
st is — Survival analysis subroutines for programmers

Description Syntax Remarks and examples Also see

Description
These commands are provided for programmers wishing to write new st commands.

st is verifies that the data in memory are survival-time (st) data. If not, it issues the error message

“data not st”, r(119).

st is currently “release 2”, meaning that this is the second design of the system. Programs written for

the previous release continue to work. (The previous release of st corresponds to Stata 5.)

Modern programs code st is 2 full or st is 2 analysis. st is 2 verifies that the dataset in

memory is in release 2 format; if it is in the earlier format, it is converted to release 2 format. (Older

programs simply code st is. This verifies that no new features are stset about the data that would

cause the old program to break.)

The full and analysis parts indicate whether the dataset may include past, future, or past and future
data. Code st is 2 full if the command is suitable for running on the analysis sample and the past and

future data (many data management commands fall into this category). Code st is 2 analysis if

the command is suitable for use only with the analysis sample (most statistical commands fall into this

category). See [ST] stset for the definitions of past and future.

st show displays the summary of the survival-time variables or does nothing, depending on what

you specify when stsetting the data. noshow requests that st show display nothing.

st ct is a low-level utility that provides risk-group summaries from survival-time data.

Syntax
Verify that data in memory are survival-time data

st is 2 {full | analysis}

Display or do not display summary of survival-time variables

st show [noshow]

Risk-group summaries

st ct ”[byvars]” -> newtvar newpopvar newfailvar [newcensvar [newentvar]]

You must have stset your data before using st is, st show, and st ct; see [ST] stset.

1

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststset.pdf#ststset

st is — Survival analysis subroutines for programmers 2

Remarks and examples
Remarks are presented under the following headings:

Definitions of characteristics and st variables
Outline of an st command
Using the st ct utility
Comparison of st ct with sttoct
Verifying data
Converting data

Definitions of characteristics and st variables
From a programmer’s perspective, st is a set of conventions that specify where certain pieces of

information are stored and how that information should be interpreted, together with a few subroutines

that make it easier to follow the conventions.

At the lowest level, st is nothing more than a set of Stata characteristics that programmers may access:

char dta[dta] st (marks that the data are st)

char dta[st ver] 2 (version number)

char dta[st id] varname or nothing; id() variable

char dta[st bt0] varname or nothing; t0() variable

char dta[st bt] varname; t variable from stset t, ...
char dta[st bd] varname or nothing; failure() variable

char dta[st ev] list of numbers or nothing; numlist from failure(varname[==numlist])
char dta[st enter] contents of enter() or nothing; numlist expanded

char dta[st exit] contents of exit() or nothing; numlist expanded

char dta[st orig] contents of origin() or nothing; numlist expanded

char dta[st bs] # or 1; scale() value

char dta[st o] origin or #

char dta[st s] scale or #

char dta[st ifexp] exp or nothing; from stset ... if exp ...
char dta[st if] exp or nothing; contents of if()
char dta[st ever] exp or nothing; contents of ever()
char dta[st never] exp or nothing; contents of never()
char dta[st after] exp or nothing; contents of after()
char dta[st befor] exp or nothing; contents of before()
char dta[st wt] weight type or nothing; user-specified weight

char dta[st wv] varname or nothing; user-specified weighting variable

char dta[st w] [weighttype=weightvar] or nothing

char dta[st show] noshow or nothing

char dta[st t] t (for compatibility with release 1)

char dta[st t0] t0 (for compatibility with release 1)

char dta[st d] d (for compatibility with release 1)

char dta[st n0] # or nothing; number of st notes

char dta[st n1] text of first note or nothing

char dta[st n2] text of second note or nothing

char dta[st set] text or nothing. If filled in, streset (see [ST] stset) will refuse
to execute and present this text as the reason

https://www.stata.com/manuals/ststset.pdf#ststset

st is — Survival analysis subroutines for programmers 3

All st datasets also have the following four variables:

t0 Time of entry (in t units) into risk pool
t Time of exit (in t units) from risk pool
d 1 if failure, 0 if censoring
st 1 if observation is to be used and 0 otherwise

Thus, in a program, you might code

display ”the failure/censoring base time variable is _t”
display ”and its mean in the uncensored subsample is”
summarize _t if _d

Nomatter how simple or complicated the data, these four variables exist and are filled in. For instance,

in simple data, t0 might contain 0 for every observation, and d might always contain 1.

Some st datasets also contain the variables

origin Evaluated value of origin()
scale Evaluated value of scale()

The dta[st o] characteristic contains either the name origin or a number, often 0. It contains a

number when the origin does not vary across observations. dta[st s] works the same way with the

scale() value. Thus the origin and scale are dta[st o] and dta[st s]. In fact, these characteris-
tics are seldom used because variables t and t0 are already adjusted.

Some st datasets have an id() variable that clusters together records on the same subject. The name

of the variable varies, and the name can be obtained from the dta[st id] characteristic. If there is no

id() variable, the characteristic contains nothing.

Outline of an st command
If you are writing a new st command, place st is near the top of your code to ensure that your

command does not execute on inappropriate data. Also place st show following the parsing of your

command’s syntax to display the key st variables. The minimal outline for an st command is

program st name
version 19.0
st_is 2 ...
. . . syntax command . . .

. . . determined there are no syntax errors . . .
st_show
. . . guts of program . . .

end

st is 2 appears even before the input is parsed. This is to avoid irritating users when they type a

command, get a syntax error, work hard to eliminate the error, and then learn that “data not st”.

A fuller outline for an st command, particularly one that performs analysis on the data, is

program st name
version 19.0
st_is 2 ...
syntax ... [, ... noSHow ...]
st_show ‘show’
marksample touse
quietly replace ‘touse’ = 0 if _st==0
. . . guts of program . . .

end

st is — Survival analysis subroutines for programmers 4

All calculations and actions are to be restricted, at the least, to observations for which st ≠ 0. Obser-

vations with st = 0 are to be ignored.

Using the st ct utility
st ct converts the data in memory to observations containing summaries of risk groups. Consider

the code

st_is 2 analysis
preserve
st_ct ”” -> t pop die

Typing this would change the data in memory to contain something akin to count-time data. The trans-

formed data would have observations containing

t time
pop population at risk at time t
die number who fail at time t

There would be one record per time t, and the data would be sorted by t. The original data are discarded,
which is why you should code preserve; see [P] preserve.

The above three lines of code could be used as the basis for calculating the Kaplan–Meier product-

limit survivor-function estimate. The rest of the code is

keep if die
generate double hazard = die/pop
generate double km = 1-hazard if _n==1
replace km = (1-hazard)*km[_n-1] if _n>1

st ct can be used to obtain risk groups separately for subgroups of the population. The code

st_is 2 analysis
preserve
st_ct ”race sex” -> t pop die

would change the data in memory to contain

race
sex
t time
pop population at risk at time t
die number who fail at time t

There would be one observation for each race–sex–t combination, and the data would be sorted by

race sex t.

With this dataset, you could calculate the Kaplan–Meier product-limit survivor-function estimate for

each race–sex group by coding

keep if die
generate double hazard = die/pop
by race sex: generate double km = 1-hazard if _n==1
by race sex: replace km = (1-hazard)*km[_n-1] if _n>1

st ct is a convenient subroutine. The above code fragment works regardless of the complexity of the

underlying survival-time data. It does not matter whether there is one record per subject, no censoring,

and one failure per subject, or multiple records per subject, gaps, and recurring failures for the same

subject. st ct forms risk groups that summarize the events recorded by the data.

https://www.stata.com/manuals/ppreserve.pdf#ppreserve

st is — Survival analysis subroutines for programmers 5

st ct can provide the number of censored records and the number who enter the risk group. The

code

st_ct ”” -> t pop die cens ent

creates records containing

t time
pop population at risk at time t
die number who fail at time t
cens number who are censored at t (after the failures)
ent number who enter at t (after the censorings)

As before,

st_ct ”race sex” -> t pop die cens ent

would create a similar dataset with records for each race–sex group.

Comparison of st ct with sttoct
sttoct—see [ST] sttoct—is related to st ct, and in fact, sttoct is implemented in terms of st ct.

The differences between them are that

• sttoct creates ct data, meaning that the dataset is marked as being ct. st ct merely creates a

useful dataset; it does not ctset the data.

• st ct creates a total population at-risk variable—which is useful in programming—but sttoct
creates no such variable.

• sttoct eliminates thrashings—censorings and reentries of the same subject as covariates

change—if there are no gaps, strata shifting, etc. st ct does not do this. Thus, at a particular

time, sttoct might show that there are two lost to censoring and none entered, whereas st ct
might show 12 censorings and 10 entries. This makes no difference in calculating the number at

risk and the number who fail, which are the major ingredients in survival calculations.

• st ct is faster.

Verifying data
As long as you code st is at the top of your program, you need not verify the consistency of the

data. That is, you need not verify that subjects do not fail before they enter, etc.

The dataset is verified when you stset it. If you make a substantive change to the data, you must

rerun stset (which can be done by typing stset or streset without arguments) to reverify that all is

well.

Converting data
If you write a program that converts the data from one form of st data to another, or from st data to

something else, be sure to issue the appropriate stset command. For instance, a command we have

written, stbase, converts the data from st to a simple cross-section in one instance. In our program, we

coded stset, clear so that all other st commands would know that these are no longer st data and that

making st calculations on them would be inappropriate.

https://www.stata.com/manuals/ststtoct.pdf#ststtoct

st is — Survival analysis subroutines for programmers 6

Even if we had forgotten, other st programs would have found many of the key st variables missing

and would have ended with a “[such-and-such] not found” error.

Also see
[ST] stset — Declare data to be survival-time data

[ST] sttoct — Convert survival-time data to count-time data

[ST] Survival analysis — Introduction to survival analysis commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststtoct.pdf#ststtoct
https://www.stata.com/manuals/stsurvivalanalysis.pdf#stSurvivalanalysis
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

