
Glossary

accelerated failure-time model. Amodel in which everyone has, in a sense, the same survivor function,

𝑆(𝜏), and an individual’s 𝜏𝑗 is a function of his or her characteristics and of time, such as 𝜏𝑗 =
𝑡 ∗ exp(𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗).

AFT, accelerated failure time. See accelerated failure-time model.

analysis time. Analysis time is like time, except that 0 has a special meaning: 𝑡 = 0 is the time of onset

of risk, the time when failure first became possible.

Analysis time is usually not what is recorded in a dataset. A dataset of patients might record calendar

time. Calendar time must then be mapped to analysis time.

The letter 𝑡 is reserved for time in analysis-time units. The term time is used for time measured in

other units.

The origin is the time corresponding to 𝑡 = 0, which can vary subject to subject. Thus 𝑡 = time −
origin.

at risk. A subject is at risk from the instant the first failure event becomes possible and usually stays that

way until failure, but a subject can have periods of being at risk and not at risk.

attributable fraction. An attributable fraction is the reduction in the risk of a disease or other condition

of interest when a particular risk factor is removed.

baseline. In survival analysis, baseline is the state at which the covariates, usually denoted by the row

vector x, are zero. For example, if the only measured covariate is systolic blood pressure, the base-

line survivor function would be the survivor function for someone with zero systolic blood pressure.

This may seem ridiculous, but covariates are usually centered so that the mathematical definition of

baseline (covariate is zero) translates into something meaningful (mean systolic blood pressure).

baseline covariates, time-independent covariates, time-invariant covariates, and constant covari-

ates. Covariates whose values are constant over time, such as those recorded at baseline (at time 0).

boundary kernel. A boundary kernel is a special kernel used to smooth hazard functions in the bound-

aries of the data range. Boundary kernels are applied when the epan2, biweight, or rectangle
kernel() is specified with stcurve, hazard or sts graph, hazard.

case I interval-censored data and current status data. Case I interval-censored data occur when the

only survival information available is whether the event of interest occurred before or after the ob-

served time, leading to data in which an observation is either left-censored or right-censored. Case

I interval-censored data can be viewed as a special case of case II interval-censored data without

uncensored and interval-censored on (𝑡𝑙, 𝑡𝑢] observations.
case II interval-censored data and general interval-censored data. Case II interval censored data

occur when, for some observations, we do not know the exact failure time 𝑡, but only know that the

failure happened within a random time interval ( 𝑡𝑙, 𝑡𝑢 ], or before the left endpoint of the time interval
𝑡𝑙, or after the right endpoint of the time interval 𝑡𝑢.

cause-specific hazard. In a competing-risks analysis, the cause-specific hazard is the hazard function

that generates the events of a given type. For example, if heart attack and stroke are competing

events, then the cause-specific hazard for heart attacks describes the biological mechanism behind

heart attacks independently of that for strokes. Cause-specific hazards can be modeled using Cox

regression, treating the other events as censored.
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censored, uncensored, left-censored, right-censored, and interval-censored. An observation is cen-

sored when the exact time of failure is not known, and it is uncensored when the exact time of failure

is known.

An observation is left-censored when the exact time of failure is not known; it is merely known that

the failure occurred before 𝑡𝑙. Suppose that the event of interest is becoming employed. If a subject is

already employed when first interviewed, his outcome is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that the

failure occurred after 𝑡𝑟. If a patient survives until the end of a study, the patient’s time of death is

right-censored.

An observation is interval-censored when the time of failure is not known; it is merely known that the

failure occurred after 𝑡𝑙 but before 𝑡𝑟. Suppose that the event of interest is an onset of breast cancer.

Patients are assessed periodically during their yearly checkups. The actual time of the onset of the

disease, if present, is rarely known. Often, it is only known that the disease happened between the

last and the current checkups. The time to the onset of breast cancer is then interval-censored.

In common usage, censored without a modifier means right-censored.

Also see truncation, left-truncation, and right-truncation.

CIF. See cumulative incidence function.

competing risks. Competing risks models are survival-data models in which the failures are generated

by more than one underlying process. For example, death may be caused by either heart attack or

stroke. There are various methods for dealing with competing risks. One direct way is to duplicate

failures for one competing risk as censored observations for the other risk and stratify on the risk

type. Another is to directly model the cumulative incidence of the event of interest in the presence of

competing risks. The former method uses stcox and the latter, stcrreg.

confounding. In the analysis of contingency tables, factor or interaction effects are said to be confounded

when the effect of one factor is combined with that of another. For example, the effect of alcohol

consumption on esophageal cancer may be confounded with the effects of age, smoking, or both. In

the presence of confounding, it is often useful to stratify on the confounded factors that are not of

primary interest, in the above example, age and smoking.

constant covariates. See baseline covariates, time-independent covariates, time-invariant covariates,

and constant covariates.

count-time data. See ct data.

covariates. Covariates are the explanatory variables that appear in a model. For instance, if survival

time were to be explained by age, sex, and treatment, then those variables would be the covariates.

Also see time-varying covariates.

crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding

a stratification variable, for example, yields a crude estimate.

ct data. ct stands for count time. ct data are an aggregate organized like a life table. Each observation

records a time, the number known to fail at that time, the number censored, and the number of new

entries. See [ST] ctset.

cumulative hazard. See hazard, cumulative hazard, and hazard ratio.
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cumulative incidence estimator. In a competing-risks analysis, the cumulative incidence estimator

estimates the cumulative incidence function (CIF).Assume for now that you have one event of interest

(type 1) and one competing event (type 2). The cumulative incidence estimator for type 1 failures is

then obtained by

ĈIF1(𝑡) = ∑
𝑗∶𝑡𝑗≤𝑡

ℎ̂1(𝑡𝑗) ̂𝑆(𝑡𝑗−1)

with
̂𝑆(𝑡) = ∏

𝑗∶𝑡𝑗≤𝑡
{1 − ℎ̂1(𝑡𝑗) − ℎ̂2(𝑡𝑗)}

The 𝑡𝑗 index the times at which events (of any type) occur, and ℎ̂1(𝑡𝑗) and ℎ̂2(𝑡𝑗) are the cause-specific
hazard contributions for type 1 and type 2, respectively. ̂𝑆(𝑡) estimates the probability that you are

event free at time 𝑡.
The above generalizes to multiple competing events in the obvious way.

cumulative incidence function. In a competing-risks analysis, the cumulative incidence function, or CIF,

is the probability that you will observe the event of primary interest before a given time. Formally,

CIF(𝑡) = 𝑃(𝑇 ≤ 𝑡 and event type of interest)

for time-to-failure, 𝑇.
cumulative subhazard. See subhazard, cumulative subhazard, and subhazard ratio.

current status data. See case I interval-censored data.

DFBETA. A DFBETAmeasures the change in the regressor’s coefficient because of deletion of that sub-

ject. Also see partial DFBETA.

effect size. The effect size is the size of the clinically significant difference between the treatments being

compared, often expressed as the hazard ratio (or the log of the hazard ratio) in survival analysis.

event. An event is something that happens at an instant in time, such as being exposed to an environ-

mental hazard, being diagnosed as myopic, or becoming employed.

The failure event is of special interest in survival analysis, but there are other equally important events,

such as the exposure event, from which analysis time is defined.

In st data, events occur at the end of the recorded time span.

event of interest. In a competing-risks analysis, the event of interest is the event that is the focus of the

analysis, that for which the cumulative incidence in the presence of competing risks is estimated.

event time. The time of the occurrence of an event of interest. With right-censored data, it is synonymous

with survival time. With interval-censored data, it is more proper to use the term “event time” rather

than “survival time”.

event-time interval. In the context of interval-censored data, the event-time interval is the interval that

brackets the event time.

event-time variables. In the context of interval-censored data, event-time variables correspond to the

variables that contain the lower and upper time endpoints of the event-time interval.

examination time. In the context of interval-censored data, the examination time is the time when the

data are collected on a subject. It is not the time of the occurrence of an event of interest. Multiple-

record interval-censored data record examination times.
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external covariates. Time-varying covariates that are external to an individual under study, such as

air temperature and various experimental settings. The marginal distribution of external covariates

does not depend on any failure-time model parameters. Baseline covariates are external covariates

because they are constant over time. Any time-varying covariates whose values are predetermined or

can be computed deterministically are external covariates. For instance, any interaction of a baseline

covariate with a deterministic function of time is an external covariate. Unlikewith internal covariates,

the survivor function is well defined in the presence of external covariates.

failure event. Survival analysis is really time-to-failure analysis, and the failure event is the event un-

der analysis. The failure event can be death, heart attack, myopia, or finding employment. Many

authors—including Stata—write as if the failure event can occur only once per subject, but when we

do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata’s survival

analysis features can be used with repeated-failure data.

failure function. The failure function, 𝐹(𝑡), is the probability of failing (experiencing a failure event)
before or at time 𝑡. It is a cumulative distribution function of 𝑇 and the reverse of the survivor function:

𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) = 1 − 𝑆(𝑡). Also see survivor function.
frailty. In survival analysis, it is often assumed that subjects are alike—homogeneous—except for their

observed differences. The probability that subject 𝑗 fails at time 𝑡 may be a function of 𝑗’s covariates
and random chance. Subjects 𝑗 and 𝑘, if they have equal covariate values, are equally likely to fail.
Frailty relaxes that assumption. The probability that subject 𝑗 fails at time 𝑡 becomes a function of

𝑗’s covariates and 𝑗’s unobserved frailty value, 𝜈𝑗. Frailty 𝜈 is assumed to be a random variable.

Parametric survival models can be fit even in the presence of such heterogeneity.

Shared frailty refers to the case in which groups of subjects share the same frailty value. For instance,

subjects 1 and 2 may share frailty value 𝜈 because they are genetically related. Both parametric and

semiparametric models can be fit under the shared-frailty assumption.

future history. Future history is information recorded after a subject is no longer at risk. The word

history is often dropped, and the term becomes simply future. Perhaps the failure event is cardiac

infarction, and you want to know whether the subject died soon in the future, in which case you might

exclude the subject from analysis.

Also see past history.

gaps. Gaps refers to gaps in observation between entry time and exit time; see under observation.

general interval-censored data. See case II interval-censored data.

hazard, cumulative hazard, and hazard ratio. The hazard or hazard rate at time 𝑡, ℎ(𝑡), is the instan-
taneous rate of failure at time 𝑡 conditional on survival until time 𝑡. Hazard rates can exceed 1. Say
that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval and if the

failure event could be repeated, the individual would be expected to experience three failures during

the time span.

The cumulative hazard, 𝐻(𝑡), is the integral of the hazard function ℎ(𝑡), from 0 (the onset of risk) to

𝑡. It is the total number of failures that would be expected to occur up until time 𝑡, if the failure event
could be repeated. The relationship between the cumulative hazard function, 𝐻(𝑡), and the survivor
function, 𝑆(𝑡), is

𝑆(𝑡) = exp{−𝐻(𝑡)}

𝐻(𝑡) = −ln{𝑆(𝑡)}
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The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates:

ℎ(𝑡 | x)/ℎ(𝑡 | x0). The hazard ratio is often called the relative hazard, especially when ℎ(𝑡 | x0) is the
baseline hazard function.

hazard contributions. Hazard contributions are the increments of the estimated cumulative hazard

function obtained through either a nonparametric or semiparametric analysis. For these analysis types,

the estimated cumulative hazard is a step function that increases every time a failure occurs. The

hazard contribution for that time is the magnitude of that increase.

Because the time between failures usually varies from failure to failure, hazard contributions do not

directly estimate the hazard. However, one can use the hazard contributions to formulate an estimate

of the hazard function based on the method of smoothing.

ID variable. An ID variable identifies groups; equal values of an ID variable indicate that the observations

are for the same group. For instance, a stratification ID variable would indicate the strata to which

each observation belongs.

When an ID variable is referred to without modification, it means subjects, and usually this occurs in

multiple-record st data. In multiple-record data, each physical observation in the dataset represents a

time span, and the ID variable ties the separate observations together:

idvar 𝑡0 𝑡
1 0 5

1 5 7

ID variables are usually numbered 1, 2, . . . , but that is not required. An ID variable might be numbered

1, 3, 7, 22, . . . , or −5, −4, . . . , or even 1, 1.1, 1.2, . . . .

incidence and incidence rate. Incidence is the number of new failures (for example, number of new

cases of a disease) that occur during a specified period in a population at risk (for example, of the

disease).

Incidence rate is incidence divided by the sum of the length of time each individual was exposed to

the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the

disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the total

number actually sick at a given time.

internal covariates. Time-varying covariates that are generated by an individual under study, such as

blood measurements and wellness status. The internal covariate cannot be determined without an

individual in a study and thus naturally contains information about the failure-time process. The mere

existence of a measurement for an individual implies his or her survival. The survivor function and

thus various predictions are not well defined in the presence of internal covariates. Also see external

covariates.

interval-censored data. Interval-censored data may contain different types of censoring: right-

censoring, left-censoring, or interval-censoring. Interval-censoring occurs when the failure time or

event time is not exactly observed but is known only to lie within some interval. See case I interval-

censored data or current status data and case II interval-censored data and general interval-censored

data.

Interval-censored data can be stored in two different formats. First, we describe the data formats when

we have information for a single event. In a single-record-per-subject format, the event-time informa-

tion is recorded as interval data containing the lower and upper endpoints of the event-time interval
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(see event-time variables) for each subject. In a multiple-record-per-subject format, the event-time

information is recorded as potentially multiple examination times per subject with the corresponding

event status indicators for each examination time. The latter format is useful for storing time-varying

covariates.

Next, we describe the data formats for multiple events. When we have data on multiple events, such

as time until onset of diabetes and hypertension, we can also store our data in two different formats. In

the single-record-per-event format, the event-time information is recorded as interval data containing

the lower and upper endpoints of the event-time interval (see event-time variables) for each subject.

For a given subject, we would have one observation for each event. In a multiple-record-per-event

format, the event-time information is recorded as potentially multiple examination times per event

with the corresponding event status indicators for each examination time.

Kaplan–Meier product-limit estimate. This is an estimate of the survivor function, which is the product

of conditional survival to each time at which an event occurs. The simple form of the calculation,

which requires tallying the number at risk and the number who die and at each time, makes accounting

for censoring easy. The resulting estimate is a step function with jumps at the event times.

left-censored. See censored, uncensored, left-censored, right-censored, and interval-censored.

left-truncation. See truncation, left-truncation, and right-truncation.

life table. Also known as a mortality table or actuarial table, a life table is a table that shows for each

analysis time the fraction that survive to that time. In mortality tables, analysis time is often age.

likelihood displacement value. A likelihood displacement value is an influence measure of the effect

of deleting a subject on the overall coefficient vector. Also see partial likelihood displacement value.

LMAX value. An LMAX value is an influence measure of the effect of deleting a subject on the overall

coefficient vector and is based on an eigensystem analysis of efficient score residuals. Also see partial

LMAX value.

multiarm trial. A multiarm trial is a trial comparing survivor functions of more than two groups.

multiple-record interval-censored data and multiple-record-per-subject interval-censored data.

See interval-censored data.

multiple-record st data. See st data.

nonparametric maximum-likelihood estimation. Nonparametric maximum-likelihood estimation is

maximum likelihood estimation of a nonparametric density function. In the context of NPMLE of

interval-censored data, the likelihood function is viewed as a function of both regression coefficients

and the baseline cumulative hazard function, which is infinite dimensional. Under NPMLE, the base-

line cumulative hazard is approximated by a step function with nonnegative jumps at unique values

of the observed event-time intervals. See [ST] stintcox.

odds and odds ratio. The odds in favor of an event are 𝑜 = 𝑝/(1 − 𝑝), where 𝑝 is the probability of the

event. Thus if 𝑝 = 0.2, the odds are 0.25, and if 𝑝 = 0.8, the odds are 4.

The log of the odds is ln(𝑜) = logit(𝑝) = ln{𝑝/(1−𝑝)}, and logistic-regression models, for instance,
fit ln(𝑜) as a linear function of the covariates.
The odds ratio is a ratio of two odds: 𝑜1/𝑜0. The individual odds that appear in the ratio are usually

for an experimental group and a control group, or two different demographic groups.
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offset variable and exposure variable. An offset variable is a variable that is to appear on the right-hand

side of a model with coefficient 1:

𝑦𝑗 = offset𝑗 + 𝑏0 + 𝑏1𝑥𝑗 + · · ·

In the above, 𝑏0 and 𝑏1 are to be estimated. The offset is not constant. Offset variables are often in-

cluded to account for the amount of exposure. Consider a model where the number of events observed

over a period is the length of the period multiplied by the number of events expected in a unit of time:

𝑛𝑗 = 𝑇𝑗𝑒(𝑋𝑗)

When we take logs, this becomes

log(𝑛𝑗) = log(𝑇𝑗) + log{𝑒(𝑋𝑗)}

ln(𝑇𝑗) is an offset variable in this model.
When the log of a variable is an offset variable, the variable is said to be an exposure variable. In the

above, 𝑇𝑗 is an exposure variable.

partial DFBETA.ApartialDFBETAmeasures the change in the regressor’s coefficient because of deletion

of that individual record. In single-record data, the partial DFBETA is equal to the DFBETA. Also see

DFBETA.

partial likelihood displacement value. A partial likelihood displacement value is an influence measure

of the effect of deleting an individual record on the coefficient vector. For single-record data, the

partial likelihood displacement value is equal to the likelihood displacement value. Also see likelihood

displacement value.

partial LMAXvalue. Apartial LMAX value is an influencemeasure of the effect of deleting an individual

record on the overall coefficient vector and is based on an eigensystem analysis of efficient score

residuals. In single-record data, the partial LMAX value is equal to the LMAX value. Also see LMAX

value.

past history. Past history is information recorded about a subject before the subject was both at risk and

under observation. Consider a dataset that contains information on subjects from birth to death and

an analysis in which subjects became at risk once diagnosed with a particular kind of cancer. The past

history on the subject would then refer to records before the subjects were diagnosed.

The word history is often dropped, and the term becomes simply past. For instance, we might want

to know whether a subject smoked in the past.

Also see future history.

penalized log-likelihood function. This is a log-likelihood function that contains an added term, usually

referred to as a roughness penalty, that reduces its value when the model overfits the data. In Cox

models with frailty, such functions are used to prevent the variance of the frailty from growing too

large, which would allow the individual frailty values to perfectly fit the data.

power. The power of a test is the probability of correctly rejecting the null hypothesis when it is false. It

is often denoted as 1 − 𝛽 in statistical literature, where 𝛽 is the type-II-error probability. Commonly

used values for power are 80% and 90%. Also see type I error and type II error.

profile likelihood function. A profile likelihood function is a likelihood function in which the param-

eter is partitioned into two parts, (𝜃, 𝜂), where 𝜃 is a low-dimensional parameter of interest and 𝜂
is a higher-dimensional nuisance parameter. Let 𝐼𝑛(𝜃, 𝜂) be the full likelihood. Then, the profile

likelihood for 𝜃 is defined as
𝑝𝑙𝑛(𝜃) = sup𝜂𝐼𝑛(𝜃, 𝜂)
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For instance, stintcox estimates the standard errors of regression coefficients β using the profile

likelihood function of β by treating baseline hazard contributions ℎ𝑘’s as nuisance parameters.

proportional hazards model. This is a model in which, between individuals, the ratio of the instanta-

neous failure rates (the hazards) is constant over time.

right-censored. See censored, uncensored, left-censored, right-censored, and interval-censored.

right-truncation. See truncation, left-truncation, and right-truncation.

risk factor. This is a variable associated with an increased or decreased risk of failure.

risk pool. At a particular point in time, this is the subjects at risk of failure.

semiparametric model. This is a model that is not fully parameterized. The Cox proportional hazards

model is such a model:

ℎ(𝑡) = ℎ0(𝑡) exp(𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘)

In the Cox model, ℎ𝑜(𝑡) is left unparameterized and not even estimated. Meanwhile, the relative

effects of covariates are parameterized as exp(𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘).
shape parameter. A shape parameter governs the shape of a probability distribution. One example is

the parameter 𝑝 of the Weibull model.

single-record interval-censored data and single-record-per-subject interval-censored data. See

interval-censored data.

single-record st data. See st data.

singleton-group data. A singleton is a frailty group that contains only 1 observation. A dataset contain-

ing only singletons is known as singleton-group data.

SMR. See standardized mortality (morbidity) ratio.

snapshot data. Snapshot data are those in which each record contains the values of a set of variables

for a subject at an instant in time. The name arises because each observation is like a snapshot of the

subject.

In snapshot datasets, one usually has a group of observations (snapshots) for each subject.

Snapshot data must be converted to st data before they can be analyzed. This requires making as-

sumptions about what happened between the snapshots. See [ST] snapspan.

spell data. Spell data are survival data in which each record represents a fixed period, consisting of a

begin time, an end time, possibly a censoring/failure indicator, and other measurements (covariates)

taken during that specific period.

st data. st stands for survival time. In survival-time data, each observation represents a span of survival,

recorded in variables 𝑡0 and 𝑡. For instance, if in an observation 𝑡0 were 3 and 𝑡 were 5, the span
would be (𝑡0, 𝑡 ], meaning from just after 𝑡0 up to and including 𝑡.
Sometimes variable 𝑡0 is not recorded; 𝑡0 is then assumed to be 0. In such a dataset, an observation

that had 𝑡 = 5 would record the span (0, 5 ].
Each observation also includes a variable 𝑑, called the failure variable, which contains 0 or nonzero
(typically, 1). The failure variable records what happened at the end of the span: 0, the subject was

still alive (had not yet failed) or 1, the subject died (failed).

Sometimes variable 𝑑 is not recorded; 𝑑 is then assumed to be 1. In such a dataset, all time-span

observations would be assumed to end in failure.

https://www.stata.com/manuals/ststintcox.pdf#ststintcox
https://www.stata.com/manuals/stglossary.pdf#stGlossarycensored
https://www.stata.com/manuals/stglossary.pdf#stGlossarytruncation
https://www.stata.com/manuals/stglossary.pdf#stGlossaryintcens
https://www.stata.com/manuals/stglossary.pdf#stGlossaryst_data
https://www.stata.com/manuals/stglossary.pdf#stGlossarySMR
https://www.stata.com/manuals/stsnapspan.pdf#stsnapspan
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Finally, each observation in an st dataset can record the entire history of a subject or each can record

a part of the history. In the latter case, groups of observations record the full history. One observation

might record the period (0, 5 ] and the next, (5, 8 ]. In such cases, there is a variable ID that records the

subject for which the observation records a time span. Such data are called multiple-record st data.

When each observation records the entire history of a subject, the data are called single-record st data.

In the single-record case, the ID variable is optional.

See [ST] stset.

standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the ob-

served number of deaths divided by the expected number of deaths. It is calculated using indirect

standardization: you take the population of the group of interest—say, by age, sex, and other fac-

tors—and calculate the expected number of deaths in each cell (expected being defined as the num-

ber of deaths that would have been observed if those in the cell had the same mortality as some other

population). You then take the ratio to compare the observed with the expected number of deaths. For

instance,

(1) (2) (1)×(2) (4)

Population Deaths per 100,000 Expected # Observed

Age of group in general pop. of deaths deaths

25–34 95,965 105.2 100.9 92

34–44 78,280 203.6 159.4 180

44–54 52,393 428.9 224.7 242

55–64 28,914 964.6 278.9 312

Total 763.9 826

SMR = 826/763.9 = 1.08

stratified model. A stratified survival model constrains regression coefficients to be equal across levels

of the stratification variable, while allowing other features of the model to vary across strata.

stratified test. A stratified test is performed separately for each stratum. The stratum-specific results are

then combined into an overall test statistic.

subhazard, cumulative subhazard, and subhazard ratio. In a competing-risks analysis, the hazard of

the subdistribution (or subhazard for short) for the event of interest (type 1) is defined formally as

ℎ1(𝑡) = lim𝛿→0 {𝑃(𝑡 < 𝑇 ≤ 𝑡 + 𝛿 and event type 1)| 𝑇 > 𝑡 or (𝑇 ≤ 𝑡 and not event type 1)
𝛿

}

Less formally, think of this hazard as that which generates failure events of interest while keeping

subjects who experience competing events “at risk” so that they can be adequately counted as not

having any chance of failing.

The cumulative subhazard 𝐻1(𝑡) is the integral of the subhazard function ℎ1(𝑡), from 0 (the onset

of risk) to 𝑡. The cumulative subhazard plays a very important role in competing-risks analysis. The
cumulative incidence function (CIF) is a direct function of the cumulative subhazard:

CIF1(𝑡) = 1 − exp{−𝐻1(𝑡)}

The subhazard ratio is the ratio of the subhazard function evaluated at two different values of the

covariates: ℎ1(𝑡|x)/ℎ1(𝑡|x0). The subhazard ratio is often called the relative subhazard, especially

when ℎ1(𝑡|x0) is the baseline subhazard function.

https://www.stata.com/manuals/ststset.pdf#ststset
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survival-time data. See st data.

survivor function. Also known as the survivorship function and the survival function, the survivor

function, 𝑆(𝑡), is 1) the probability of surviving beyond time 𝑡, or equivalently, 2) the probability
that there is no failure event prior to 𝑡, 3) the proportion of the population surviving to time 𝑡, or
equivalently, 4) the reverse cumulative distribution function of 𝑇, the time to the failure event: 𝑆(𝑡) =
Pr(𝑇 > 𝑡). Also see hazard.

thrashing. Subjects are said to thrash when they are censored and immediately reenter with different

covariates.

time-dependent covariates. See time-varying covariates.

time-independent covariates. See baseline covariates, time-independent covariates, time-invariant co-

variates, and constant covariates.

time-invariant covariates. See baseline covariates, time-independent covariates, time-invariant covari-

ates, and constant covariates.

time-varying covariates. Time-varying covariates appear in a survival model whose values vary over

time. The values of the covariates vary, not the effect. For instance, in a proportional hazards model,

the log hazard at time 𝑡 might be 𝑏 × age𝑡 + 𝑐 × treatment𝑡. Variable age might be time varying,

meaning that as the subject ages, the value of age changes, which correspondingly causes the hazard

to change. The effect 𝑏, however, remains constant.
Time-varying variables are either continuously varying or discretely varying.

In the continuously varying case, the value of the variable 𝑥 at time 𝑡 is 𝑥𝑡 = 𝑥0 + 𝑓(𝑡) or 𝑥𝑡 =
𝑥0 × 𝑓(𝑡), where 𝑓() is some function and often is the identity function, so that 𝑥𝑡 = 𝑥0 + 𝑡 or
𝑥𝑡 = 𝑥0 × 𝑡.
In the discretely varying case, the value of 𝑥 changes at certain times and often in no particular pattern:

idvar 𝑡0 𝑡 bp

1 0 5 150

1 5 7 130

1 7 9 135

In the above data, the value of bp is 150 over the period (0, 5 ], then 130 over (5, 7 ], and 135 over

(7, 9 ].
Also see external covariates and internal covariates.

truncation, left-truncation, and right-truncation. In survival analysis, truncation occurs when subjects

are observed only if their failure times fall within a certain observational period of a study. Censoring,

on the other hand, occurs when subjects are observed for the whole duration of a study, but the exact

times of their failures are not known; it is known only that their failures occurred within a certain time

span.

Left-truncation occurs when subjects come under observation only if their failure times exceed some

time 𝑡𝑙. It is only because they did not fail before 𝑡𝑙 that we even knew about their existence. Left-

truncation differs from left-censoring in that, in the censored case, we know that the subject failed

before time 𝑡𝑙, but we just do not know exactly when.

Imagine a study of patient survival after surgery, where patients cannot enter the sample until they

have had a post-surgical test. The patients’ survival times will be left-truncated. This is a “delayed

entry” problem, one common type of left-truncation.

https://www.stata.com/manuals/stglossary.pdf#stGlossaryst_data
https://www.stata.com/manuals/stglossary.pdf#stGlossaryhazard
https://www.stata.com/manuals/stglossary.pdf#stGlossarytime_varyingcov
https://www.stata.com/manuals/stglossary.pdf#stGlossarybaseline_covariates
https://www.stata.com/manuals/stglossary.pdf#stGlossarybaseline_covariates
https://www.stata.com/manuals/stglossary.pdf#stGlossarybaseline_covariates
https://www.stata.com/manuals/stglossary.pdf#stGlossarybaseline_covariates
https://www.stata.com/manuals/stglossary.pdf#stGlossaryexternal_covariates
https://www.stata.com/manuals/stglossary.pdf#stGlossaryinternal_covariates
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Right-truncation occurs when subjects come under observation only if their failure times do not ex-

ceed some time 𝑡𝑟. Right-truncated data typically occur in registries. For example, a cancer registry

includes only subjects who developed a cancer by a certain time, and thus survival data from this

registry will be right-truncated.

type I error and false-positive result. The type I error of a test is the error of rejecting the null hypothesis

when it is true. The probability of committing a type I error, significance level of a test, is often denoted

as 𝛼 in statistical literature. One traditionally used value for 𝛼 is 5%. Also see type II error and power.

type II error and false-negative result. The type II error of a test is the error of not rejecting the null

hypothesis when it is false. The probability of committing a type II error is often denoted as 𝛽 in

statistical literature. Commonly used values for 𝛽 are 20% or 10%. Also see type I error and power.

under observation. A subject is under observation when failure events, should they occur, would be

observed (and so recorded in the dataset). Being under observation does not mean that a subject is

necessarily at risk. Subjects usually come under observation before they are at risk. The statistical

concern is with periods when subjects are at risk but not under observation, even when the subject is

(later) known not to have failed during the hiatus.

In such cases, since failure events would not have been observed, the subject necessarily had to survive

the observational hiatus, and that leads to bias in statistical results unless the hiatus is accounted for

properly.

Entry time and exit time record when a subject first and last comes under observation, between which

there may be observational gaps, but usually there are not. There is only one entry time and one exit

time for each subject. Often, entry time corresponds to analysis time 𝑡 = 0, or before, and exit time

corresponds to the time of failure.

Delayed entry means that the entry time occurred after 𝑡 = 0.
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