constant

between observed failures. Making this assumption buys you the ability to directly estimate the baseline

hazard.

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesex3
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
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There also exists a duality between the Poisson model and the exponential model as fit by streg;
see [ST] streg. A defining property of the Poisson distribution is that waiting times between events are

distributed as exponential. Thus we can fit the same piecewise-constant hazard model with

. streg ibn.interval drug age50, dist(exponential) noconstant

which we invite you to try.

Of course, if you are willing to assume the hazard is piecewise constant, then perhaps you do not

need it to change over all 21 observed failure times, and thus perhaps you would want to collapse some

intervals. Better still, why not just use streg without the indicator variables for interval, assume the
baseline hazard is some smooth function, and reduce your 21 parameters to one or two estimated shape

parameters? The advantages to this fully parametric approach are that you get a parsimonious model and

smooth hazard functions that you can estimate at any time point. The disadvantage is that you now carry

the stringent assumption that your hazard follows the chosen functional form. If you choose the wrong

function, then your hazard ratios are, in essence, worthless.

The two extremes here are the model that makes no assumption about the baseline hazard (the Cox

model) and the model that makes the strongest assumptions about the baseline hazard (the fully para-

metric model). Our piecewise-constant baseline hazard model represents a compromise between Cox

regression and fully parametric regression. If you are interested in other ways you can compromise

between Cox and parametric models, we recommend you read Royston and Lambert (2011), which is

entirely devoted to that topic. There you will find information on (among other things) Royston–Parmar

models (Royston and Parmar 2002; Lambert and Royston 2009), proportional odds models, scaled-probit

models, the use of cubic splines and fractional polynomials, time-dependent effects, and models for rel-

ative survival.

Cox regression with shared frailty
A shared-frailty model is the survival-data analog to regression models with random effects. A frailty

is a latent random effect that enters multiplicatively on the hazard function. In a Cox model, the data are

organized as 𝑖 = 1, . . . , 𝑛 groups with 𝑗 = 1, . . . , 𝑛𝑖 observations in group 𝑖. For the 𝑗th observation in
the 𝑖th group, the hazard is

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡)𝛼𝑖 exp(x𝑖𝑗β)

where 𝛼𝑖 is the group-level frailty. The frailties are unobservable positive quantities and are assumed

to have mean 1 and variance 𝜃, to be estimated from the data. You can fit a Cox shared-frailty model

by specifying shared(varname), where varname defines the groups over which frailties are shared.

stcox, shared() treats the frailties as being gamma distributed, but this is mainly an issue of compu-

tational convenience; see Methods and formulas. Theoretically, any distribution with positive support,

mean 1, and finite variance may be used to model frailty.

Shared-frailty models are used to model within-group correlation; observations within a group are

correlated because they share the same frailty. The estimate of 𝜃 is used to measure the degree of within-
group correlation, and the shared-frailty model reduces to standard Cox when 𝜃 = 0.

For 𝜈𝑖 = log𝛼𝑖, the hazard can also be expressed as

ℎ𝑖𝑗(𝑡) = ℎ0(𝑡) exp(x𝑖𝑗β + 𝜈𝑖)

and thus the log frailties, 𝜈𝑖, are analogous to random effects in standard linear models.

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststcox.pdf#ststcoxMethodsandformulas
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Example 10
Consider the data from a study of 38 kidney dialysis patients, as described in McGilchrist andAisbett

(1991). The study is concerned with the prevalence of infection at the catheter insertion point. Two

recurrence times (in days) are measured for each patient, and each recorded time is the time from initial

insertion (onset of risk) to infection or censoring:

. use https://www.stata-press.com/data/r19/catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
. list patient time infect age female in 1/10

patient time infect age female

1. 1 16 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4. 2 23 1 48 1
5. 3 22 1 32 0

6. 3 28 1 32 0
7. 4 318 1 31.5 1
8. 4 447 1 31.5 1
9. 5 30 1 10 0

10. 5 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter insertion result-
ing in either infection (infect==1) or right-censoring (infect==0). Among the covariates measured

are age and sex (female==1 if female, female==0 if male).

One subtlety to note concerns the use of the generic term subjects. In this example, the subjects are

taken to be the individual catheter insertions, not the patients themselves. This is a function of how

the data were recorded—the onset of risk occurs at catheter insertion (of which there are two for each

patient), and not, say, at the time of admission of the patient into the study. We therefore have two subjects

(insertions) within each group (patient).

It is reasonable to assume independence of patients but unreasonable to assume that recurrence times

within each patient are independent. One solution would be to fit a standard Cox model, adjusting

the standard errors of the estimated hazard ratios to account for the possible correlation by specifying

vce(cluster patient).

We could instead model the correlation by assuming that the correlation is the result of a latent

patient-level effect, or frailty. That is, rather than fitting a standard model and specifying vce(cluster
patient), we could fit a frailty model by specifying shared(patient):
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. stset time, fail(infect)
(output omitted )

. stcox age female, shared(patient)
Failure _d: infect

Analysis time _t: time
Fitting comparison Cox model ...
Estimating frailty variance:
Iteration 0: Log profile likelihood = -182.06713
Iteration 1: Log profile likelihood = -181.9791
Iteration 2: Log profile likelihood = -181.97453
Iteration 3: Log profile likelihood = -181.97453
Fitting final Cox model:
Iteration 0: Log likelihood = -199.05599
Iteration 1: Log likelihood = -183.72296
Iteration 2: Log likelihood = -181.99509
Iteration 3: Log likelihood = -181.97455
Iteration 4: Log likelihood = -181.97453
Refining estimates:
Iteration 0: Log likelihood = -181.97453
Cox regression with Breslow method for ties
Gamma shared frailty Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
No. of subjects = 76 min = 2
No. of failures = 58 avg = 2
Time at risk = 7,424 max = 2

Wald chi2(2) = 11.66
Log likelihood = -181.97453 Prob > chi2 = 0.0029

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.006202 .0120965 0.51 0.607 .9827701 1.030192
female .2068678 .095708 -3.41 0.001 .0835376 .5122756

theta .4754497 .2673108

LR test of theta=0: chibar2(01) = 6.27 Prob >= chibar2 = 0.006
Note: Standard errors of hazard ratios are conditional on theta.

From the output, we obtain ̂𝜃 = 0.475, and given the standard error of ̂𝜃 and likelihood-ratio test of

𝐻0 ∶ 𝜃 = 0, we find a significant frailty effect, meaning that the correlation within patient cannot be

ignored. Contrast this with the analysis of the same data in [ST] streg, which considered both Weibull

and lognormal shared-frailty models. For Weibull, there was significant frailty; for lognormal, there was

not.

The estimated 𝜈𝑖 are not displayed in the coefficient table but may be retrieved postestimation by

using predict with the effects option; see [ST] stcox postestimation for an example.

In shared-frailty Cox models, the estimation consists of two steps. In the first step, the optimization is

in terms of 𝜃 only. For fixed 𝜃, the second step consists of fitting a standard Cox model via penalized log
likelihood, with the 𝜈𝑖 introduced as estimable coefficients of dummy variables identifying the groups.

The penalty term in the penalized log likelihood is a function of 𝜃; see Methods and formulas. The final

estimate of 𝜃 is taken to be the one that maximizes the penalized log likelihood. Once the optimal 𝜃 is

https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationRemarksandexamplesex10_stcoxp
https://www.stata.com/manuals/ststcox.pdf#ststcoxMethodsandformulas
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obtained, it is held fixed, and a final penalized Cox model is fit. As a result, the standard errors of the

main regression parameters (or hazard ratios, if displayed as such) are treated as conditional on 𝜃 fixed

at its optimal value.

With gamma-distributed frailty, hazard ratios decay over time in favor of the frailty effect and thus the

displayed “Haz. ratio” in the above output is actually the hazard ratio only for 𝑡 = 0. The degree of decay

depends on 𝜃. Should the estimated 𝜃 be close to 0, the hazard ratios do regain their usual interpretation;
see Gutierrez (2002) for details.

Technical note
The likelihood-ratio test of 𝜃 = 0 is a boundary test and thus requires careful consideration concerning

the calculation of its 𝑝-value. In particular, the null distribution of the likelihood-ratio test statistic is not
the usual 𝜒2

1 but is rather a 50:50 mixture of a 𝜒2
0 (point mass at zero) and a 𝜒2

1, denoted as 𝜒2
01. See

Gutierrez, Carter, and Drukker (2001) for more details.

Technical note
In [ST] streg, shared-frailty models are compared and contrasted with unshared frailty models.

Unshared-frailty models are used to model heterogeneity, and the frailties are integrated out of the con-

ditional survivor function to produce an unconditional survivor function, which serves as a basis for all

likelihood calculations.

Given the nature of Cox regression (the baseline hazard remains unspecified), there is no Cox regres-

sion analog to the unshared parametric frailty model as fit using streg. That is not to say that you cannot
fit a shared-frailty model with 1 observation per group; you can as long as you do not fit a null model.

Stored results
stcox stores the following in e():
Scalars

e(N) number of observations

e(N sub) number of subjects

e(N fail) number of failures

e(N g) number of groups

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ll c) log likelihood, comparison model

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2, comparison test
e(risk) total time at risk

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(theta) frailty parameter

e(se theta) standard error of 𝜃
e(p c) 𝑝-value for comparison test
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

https://www.stata.com/manuals/ststreg.pdf#ststreg
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Macros

e(cmd) cox or stcox fr
e(cmd2) stcox
e(cmdline) command as typed

e(depvar) t
e(t0) t0
e(wtype) weight type

e(wexp) weight expression

e(texp) function of time used for covariates from option tvc()
e(ties) method used for handling ties

e(strata) strata variables

e(shared) frailty grouping variable

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) requested estimation method

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The proportional hazards model with explanatory variables was first suggested by Cox (1972). For

an introductory explanation, see Hosmer, Lemeshow, and May (2008, chap. 3, 4, and 7), Kahn and

Sempos (1989, 193–198), and Selvin (2004, 412–442). For an introduction for the social scientist, see

Box-Steffensmeier and Jones (2004, chap. 4). For a comprehensive review of the methods in this entry,

see Klein and Moeschberger (2003). For a detailed development of these methods, see Kalbfleisch and

Prentice (2002). For more Stata-specific insight, see Cleves, Gould, and Marchenko (2016), Dupont

(2009), and Vittinghoff et al. (2012).
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Let x𝑖 be the row vector of covariates for the time interval (𝑡0𝑖, 𝑡𝑖 ] for the 𝑖th observation in the dataset
𝑖 = 1, . . . , 𝑁. stcox obtains parameter estimates, β̂, by maximizing the partial log-likelihood function

log𝐿 =
𝐷

∑
𝑗=1

[ ∑
𝑖∈𝐷𝑗

x𝑖β − 𝑑𝑗 log{ ∑
𝑘∈𝑅𝑗

exp(x𝑘β)}]

where 𝑗 indexes the ordered failure times 𝑡(𝑗), 𝑗 = 1, . . . , 𝐷; 𝐷𝑗 is the set of 𝑑𝑗 observations that fail

at 𝑡(𝑗); 𝑑𝑗 is the number of failures at 𝑡(𝑗); and 𝑅𝑗 is the set of observations 𝑘 that are at risk at time 𝑡(𝑗)
(that is, all 𝑘 such that 𝑡0𝑘 < 𝑡(𝑗) ≤ 𝑡𝑘). This formula for log𝐿 is for unweighted data and handles ties

by using the Peto–Breslow approximation (Peto 1972; Breslow 1974), which is the default method of

handling ties in stcox.

If strata(varnames) is specified, then the partial log likelihood is the sum of each stratum-specific

partial log likelihood, obtained by forming the ordered failure times 𝑡(𝑗), the failure sets 𝐷𝑗, and the risk

sets 𝑅𝑗, using only those observations within that stratum.

The variance of β̂ is estimated by the conventional inverse matrix of (negative) second derivatives

of log𝐿, unless vce(robust) is specified, in which case the method of Lin and Wei (1989) is used.

That method treats efficient score residuals as analogs to the log-likelihood scores one would find in

fully parametric models; see Methods and formulas in [ST] stcox postestimation for how to calculate

efficient score residuals. If vce(cluster clustvar) is specified, the efficient score residuals are summed
within cluster before the sandwich (robust) estimator is applied.

Tied values are handled using one of four approaches. The log likelihoods corresponding to the four

approaches are given with weights (exactp and efron do not allow weights) and offsets by

log𝐿breslow =
𝐷

∑
𝑗=1

∑
𝑖∈𝐷𝑗

[𝑤𝑖(x𝑖β + offset𝑖) − 𝑤𝑖 log{ ∑
ℓ∈𝑅𝑗

𝑤ℓ exp(xℓβ + offsetℓ)}]

log𝐿efron =
𝐷

∑
𝑗=1

∑
𝑖∈𝐷𝑗

[x𝑖β + offset𝑖 − 𝑑−1
𝑗

𝑑𝑗−1

∑
𝑘=0

log{ ∑
ℓ∈𝑅𝑗

exp(xℓβ + offsetℓ) − 𝑘𝐴𝑗}]

𝐴𝑗 = 𝑑−1
𝑗 ∑

ℓ∈𝐷𝑗

exp(xℓβ + offsetℓ)

log𝐿exactm =
𝐷

∑
𝑗=1

log∫
∞

0
∏

ℓ∈𝐷𝑗

{1 − exp(−𝑒ℓ
𝑠

𝑡)}
𝑤ℓ

exp(−𝑡)𝑑𝑡

𝑒ℓ = exp(xℓβ + offsetℓ)

𝑠 = ∑
𝑘∈𝑅𝑗
𝑘∉𝐷𝑗

𝑤𝑘 exp(x𝑘β + offset𝑘) = sum of weighted nondeath risk scores

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimationMethodsandformulas
https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
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log𝐿exactp =
𝐷

∑
𝑗=1

{∑
𝑖∈𝑅𝑗

𝛿𝑖𝑗(x𝑖β + offset𝑖) − log𝑓(𝑟𝑗, 𝑑𝑗)}

𝑓(𝑟, 𝑑) = 𝑓(𝑟 − 1, 𝑑) + 𝑓(𝑟 − 1, 𝑑 − 1) exp(x𝑘β + offset𝑘)
𝑘 = 𝑟th observation in the set 𝑅𝑗

𝑟𝑗 = cardinality of the set 𝑅𝑗

𝑓(𝑟, 𝑑) = {0 if 𝑟 < 𝑑
1 if 𝑑 = 0

where 𝛿𝑖𝑗 is an indicator for failure of observation 𝑖 at time 𝑡(𝑗) and 𝑤𝑖 are the weights. In the log

likelihood for the Breslow method, 𝑤𝑖 = 𝑤𝑖 ×𝑁/ ∑ 𝑤𝑖 when the model is fit using probability weights,

and 𝑤𝑖 = 𝑤𝑖 when the model is fit using frequency weights or importance weights.

Calculations for the exact marginal log likelihood (and associated derivatives) are obtained with 15-

point Gauss–Laguerre quadrature. The breslow and efron options both provide approximations of

the exact marginal log likelihood. The efron approximation is a better (closer) approximation, but the

breslow approximation is faster. The choice of the approximation to use in a given situation should

generally be driven by the proportion of ties in the data.

For shared-frailty models, the data are organized into 𝐺 groups with the 𝑖th group consisting of 𝑛𝑖
observations, 𝑖 = 1, . . . , 𝐺. From Therneau and Grambsch (2000, 253–255), estimation of 𝜃 takes

place via maximum profile log likelihood. For fixed 𝜃, estimates of β and 𝜈1, . . . , 𝜈𝐺 are obtained by

maximizing

log𝐿(𝜃) = log𝐿Cox(β, 𝜈1, . . . , 𝜈𝐺) +
𝐺

∑
𝑖=1

[1
𝜃

{𝜈𝑖 − exp(𝜈𝑖)} +

(1
𝜃

+ 𝐷𝑖) {1 − log(1
𝜃

+ 𝐷𝑖)} − log𝜃
𝜃

+ logΓ (1
𝜃

+ 𝐷𝑖) − logΓ (1
𝜃

)]

where𝐷𝑖 is the number of death events in group 𝑖, and log𝐿Cox(β, 𝜈1, . . . , 𝜈𝐺) is the standard Cox partial
log likelihood, with the 𝜈𝑖 treated as the coefficients of indicator variables identifying the groups. That

is, the 𝑗th observation in the 𝑖th group has log relative hazard x𝑖𝑗β + 𝜈𝑖. The estimate of the frailty

parameter, ̂𝜃, is chosen as that which maximizes log𝐿(𝜃). The final estimates of β are obtained by

maximizing log𝐿( ̂𝜃) in β and the 𝜈𝑖. The 𝜈𝑖 are not reported in the coefficient table but are available via

predict; see [ST] stcox postestimation. The estimated variance–covariance matrix of β̂ is obtained as

the appropriate submatrix of the variance matrix of (β̂, ̂𝜈1, . . . , ̂𝜈𝐺), and that matrix is obtained as the

inverse of the negative Hessian of log𝐿( ̂𝜃). Therefore, standard errors and inference based on β̂ should

be treated as conditional on 𝜃 = ̂𝜃.
The likelihood-ratio test statistic for testing 𝐻0 ∶ 𝜃 = 0 is calculated as minus twice the difference

between the log likelihood for a Cox model without shared frailty and log𝐿( ̂𝜃) evaluated at the final

(β̂, ̂𝜈1, . . . , ̂𝜈𝐺).

https://www.stata.com/manuals/ststcoxpostestimation.pdf#ststcoxpostestimation
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� �
David Roxbee Cox (1924–2022) was born in Birmingham, England. He earned master’s and PhD

degrees in mathematics and statistics from the universities of Cambridge and Leeds, and he worked

at the Royal Aircraft Establishment, the Wool Industries Research Association, and the universities

of Cambridge, London (Birkbeck and Imperial Colleges), and Oxford. He was knighted in 1985.

Sir David has worked on a wide range of theoretical and applied statistical problems, with outstand-

ing contributions in areas such as experimental design, stochastic processes, binary data, survival

analysis, asymptotic techniques, and multivariate dependencies. In 2010, Sir David was awarded

the Copley Medal, the Royal Society’s highest honor. In 2017, he was the first recipient of the

International Prize in Statistics.� �
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