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Description
spregress is the equivalent of regress for spatial data. spregress fits spatial autoregressive (SAR)

models, also known as simultaneous autoregressive models. If you have not read [SP] Intro 1–[SP] In-

tro 8, you should do so before using spregress.

To use spregress, your data must be Sp data. See [SP] Intro 3 for instructions on how to prepare

your data.

To specify spatial lags, you will need to have one or more spatial weighting matrices. See [SP] Intro 2

and [SP] spmatrix for an explanation of the types of weighting matrices and how to create them.

Quick start
Spatial autoregressive model of y on x1 and x2 with a spatial lag of y specified by the spatial weighting

matrix W using the GS2SLS estimator

spregress y x1 x2, gs2sls dvarlag(W)

Add a spatially lagged error term also specified by W
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W)

Add spatial lags of covariates x1 and x2
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add a higher-order spatial lag of y specified by another weighting matrix M
spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///

dvarlag(M)

Use the ML estimator and include spatial lags of y, x1, x2 and the error term specified by W
spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2)

Add an additional spatial lag of the covariates specified by the matrix M
spregress y x1 x2, ml dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///

ivarlag(M: x1 x2)

Same model fit by GS2SLS

spregress y x1 x2, gs2sls dvarlag(W) errorlag(W) ivarlag(W: x1 x2) ///
ivarlag(M: x1 x2)

Model fit by GS2SLS with spatial lags of y and of the error term and treating the errors as heteroskedastic

spregress y x1 x2, gs2sls heteroskedastic dvarlag(W) errorlag(W)
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Menu
Statistics > Spatial autoregressive models

Syntax
Generalized spatial two-stage least squares

spregress depvar [ indepvars ] [ if ] [ in ], gs2sls [ gs2sls options ]

Maximum likelihood

spregress depvar [ indepvars ] [ if ] [ in ], ml [ml options ]

gs2sls options Description

Model
∗ gs2sls use generalized spatial two-stage least-squares estimator

dvarlag(spmatname) spatially lagged dependent variable; repeatable

errorlag(spmatname) spatially lagged errors; repeatable

ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable

noconstant suppress constant term

heteroskedastic treat errors as heteroskedastic

force allow estimation when estimation sample is a subset of the
sample used to create the spatial weighting matrix

impower(#) order of instrumental-variable approximation

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/spspregress.pdf#spspregressSyntaxgs2sls_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/spspregress.pdf#spspregressSyntaxml_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/spspregress.pdf#spspregressOptionsforspregress,gs2slsdisplay_options
https://www.stata.com/manuals/spspregress.pdf#spspregressOptionsforspregress,gs2slsoptimopts
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ml options Description

Model
∗ ml use maximum likelihood estimator

dvarlag(spmatname) spatially lagged dependent variable; not repeatable

errorlag(spmatname) spatially lagged errors; not repeatable

ivarlag(spmatname : varlist) spatially lagged independent variables; repeatable

noconstant suppress constant term

constraints(constraints) apply specified linear constraints

force allow estimation when estimation sample is a subset of the

sample used to create the spatial weighting matrix

gridsearch(#) resolution of the initial-value search grid; seldom used

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗ You must specify either gs2sls or ml.
indepvars and varlist specified in ivarlag() may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for spregress, gs2sls

� � �
Model �

gs2sls requests that the generalized spatial two-stage least-squares estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent

variable. This option is repeatable to allow higher-order models. By default, no spatial lags of the

dependent variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. This

option is repeatable to allow higher-order models. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables

that define spatial lags of the variables. This option is repeatable to allow spatial lags created from

different matrices. By default, no spatial lags of the independent variables are included.

noconstant; see [R] Estimation options.

heteroskedastic specifies that the estimator treat the errors as heteroskedastic instead of homoskedas-
tic, which is the default; see Methods and formulas.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/spspregress.pdf#spspregressOptionsforspregress,mldisplay_options
https://www.stata.com/manuals/spspregress.pdf#spspregressOptionsforspregress,mlmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulas
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force requests that estimation be done when the estimation sample is a proper subset of the sample used

to create the spatial weighting matrices. The default is to refuse to fit the model. Weighting matrices

potentially connect all the spatial units. When the estimation sample is a subset of this space, the

spatial connections differ and spillover effects can be altered. In addition, the normalization of the

weighting matrix differs from what it would have been had the matrix been normalized over the

estimation sample. The better alternative to force is first to understand the spatial space of the

estimation sample and, if it is sensible, then create new weighting matrices for it. See [SP] spmatrix

and Missing values, dropped observations, and the W matrix in [SP] Intro 2.

impower(#) specifies the order of an instrumental-variable approximation used in fitting the model.

The derivation of the estimator involves a product of # matrices. Increasing # may improve the pre-

cision of the estimation and will not cause harm, but will require more computer time. The default is

impower(2). See Methods and formulas for additional details on impower(#).

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace, gradient, showstep, hessian,
showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and nonrtolerance;
see [M-5] optimize( ).

The following option is available with spregress, gs2sls but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for spregress, ml

� � �
Model �

ml requests that the maximum likelihood estimator be used.

dvarlag(spmatname) specifies a spatial weighting matrix that defines a spatial lag of the dependent

variable. Only one dvarlag() option may be specified. By default, no spatial lags of the dependent

variable are included.

errorlag(spmatname) specifies a spatial weighting matrix that defines a spatially lagged error. Only

one errorlag() option may be specified. By default, no spatially lagged errors are included.

ivarlag(spmatname : varlist) specifies a spatial weighting matrix and a list of independent variables

that define spatial lags of the variables. This option is repeatable to allow spatial lags created from

different matrices. By default, no spatial lags of the independent variables are included.

noconstant, constraints(constraints); see [R] Estimation options.

force requests that estimation be done when the estimation sample is a proper subset of the sample used

to create the spatial weighting matrices. The default is to refuse to fit the model. This is the same

force option described for use with spregress, gs2sls.

https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
https://www.stata.com/manuals/spintro2.pdf#spIntro2Remarksandexamplesforce
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulasimpower
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/m-5optimize.pdf#m-5optimize()
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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gridsearch(#) specifies the resolution of the initial-value search grid. The default is

gridsearch(0.1). You may specify any number between 0.001 and 0.1 inclusive.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim) and that are robust to nonnormal independent and identically distributed

(i.i.d.) disturbance (robust). See [R] vce option.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize.

The following option is available with spregress, ml but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Choosing weighting matrices and their normalization

Weighting matrices
Normalization of weighting matrices
Direct and indirect effects and normalization

Examples

Introduction
See [SP] Intro 1–[SP] Intro 8 for an overview of SARmodels. The introductions also describe, in detail

and with examples, how to prepare your data for analysis with spregress and the other Sp estimation

commands.

Datasets for SARmodels contain observations on geographical areas or other units; all that is required

is that there be some measure of distance that distinguishes which units are close to each other. The

spregress command models cross-sectional data. It requires each observation to represent one unique

spatial unit. For data with multiple observations on each unit—namely, panel data—see [SP] spxtregress.

To fit models with endogenous regressors for cross-sectional data, see [SP] spivregress.

spregress, gs2sls uses a generalized method of moments estimator known as generalized spa-

tial two-stage least squares (GS2SLS). spregress, ml uses a maximum likelihood (ML) estimator. For

normally distributed data, ml is theoretically more efficient than gs2sls, but when data are i.i.d.,

spregress, gs2sls produces results that are not appreciably different from those of spregress, ml.
See Methods and formulas.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/spintro1.pdf#spIntro1
https://www.stata.com/manuals/spintro8.pdf#spIntro8
https://www.stata.com/manuals/spspxtregress.pdf#spspxtregress
https://www.stata.com/manuals/spspivregress.pdf#spspivregress
https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulas


spregress — Spatial autoregressive models 6

The vce(robust) variance estimator can be used with spregress, ml to produce standard errors

that are robust to nonnormal i.i.d. errors; see [R] vce option. spregress, ml can produce inconsistent

estimates with data that are not identically distributed.

spregress, gs2sls has a heteroskedastic option that relaxes the assumption that errors are i.i.d.

With the heteroskedastic option, errors only need to be independent; see example 2.

Choosing weighting matrices and their normalization

Weighting matrices

It is important to understand that the choice of weighting matrices is part of your SAR model specifi-

cation.

The choice of weighting matrix should be based on the formulation of your research question. Does

it make sense to define spatial lags based on only neighboring areas? Or do you want to model effects

across distances that decrease with increasing distance? Or do you want to model spatial lags based on

some measure in your data, for example, the value of imports and exports between countries?

The Sp system has the spmatrix create command, which can create contiguity matrices and

inverse-distance matrices. For instance, typing

spmatrix create contiguity W

creates a symmetric weighting matrix, W, that has the same positive weight for contiguous spatial units
and, by default, a zero weight for all other units, with an option to include nonzero weights for second-

order neighbors (neighbors of neighbors). There are also Sp commands for creating custom weighting

matrices. See [SP] Intro 2 and [SP] spmatrix for details.

Both spregress, gs2sls and spregress, ml can fit models with multiple spatial lags of the inde-

pendent variables. You can specify multiple ivarlag() options with different spatial weighting matrices
for the same or different variables.

With the gs2sls estimator, you can also include dependent-variable spatial lags and autoregressive

error terms specified by two or more spatial weighting matrices. You do this by specifying multiple

dvarlag() options or multiple errorlag() options. Multiple weighting matrices can be viewed as

providing a “higher-order” approximation to the true dependent variable or error spatial dependence,

and they allow testing of the formulation of the spatial lag.

With the ml estimator, you can include only one dvarlag() and one errorlag(), but each can have
its own, possibly different, spatial weighting matrix.

Normalization of weighting matrices

spmatrix create by default normalizes the weighting matrix it creates by dividing the entries by

the absolute value of the largest eigenvalue of the matrix; this is the normalize(spectral) option.

The normalize(minmax) option scales the matrix using either the maximum of column sums or the

maximum of the row sums, whichever is smaller. The normalize(row) option scales each row of the

matrix by its row sum, so that each row sums to one.

You may have also created your own weighting matrix with good properties for the estimator. In this

case, you may want to leave the matrix unnormalized using the normalize(none) option.

What are the differences among the three normalizations?

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesex2
https://www.stata.com/manuals/spspmatrixcreate.pdf#spspmatrixcreate
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
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There are two reasons to normalize: interpretability of the spatial lag coefficients and estimability.

normalize(spectral) and normalize(minmax) produce matrices that differ from the original

only by a scalar multiple. This not true for normalize(row), so let’s discuss it first.

Row normalization, normalize(row), has a long history and is popular in applied work. Row nor-

malization can potentially multiply different rows by different scalars, and if it does so, that changes

the model specification given by the weighting matrix. For example, if you start with a contiguity ma-

trix, and the first row has two 1s and the second row has four 1s, then after row normalization, the first

row contains two halves and the second four quarters. This amounts to spreading the potential spillover

effects of each spatial unit equally across its neighbors, whereas the original unnormalized contiguity

matrix modeled equal potential spillover effects for each neighbor regardless of the number of neigh-

bors. normalize(row) also transforms a symmetric contiguity matrix into an asymmetric matrix. Row

normalization should be used when the spatial lags it specifies are appropriate for your research question

and when the lags of the original matrix are not.

When the unnormalized matrix has been formulated to match your research question, there is the

choice of normalize(spectral), normalize(minmax), or normalize(none). The choice affects

the interpretation of the spatial lag coefficients.

Because dependent-variable spatial lags enter the model as 𝜆Wy, covariate lags enter as 𝛾Wx, and

the autoregressive errors are modeled using 𝜌We, we would expect the spatial lag coefficient estimates
to scale inversely by the scale ofW. IfW is scaled by 𝑐 to becomeW/𝑐, then �̂� becomes 𝑐�̂�, ̂𝛾 becomes

𝑐 ̂𝛾, and ̂𝜌 becomes 𝑐 ̂𝜌.
For example, if an unnormalized matrix results in an estimation of ̂𝜌unnorm = 0.1, and if the matrix

is then scaled by 𝑐 = 5, the estimation using the normalized matrix would yield ̂𝜌norm = 0.5. So what

we want for the interpretation of the parameter estimate is a scaling where ̂𝜌norm is typically in the range

−1 to 1. Recall from the discussion in [SP] Intro 2 and [SP] Intro 7 that 𝜌 is not a true correlation, only

something like a correlation. There is no guarantee that the estimate for it will be between −1 and 1. In

an explosive model, the estimate will be outside this range.

The scaling factor 𝑐 from normalize(spectral) is always less than or equal to the scaling factor

from normalize(minmax). So for the same model run with different normalizations, minmax will result

in an estimate ̂𝜌minmax that is larger than ̂𝜌spectral, the estimate resulting from using spectral. So the

spectral normalization is more likely to produce estimates of 𝜌 in the range −1 to 1.

The second reason for normalization is estimability. The scaling from normalize(spectral) guar-

antees nonsingularity of certain terms in the model estimation; see Methods and formulas. The bigger

scaling of normalize(minmax), of course, also guarantees nonsingularity, but it is a bigger scaling than
necessary.

Row normalization also guarantees nonsingularity, but because it is not a scalar multiple of the unnor-

malized matrix, we cannot in general say how it will change the spatial lag coefficient estimates relative

to the estimates produced using the unnormalized matrix. Row normalization, as we said earlier, results

in a different model specification.

You may have created your own weighting matrix, and you know that based on its properties and the

form of the estimator that it will not yield singularities. In this case, you need not normalize. If an unnor-

malized matrix, however, causes a singularity in the estimation, you may get “wrong” estimation results,

that is, ones differing by other than a scale factor from those using a spectral or min–max normalization.

https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spintro7.pdf#spIntro7
https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulas
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spmatrix create and other Sp matrix commands use spectral normalization by default because it is

the smallest scaling that in general guarantees nonsingularity without changing the model specification

of the original matrix. However, normalize(spectral) is computationally expensive. It can take a

long time for large matrices. If this is a consideration, normalize(minmax) is faster to compute and

will yield results that are close to those of normalize(spectral).

Direct and indirect effects and normalization

Direct and indirect, also called spillover, effects were discussed in [SP] Intro 1 and [SP] Intro 2. In

example 1 below, we show how to get these estimates using the estat impact command.

The scaling property between the spectral and min–max normalizations and the spatial lag coefficient

estimates that we described in the previous section implies that the estimates of the direct and indirect

effects should be scale invariant. spregress, ml has this scaling property and gives scale-invariant ef-

fects. When there is no autoregressive error term, spregress, gs2sls also has this scaling property and
gives scale-invariant effects. When there is an autoregressive error term, however, the GS2SLS estimator

is only asymptotically scale invariant.

Practically speaking, this means when you use estat impact to look at the direct and indirect ef-

fects of the covariates after spregress, ml in all cases, or spregress, gs2sls with no errorlag(),
you will get results differing only by numerical precision whether you used normalize(spectral),
normalize(minmax), or an unnormalized matrix with sound numerical properties.

The GS2SLS estimator, however, is a nonlinear function of the weighting matrix when an autoregres-

sive error term is included. For this nonlinear GS2SLS estimator, models are well defined only if the

coefficient on the spatial lag of the dependent variable and the coefficient on the spatially lagged error

lie within certain intervals. Normalizing the weighting matrix by the spectral normalization or the row

normalization puts the estimates in these intervals when there are no higher-order lags. Because min–

max normalization is a close approximation to spectral normalization, the resulting estimates should be

close.

Again, practically speaking, this means that even though normalize(spectral) and

normalize(minmax) both simply multiply the original matrix by a scalar, and the scalars are

similar in size, estat impact may give slightly different estimates depending on the normalization for

the GS2SLS estimator with an autoregressive error term. This is especially the case in small samples, and

the differences will decrease as the sample size increases.

Of course, the normalize(row) normalization will yield different estimates of effects compared with
the other normalizations or with no normalization because row normalization results in a different model

specification.

In higher-order models with GS2SLS and autoregressive error terms, the estimator is a nonlinear func-

tion of multiple weighting matrices. The sets of spatial lag coefficients for which the models are well

defined are multidimensional regions, but the same normalizations are used, and the tradeoffs mentioned

above still apply.

https://www.stata.com/manuals/spintro1.pdf#spIntro1
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesimpact
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesNormalizationofweightingmatrices
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Examples

Example 1: A spatial autoregressive model
We want to model the homicide rate in counties in southern states of the United States.

homicide1990.dta contains hrate, the county-level homicide rate per year per 100,000 persons;

ln population, the logarithm of the county population; ln pdensity, the logarithm of the population

density; and gini, the Gini coefficient for the county, a measure of income inequality where larger val-
ues represent more inequality (Gini 1909). The data are an extract of the data originally used by Messner

et al. (2000); see Britt (1994) for a literature review of the topic.

We used spshape2dta to create homicide1990.dta and homicide1990 shp.dta. The latter file
contains the boundary coordinates for US southern counties. See [SP] Intro 4, [SP] Intro 7, [SP] sp-

shape2dta, and [SP] spset.

Because the analysis dataset and the Stata-formatted shapefile must be in our working directory to

spset the data, we first save both homicide1990.dta and homicide1990 shp.dta to our working

directory by using the copy command. We then load the data and type spset to see the Sp settings.

. copy https://www.stata-press.com/data/r19/homicide1990.dta .

. copy https://www.stata-press.com/data/r19/homicide1990_shp.dta .

. use homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. spset

Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta

Data: Cross sectional
Spatial-unit ID: _ID

Coordinates: _CX, _CY (planar)

We plot the homicide rate on a map of the counties by using the grmap command; see [SP] grmap.

Figure 1 is the result.

. grmap hrate

(1.30399e+01,6.42610e+01]
(8.2212200165,1.30399e+01]
(4.8036060333,8.2212200165]
[0.0000000000,4.8036060333]

Figure 1: Homicide rate in 1990 for southern US counties

https://www.stata.com/manuals/spintro4.pdf#spIntro4
https://www.stata.com/manuals/spintro7.pdf#spIntro7
https://www.stata.com/manuals/spspshape2dta.pdf#spspshape2dta
https://www.stata.com/manuals/spspshape2dta.pdf#spspshape2dta
https://www.stata.com/manuals/spspset.pdf#spspset
https://www.stata.com/manuals/spspset.pdf#spspset
https://www.stata.com/manuals/dcopy.pdf#dcopy
https://www.stata.com/manuals/spgrmap.pdf#spgrmap
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesfigure1
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The homicide rate appears to be spatially dependent because the high homicide-rate counties appear

to be clustered together. As described in [SP] Intro 7, we can fit an ordinary linear regression and test

whether the errors are spatially correlated using the Moran test.

To conduct the test, we need a spatial weighting matrix. We will create one that puts the same positive

weight on contiguous counties and a zero weight on all other counties—a matrix known as a contiguity

matrix. We will use the default spectral normalization for the matrix. See [SP] Intro 2, [SP] spmatrix

create, and Choosing weighting matrices and their normalization above for details. We type

. spmatrix create contiguity W

To create W, spmatrix used the coordinate data in homicide1990 shp.dta behind the scenes.

Now, we run regress and then estat moran.

. regress hrate
Source SS df MS Number of obs = 1,412

F(0, 1411) = 0.00
Model 0 0 . Prob > F = .

Residual 69908.59 1,411 49.5454217 R-squared = 0.0000
Adj R-squared = 0.0000

Total 69908.59 1,411 49.5454217 Root MSE = 7.0389

hrate Coefficient Std. err. t P>|t| [95% conf. interval]

_cons 9.549293 .1873201 50.98 0.000 9.181837 9.916749

. estat moran, errorlag(W)
Moran test for spatial dependence

H0: Error terms are i.i.d.
Errorlags: W

chi2(1) = 265.84
Prob > chi2 = 0.0000

The test reports that we can reject that the errors are i.i.d. and confirms our visual appraisal of the data.

To model the homicide rate hrate, we will use the GS2SLS estimator and specify the option

dvarlag(W) to fit a model with a spatial lag of hrate based on W.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 328.40

Prob > chi2 = 0.0000
Pseudo R2 = 0.1754

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .195714 .2654999 0.74 0.461 -.3246563 .7160843
ln_pdensity 1.060728 .2303736 4.60 0.000 .6092043 1.512252

gini 77.10293 5.330446 14.46 0.000 66.65544 87.55041
_cons -28.79865 2.945944 -9.78 0.000 -34.57259 -23.02471

W
hrate .2270154 .0607158 3.74 0.000 .1080146 .3460161

Wald test of spatial terms: chi2(1) = 13.98 Prob > chi2 = 0.0002

https://www.stata.com/manuals/spintro7.pdf#spIntro7
https://www.stata.com/manuals/spintro2.pdf#spIntro2
https://www.stata.com/manuals/spspmatrixcreate.pdf#spspmatrixcreate
https://www.stata.com/manuals/spspmatrixcreate.pdf#spspmatrixcreate
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesChoosingweightingmatricesandtheirnormalization
https://www.stata.com/manuals/spestatmoran.pdf#spestatmoran
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The estimated coefficient on the spatial lag of hrate is 0.23, indicating positive correlation between the

homicide rate in one county and the homicide rate in a neighboring county.

As we discussed in [SP] Intro 7 the coefficients cannot be interpreted as they are in standard regression

models. We can use estat impact to interpret results, but first we will illustrate how to fit other SAR

models.

We now include a spatial autoregressive error term by adding errorlag(W).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Estimating rho using 2SLS residuals:
Initial: GMM criterion = 16.837319
Alternative: GMM criterion = 10.842722
Rescale: GMM criterion = 1.1522691
Iteration 0: GMM criterion = 1.1522691
Iteration 1: GMM criterion = 1.1386586
Iteration 2: GMM criterion = 1.1386578
Iteration 3: GMM criterion = 1.1386578
Estimating rho using GS2SLS residuals:
Iteration 0: GMM criterion = .02771702
Iteration 1: GMM criterion = .0262056
Iteration 2: GMM criterion = .02606375
Iteration 3: GMM criterion = .02601873
Iteration 4: GMM criterion = .02601004
Iteration 5: GMM criterion = .02600789
Iteration 6: GMM criterion = .02600742
Iteration 7: GMM criterion = .02600731
Iteration 8: GMM criterion = .02600729
Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(4) = 276.72

Prob > chi2 = 0.0000
Pseudo R2 = 0.1736

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .1034997 .2810656 0.37 0.713 -.4473787 .6543781
ln_pdensity 1.081404 .2520505 4.29 0.000 .5873939 1.575414

gini 82.0687 5.658372 14.50 0.000 70.9785 93.1589
_cons -29.63033 3.070332 -9.65 0.000 -35.64807 -23.61259

W
hrate .1937419 .0654322 2.96 0.003 .0654972 .3219867

e.hrate .3555443 .0786465 4.52 0.000 .2014 .5096887

Wald test of spatial terms: chi2(2) = 226.21 Prob > chi2 = 0.0000
. estimates store gs2sls_model

Note that when an autoregressive error term is included, the estimation procedure becomes an iterative

generalized method of moments procedure.

https://www.stata.com/manuals/spintro7.pdf#spIntro7
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We keep the SAR error term e.hrate in our model and add terms representing spatial lags of the

independent variables by using ivarlag(W: . . .).

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 394.61

Prob > chi2 = 0.0000
Pseudo R2 = 0.1866

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.3489221 .3050009 -1.14 0.253 -.9467129 .2488687
ln_pdensity 1.210485 .3015442 4.01 0.000 .6194695 1.801501

gini 89.17773 6.454876 13.82 0.000 76.5264 101.8291
_cons -28.80191 3.178656 -9.06 0.000 -35.03196 -22.57186

W
ln_populat~n 1.918436 .4598247 4.17 0.000 1.017196 2.819676
ln_pdensity -1.260725 .5326521 -2.37 0.018 -2.304704 -.2167459

gini -43.4606 8.607378 -5.05 0.000 -60.33075 -26.59045
hrate .5071798 .1139532 4.45 0.000 .2838356 .730524

e.hrate -.3135187 .1396411 -2.25 0.025 -.5872103 -.0398271

Wald test of spatial terms: chi2(5) = 61.81 Prob > chi2 = 0.0000

The coefficients for the lagged variables and the autoregressive error term are significant.

We are often unsure which spatial weighting matrix should be used to compute spatial lags. Many

researchers use a spatial weighting matrix whose (𝑖, 𝑗)th element is the inverse of the distance between
units 𝑖 and 𝑗. This inverse-distance matrix has many nice properties and a long history in spatial analysis;
see [SP] spmatrix and Choosing weighting matrices and their normalization above.

With the GS2SLS estimator, we can include spatial lags using two spatial weighting matrices, in which

case wemight view them as together providing a “higher-order” approximation to the true spatial process.

We had in our model a spatial lag of the dependent variable using a contiguity matrix alone. Now, we

will include that and another lag of the dependent variable using an inverse-distance matrix.

We create the inverse-distance matrix M with the default spectral normalization and use spmatrix
dir to list our Sp matrices.

. spmatrix create idistance M

. spmatrix dir

Weighting matrix name N x N Type Normalization

M 1412 x 1412 idistance spectral
W 1412 x 1412 contiguity spectral

https://www.stata.com/manuals/spspmatrix.pdf#spspmatrix
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesChoosingweightingmatricesandtheirnormalization
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Now, we add dvarlag(M) to our model.

. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(W)
> ivarlag(W: ln_population ln_pdensity gini) dvarlag(M)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(8) = 1323.43

Prob > chi2 = 0.0000
Pseudo R2 = 0.1121

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.6245265 .2830847 -2.21 0.027 -1.179362 -.0696906
ln_pdensity 1.266527 .2831371 4.47 0.000 .7115888 1.821466

gini 69.30289 5.64501 12.28 0.000 58.23887 80.3669
_cons -19.77152 2.753498 -7.18 0.000 -25.16828 -14.37476

W
ln_populat~n 2.590823 .3806543 6.81 0.000 1.844754 3.336892
ln_pdensity -2.63202 .4261689 -6.18 0.000 -3.467296 -1.796744

gini -59.75958 6.438899 -9.28 0.000 -72.37959 -47.13957
hrate .9269411 .0492867 18.81 0.000 .830341 1.023541

e.hrate -.853115 .0914652 -9.33 0.000 -1.032384 -.6738465

M
hrate .2289787 .0755038 3.03 0.002 .080994 .3769634

Wald test of spatial terms: chi2(6) = 676.93 Prob > chi2 = 0.0000

The hrate lag specified by M is significant in addition to the hrate lag specified by W. We may well

want to include both in our final model.

We could repeat the process, fitting a model with errorlag(M) in addition to errorlag(W), and
another model with ivarlag(M: . . .) in addition to ivarlag(W: . . .). One issue is that we have “only”
𝑁 = 1412 spatial units (observations) in this example. To fit higher-order lags, one needs lots of spatial

units, so we need to exercise judgment just as in any other model-building process. In our final model,

we keep a single weighting matrix for each term. We use W for dvarlag() and ivarlag(), but M for

errorlag().
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. spregress hrate ln_population ln_pdensity gini, gs2sls dvarlag(W) errorlag(M)
> ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 357.06

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.0475582 .3295548 -0.14 0.885 -.6934737 .5983573
ln_pdensity .8989538 .3211524 2.80 0.005 .2695066 1.528401

gini 89.91969 6.409286 14.03 0.000 77.35772 102.4817
_cons -32.21599 3.590014 -8.97 0.000 -39.25229 -25.17969

W
ln_populat~n 2.679931 .5218152 5.14 0.000 1.657192 3.702669
ln_pdensity -2.468953 .6209688 -3.98 0.000 -3.686029 -1.251876

gini -57.38302 9.418108 -6.09 0.000 -75.84217 -38.92387
hrate .6818566 .1141573 5.97 0.000 .4581125 .9056007

M
e.hrate .9533048 .1324392 7.20 0.000 .6937289 1.212881

Wald test of spatial terms: chi2(5) = 169.23 Prob > chi2 = 0.0000
. estimates store model_ex1_last

In [SP] Intro 7, we cautioned that interpreting covariate effects based on their coefficient estimates is

difficult when there is a dependent-variable lag or an independent-variable lag in the model.

The spatial lag of hrate modifies the covariate effects. A change in gini in a county changes the

conditional mean of hrate in that county, and that change in hrate changes the conditional mean of

hrate in all contiguous counties. The change in hrate in these counties then affects hrate in all counties
contiguous to them, and so on, until all counties linked by a chain of contiguous counties are affected.

The effects of a covariate vary over the counties because of how the spatial lag of hrate modifies

the covariate effects. There are as many effects of a covariate as there are spatial units. As discussed

by LeSage and Pace (2009, sec. 2.7), we define the average of these spatial unit-level effects to be the

covariate effect.

The effect of gini on the conditionalmean of hrate in other counties is called an indirect, or spillover,
effect.

Because a spatial lag of gini is included in the model, there is a second indirect effect. The equation

for hrate includes a term for gini in neighboring counties, so a change in gini in one county changes

the conditional mean of hrate in neighboring counties.

The effect of gini on the conditional mean of hrate in the same county is called a direct, or own,

effect. The sum of the direct and indirect effects is called the total effect.

https://www.stata.com/manuals/spintro7.pdf#spIntro7
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We use estat impact to estimate the magnitude of these effects.

. estat impact
progress : 33% 67% 100%
Average impacts Number of obs = 1,412

Delta-Method
dy/dx std. err. z P>|z| [95% conf. interval]

direct
ln_populat~n .3149608 .3545409 0.89 0.374 -.3799266 1.009848
ln_pdensity .6448149 .3426066 1.88 0.060 -.0266817 1.316311

gini 90.45773 6.380729 14.18 0.000 77.95173 102.9637

indirect
ln_populat~n 5.856241 2.256561 2.60 0.009 1.433463 10.27902
ln_pdensity -4.105437 1.883462 -2.18 0.029 -7.796956 -.413919

gini 8.691593 19.58268 0.44 0.657 -29.68975 47.07294

total
ln_populat~n 6.171202 2.411894 2.56 0.011 1.443976 10.89843
ln_pdensity -3.460622 2.029163 -1.71 0.088 -7.437708 .5164636

gini 99.14932 21.03394 4.71 0.000 57.92356 140.3751

See the percentages at the top of the output? For large datasets, calculating standard errors of the effects

can be time consuming, so estat impact reports its progress as it does the computations.

The direct effect of gini is positive because the coefficient of gini is positive. The indirect effect of

gini due to the spatial lag of hrate is positive because the coefficient of the dependent-variable lag is

positive and the coefficient of gini is positive. The indirect effect of gini due to its spatial lag, however,
is negative because the coefficient of its lag is negative. estat impact shows that the two indirect effects
of gini sum to a net positive indirect effect, although the sum is not significantly different from 0.

Note that the normalization of W affects the size of the coefficient estimates for the lags of the covari-

ates. For the GS2SLS estimator, the normalization of W (except for the case of row normalization) does

not affect the asymptotic estimates of the covariate effects. In finite samples, this means that the normal-

ization of W may have a small effect on the estimates produced by estat impact—small compared with

the effect’s standard error. For the ML estimator, the normalization does not affect the size of estimated

effects shown by estat impact. See Choosing weighting matrices and their normalization.

Running estat impact after spregress is essential for proper interpretation of the model. The

output of estat impact can be read directly as the change in the metric of the dependent variable per

incremental change of the covariate averaged across all the spatial units (observations).

estat impact shows marginal (incremental change) effects. We might want to see the total effect of

a discrete change in a covariate. The expectation of the dependent variable is linear in the covariates in

this example. We did not fit polynomial or other nonlinear terms. We could just multiply the incremental

change by the discrete change of the covariate. Or, we could use the margins command, which works

for both linear and nonlinear terms; see [R] margins.

https://www.stata.com/manuals/spspregresspostestimation.pdf#spspregresspostestimationestatimpact
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesChoosingweightingmatricesandtheirnormalization
https://www.stata.com/manuals/rmargins.pdf#rmargins
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The median of gini is 0.39, its 25th percentile is 0.37, and its 75th percentile is 0.41. So it is reason-

able to ask how a change of ± 0.02 in the Gini coefficient affects the homicide rate. Here’s how to get

the answer by using margins:

. margins, at(gini = generate(gini - 0.02)) at(gini = generate(gini))
> at(gini = generate(gini + 0.02))
Predictive margins Number of obs = 1,412
Expression: Reduced-form mean, predict()
1._at: gini = gini - 0.02
2._at: gini = gini
3._at: gini = gini + 0.02

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 2.550868 2.651383 0.96 0.336 -2.645746 7.747482
2 4.533855 2.584986 1.75 0.079 -.5326254 9.600334
3 6.516841 2.586198 2.52 0.012 1.447986 11.5857

A change of ± 0.02 in the Gini coefficient causes the homicide rate to change by roughly ± 2.0 per

100,000 persons per year.

The computations that margins must do to calculate standard errors can sometimes be time consum-

ing. Time will depend on the complexity of the spatial model and the number of spatial units in the data.

You may want to fit your model with a subsample of your data, run margins, and extrapolate to estimate
the time required to run margins on the full sample. See [P] timer and [P] rmsg.

https://www.stata.com/manuals/ptimer.pdf#ptimer
https://www.stata.com/manuals/prmsg.pdf#prmsg
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Example 2: spregress, gs2sls heteroskedastic
The spregress, gs2sls command has a heteroskedastic option that requires the errors to be

independent but not necessarily identically distributed. Practically speaking, this option causes the esti-

mates of the spatial autoregressive error correlations and the standard errors to change. In models without

spatially autoregressive errors, only standard errors will change. See Methods and formulas.

If we add the heteroskedastic option to the last model we fit in example 1, we get

. spregress hrate ln_population ln_pdensity gini, gs2sls heteroskedastic
> dvarlag(W) errorlag(M) ivarlag(W: ln_population ln_pdensity gini)

(1412 observations)
(1412 observations (places) used)
(weighting matrices define 1412 places)
(output omitted )

Spatial autoregressive model Number of obs = 1,412
GS2SLS estimates Wald chi2(7) = 248.74

Prob > chi2 = 0.0000
Pseudo R2 = 0.1241

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n -.0475582 .3545931 -0.13 0.893 -.7425479 .6474315
ln_pdensity .8989538 .4016155 2.24 0.025 .1118019 1.686106

gini 89.91969 10.71501 8.39 0.000 68.91866 110.9207
_cons -32.21599 5.013344 -6.43 0.000 -42.04197 -22.39002

W
ln_populat~n 2.679931 .5247129 5.11 0.000 1.651512 3.708349
ln_pdensity -2.468953 .6786844 -3.64 0.000 -3.79915 -1.138756

gini -57.38302 9.719208 -5.90 0.000 -76.43232 -38.33372
hrate .6818566 .13258 5.14 0.000 .4220047 .9417085

M
e.hrate .9614507 .1554489 6.18 0.000 .6567764 1.266125

Wald test of spatial terms: chi2(5) = 156.95 Prob > chi2 = 0.0000
. estimates store heterosk_model

https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulas
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesex1
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We used estimates store to store the results of the earlier model, and we stored this model, too.

We can now use estimates table to display coefficient estimates with their standard errors side by

side. See [R] estimates store and [R] estimates table.

. estimates table model_ex1_last heterosk_model, b(%6.3f) se(%6.3f)

Variable model~t heter~l

hrate
ln_populat~n -0.048 -0.048

0.330 0.355
ln_pdensity 0.899 0.899

0.321 0.402
gini 89.920 89.920

6.409 10.715
_cons -32.216 -32.216

3.590 5.013

W
ln_populat~n 2.680 2.680

0.522 0.525
ln_pdensity -2.469 -2.469

0.621 0.679
gini -57.383 -57.383

9.418 9.719
hrate 0.682 0.682

0.114 0.133

M
e.hrate 0.953 0.961

0.132 0.155

Legend: b/se

We see that standard errors are larger, especially those for the direct-effect coefficients of the covariates.

We also see that the estimate of 𝜌, the SAR error correlation labeled as e.hrate, differs between the two
estimators.

Example 3: spregress, ml
SAR models can be fit using ML estimation. Here’s the second model we fit in example 1 estimated

using ml in place of gs2sls.

. spregress hrate ln_population ln_pdensity gini, ml dvarlag(W) errorlag(W)
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Performing grid search ... finished
Optimizing concentrated log likelihood:
Iteration 0: Log likelihood = -4557.201
Iteration 1: Log likelihood = -4556.763
Iteration 2: Log likelihood = -4556.7539
Iteration 3: Log likelihood = -4556.7539
Optimizing unconcentrated log likelihood:
Iteration 0: Log likelihood = -4556.7539
Iteration 1: Log likelihood = -4556.7539 (backed up)

https://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
https://www.stata.com/manuals/restimatestable.pdf#restimatestable
https://www.stata.com/manuals/spspregress.pdf#spspregressRemarksandexamplesex1
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Spatial autoregressive model Number of obs = 1,412
Maximum likelihood estimates Wald chi2(4) = 240.21

Prob > chi2 = 0.0000
Log likelihood = -4556.7539 Pseudo R2 = 0.1590

hrate Coefficient Std. err. z P>|z| [95% conf. interval]

hrate
ln_populat~n .5268248 .3038838 1.73 0.083 -.0687765 1.122426
ln_pdensity .5269135 .3136227 1.68 0.093 -.0877757 1.141603

gini 91.44471 6.263932 14.60 0.000 79.16763 103.7218
_cons -32.8348 3.205075 -10.24 0.000 -39.11663 -26.55297

W
hrate -.1850846 .1218453 -1.52 0.129 -.4238971 .0537279

e.hrate .6244211 .0897639 6.96 0.000 .4484871 .8003551

var(e.hrate) 34.79054 1.599235 31.79315 38.07052

Wald test of spatial terms: chi2(2) = 227.84 Prob > chi2 = 0.0000
. estimates store ml_model

We stored the estimation results with estimates store, as we did with the same model fit with

gs2sls, and now we use estimates table to compare coefficient estimates and their standard errors.

. estimates table gs2sls_model ml_model, b(%6.3f) se(%6.3f)

Variable gs2sl~l ml_mo~l

hrate
ln_populat~n 0.103 0.527

0.281 0.304
ln_pdensity 1.081 0.527

0.252 0.314
gini 82.069 91.445

5.658 6.264
_cons -29.630 -32.835

3.070 3.205

W
hrate 0.194 -0.185

0.065 0.122
e.hrate 0.356 0.624

0.079 0.090

var(e.hrate) 34.791
1.599

Legend: b/se

There are meaningful differences in the results. The coefficient of ln pdensity was significant in the

GS2SLS model but is nonsignificant in the ML model. The coefficient estimates for gini, however, are
similar, as are their standard errors. The coefficient of the lag of hrate becomes negative in the ML

model, and the SAR error correlation increases from 𝜌 = 0.36 to 𝜌 = 0.62.

We note that the ML estimator is not consistent under heteroskedasticity; for consistency, the error

distribution needs to be i.i.d., although it need not be normal. Heteroskedasticity may be the reason why

the estimates differ as they do. See Arraiz et al. (2010).
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Stored results
spregress, gs2sls stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(df m) model degrees of freedom

e(df c) degrees of freedom for test of spatial terms

e(iterations) number of generalized method of moments iterations

e(iterations 2sls) number of two-stage least-squares iterations

e(rank) rank of e(V)
e(r2 p) pseudo-𝑅2

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for test of spatial terms

e(p) 𝑝-value for model test
e(p c) 𝑝-value for test of spatial terms
e(converged) 1 if generalized method of moments converged, 0 otherwise

e(converged 2sls) 1 if two-stage least-squares converged, 0 otherwise

Macros

e(cmd) spregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(indeps) names of independent variables

e(idvar) name of ID variable

e(estimator) gs2sls
e(title) title in estimation output

e(constant) hasconstant or noconstant
e(exogr) exogenous regressors

e(dlmat) names of spatial weighting matrices applied to depvar

e(elmat) names of spatial weighting matrices applied to errors

e(het) heteroskedastic or homoskedastic
e(chi2type) Wald; type of model 𝜒2 test

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(delta 2sls) two-stage least-squares estimates of coefficients in spatial lag equation

e(rho 2sls) generalized method of moments estimates of coefficients in spatial error equation

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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spregress, ml stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(df m) model degrees of freedom

e(df c) degrees of freedom for test of spatial terms

e(ll) log likelihood

e(iterations) number of maximum log-likelihood estimation iterations

e(rank) rank of e(V)
e(r2 p) pseudo-𝑅2

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for test of spatial terms

e(p) 𝑝-value for model test
e(p c) 𝑝-value for test of spatial terms
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) spregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(indeps) names of independent variables

e(idvar) name of ID variable

e(estimator) ml
e(title) title in estimation output

e(constant) hasconstant or noconstant
e(dlmat) name of spatial weighting matrix applied to depvar

e(elmat) name of spatial weighting matrix applied to errors

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(ml method) type of ml method

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(Hessian) Hessian matrix

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
SARmodels date back to the works of Whittle (1954) and Cliff and Ord (1973, 1981). Cressie (1993),

LeSage and Pace (2009), and Waller and Gotway (2004) provide textbook introductions. Spatial models

have been applied in a variety of disciplines, such as criminology, demography, economics, epidemiol-

ogy, political science, and public health. See Darmofal (2015), Waller and Gotway (2004), Kelejian and

Prucha (2010), Drukker, Egger, and Prucha (2013), and Lee, Liu, and Lin (2010) for examples in eco-

nomics, social science, and public health, including examples of nongeographic models such as social

interactions and social networks.

The GS2SLS estimator was derived by Kelejian and Prucha (1998, 1999, 2010) and extended by Arraiz

et al. (2010) and Drukker, Egger, and Prucha (2013).

The formulas for the GS2SLS without higher-order spatial weighting matrices were published in

Drukker, Prucha, and Raciborski (2013). For the higher-order models, spregress, gs2sls implements

the estimator derived in Badinger and Egger (2011) and Drukker, Egger, and Prucha (2023).

The properties of the ML estimator were proven by Lee (2004), which also provides the formulas for

the robust estimator of the VCE.

Methods and formulas are presented under the following headings:

Model
GS2SLS estimator

2SLS estimator of 𝛿
GMM estimator of ρ based on 2SLS residuals
GS2SLS estimator of 𝛿
Efficient GMM estimator of ρ based on GS2SLS residuals

ML estimator
Log-likelihood function

Pseudo-R2

Model
We consider a cross-sectional spatial autoregressive model with autoregressive disturbances (SARAR),

allowing for higher-order spatial dependence in the dependent variable, exogenous independent vari-

ables, and spatial errors. The model is

y =
𝐾

∑
𝑘=1

𝛽𝑘x𝑘 +
𝑃

∑
𝑝=1

𝛾𝑝W𝑝 x𝑝 +
𝑅

∑
𝑟=1

𝜆𝑟W𝑟 y+ u

u =
𝑆

∑
𝑠=1

𝜌𝑠M𝑠u+ ε

(1)

where

y is an 𝑛 × 1 vector of observations on the dependent variable;

x𝑘 is an 𝑛 × 1 vector of observations on the exogenous variable; 𝛽𝑘 is the corresponding scalar

parameter;

W𝑝,W𝑟, andM𝑠 are 𝑛 × 𝑛 spatial weighting matrices with 0 diagonal elements;

W𝑝 x𝑝,W𝑟 y, andM𝑠u are𝑛×1 vectors typically referred to as spatial lags for the exogenous variable,

dependent variable, and error term; 𝛾𝑝, 𝜆𝑟, and 𝜌𝑠 are scalar parameters; and

ε is an 𝑛 × 1 vector of innovations (i.i.d. disturbances).
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The model in (1) is frequently referred to as a higher-order spatial autoregressive model with spatial

autoregressive disturbances, or namely, a SARAR(𝑅, 𝑆) model.
The spatial weighting matrices W𝑝, W𝑟, and M𝑠 are assumed to be known and nonstochastic. See

[SP] Intro 2 and Darmofal (2015, chap. 2) for an introduction to spatial weighting matrices, and see

Kelejian and Prucha (2010) for a technical discussion of how normalization affects parameter definition.

The scalar parameters 𝛾𝑝 and 𝜆𝑟 measure the degree to which the dependent variable depends on its

neighboring covariate’s values and outcomes. See example 1 and LeSage and Pace (2009, sec. 2.7) for

discussions of effect estimation.

The innovations ε are assumed to be i.i.d. or independent but heteroskedastically distributed, where
the heteroskedasticity is of unknown form. The errors u are spatially autoregressive.

The GS2SLS estimator produces consistent estimates in both cases when the heteroskedastic option
is specified. For the first-order SARAR model, see Kelejian and Prucha (1998, 1999, 2010), Arraiz et al.

(2010), and Drukker, Egger, and Prucha (2013) for formal results and discussions; for the higher-order

SARAR(𝑅, 𝑆) model, see Badinger and Egger (2011) for formal results. TheML estimator is consistent in

the i.i.d. case for the SARAR(1, 1) model but generally not consistent in the heteroskedastic case. See Lee
(2004) for some results for the ML estimator; see Arraiz et al. (2010) for evidence that the ML estimator

does not produce consistent estimates in the heteroskedastic case.

The GS2SLS estimator can fit the SARAR(𝑅, 𝑆) model, whereas the ML estimator can only fit the

SARAR(1, 1) model.

GS2SLS estimator
In this section, we give a detailed description of the computations performed by spregress, gs2sls.

For the SARAR(1, 1) model, spregress, gs2sls implements the estimator described in Kelejian and

Prucha (2010), Arraiz et al. (2010), and Drukker, Egger, and Prucha (2013); for the SARAR(𝑅, 𝑆) model,
spregress, gs2sls implements the estimator described in Badinger and Egger (2011). We will de-

scribe the GS2SLS estimator for the SARAR(𝑅, 𝑆) model, which generalizes the first-order SARARmodel.

Let’s first rewrite (1) in a compact form:

y = X𝛽 + X𝛾 + Y𝜆 + u = Z𝛿 + u

u = Uρ + ε
(2)

where

X = [x𝑘]𝑘=1,...,𝐾 is an 𝑛 × 𝐾 matrix of exogenous covariates;

X = [W𝑝 x𝑝]
𝑝=1,...,𝑃

is an 𝑛 × 𝑃 matrix of spatial lags for the exogenous covariates;

Y = [W𝑟 y]𝑟=1,...,𝑅 is an 𝑛 × 𝑅 matrix of spatial lags for the dependent variables;

U = [M𝑠u]𝑠=1,...,𝑆 is an 𝑛 × 𝑆 matrix of spatial lags for the error term;

Z = [X,X,Y] is an 𝑛 × (𝐾 + 𝑃 + 𝑅) matrix;
𝛽, 𝛾, 𝜆, and 𝜌 denote the 𝐾 × 1, 𝑃 × 1, 𝑅 × 1, and 𝑆 × 1 vectors of coefficients corresponding to X,

X, Y, and U, respectively; and

𝛿 = (𝛽′, 𝛾′, 𝜆′)′ is a (𝐾 + 𝑃 + 𝑅) × 1 vector of coefficients for Z.

In the following, we review the two-stage least-squares (2SLS), generalized spatial two-stage least-

squares (GS2SLS), and GMM estimation approaches as discussed in Badinger and Egger (2011).

https://www.stata.com/manuals/spintro2.pdf#spIntro2
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2SLS estimator of δ

In the first step, we apply 2SLS to (2) using an instrument matrixH1 to estimate 𝛿. The 2SLS estimator
of 𝛿—say, ̃δ—is defined as

̃δ = (Z̃′Z)
−1
Z̃′y

where Z̃ = PH1
Z and PH1

= H1 (H′
1H1)−1

H′
1. The 2SLS estimator ̃δ depends on the instrument matrix

H1. Let Xf denote all the exogenous regressors; that is, Xf = [X,X] in our case. The instrument matrix
H1 contains the linearly independent columns in

H1 = [Xf,W1Xf, . . . ,W𝑞Xf]

where W1 ≡ {𝑊𝑟}𝑟=1,...,𝑅 denotes all the spatial weighting matrices applied to the dependent vari-

able, andW𝑞 ≡ {W𝑗1
W𝑗2

. . .W𝑗𝑞
}

𝑗1,𝑗2,...,𝑗𝑞=1,...,𝑅
denotes the product of 𝑞 matrices from 𝑊 1 in any

possible permutation order.

The impower(#) option specifies 𝑞, the number of the power in W𝑞. The default is impower(2).
Increasing 𝑞 may improve the precision of the estimation of 𝛿.

We now illustrate the construction of H1 with an example. Suppose we use two spatial weighting

matrices W1 and W2 to generate the spatial lags for the dependent variable. So W1 = (W1,W2). If
we have 𝑞 = 2, then W2 = (W1W1,W1W2,W2W1,W2W2). Plug W1 and W2 into the definition

of H1, and the instrument matrix H1 in this special case contains the linear independent columns in the

following matrix:

H1 = [Xf,W1Xf,W2Xf,W1W1Xf,W1W2Xf,W2W1Xf,W2W2Xf]

GMM estimator of ρ based on 2SLS residuals

The initial GMM estimates of ρ solve the sample equivalent of the population moment conditions

(1/𝑁) 𝐸(ε′A𝑠ε) = 0
(1/𝑁) 𝐸(ε′B𝑠ε) = 0 for 𝑠 ∈ {1, . . . , 𝑆}

where A𝑠 = M𝑠 and B𝑠 = M′
𝑠M𝑠 − diag(M′

𝑠M𝑠). See the estimator derived in Badinger and Egger

(2011) and Drukker, Egger, and Prucha (2023) for details.

GS2SLS estimator of δ

The GS2SLS estimator of 𝛿 is based on the spatially Cochrane–Orcutt-transformed model.

y𝑛𝑡 = Z∗(𝜌) 𝛿 + ε (3)

where y𝑛𝑡 = (I𝑛 − ∑𝑆
𝑠=1 𝜌𝑠M𝑠)y, Z∗(𝜌) = (I𝑛 − ∑𝑆

𝑠=1 𝜌𝑠M𝑠)Z, and I𝑛 is an 𝑛 × 𝑛 identity matrix.

Now, we apply the 2SLS estimator to (3) by using an instrument matrix H2 and replacing ρ with ρ̃.

The GS2SLS estimator of 𝛿—say, ̂𝛿—is defined as

̂𝛿 = {Ẑ∗( ̃ρ)′
Z∗( ̃ρ)}

−1
Ẑ∗(ρ̃)′

y∗(ρ̃)

https://www.stata.com/manuals/spspregress.pdf#spspregressMethodsandformulaseq2
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where

y∗(ρ̃) = (I𝑛 − ∑𝑆
𝑠=1 𝜌𝑠M𝑠)y,

Z∗(ρ̃) = (I𝑛 − ∑𝑆
𝑠=1 𝜌𝑠M𝑠)Z,

Ẑ∗(ρ̃) = PH2
Z∗(ρ̃), and

PH2
= H2 (H′

2H2)−1
H′

2.

The instrument matrix H2 contains the linearly independent columns in

H2 = [H1,M1H1, . . . ,MSH1]

Efficient GMM estimator of ρ based on GS2SLS residuals

The form of the efficient GMM weighting matrix is given in Badinger and Egger (2011) and Drukker,

Egger, and Prucha (2023). The matrix has one form in the default homoskedastic case and another in

the heteroskedastic case. The form of the matrix causes the estimates of spatially autoregressive error

correlations and the standard errors to differ when the heteroskedastic option is specified.

ML estimator
We implement a quasimaximum likelihood (QML) estimator for the first-order SARARmodel. We can

write SARAR(1, 1) [see (1)] as

y = X𝛽 + X𝛾 + 𝜆Wy+ u = Xf𝜁 + 𝜆Wy+ u

u = 𝜌Mu+ ε
(4)

where

Xf = [X,X] is an 𝑛 × 𝐿 matrix containing exogenous covariates and spatial lags for the exogenous

variables, with 𝐿 = 𝐾 + 𝑃;
𝜁 = (𝛽′, 𝛾′)′ is an 𝐿 × 1 vector of coefficients;

W andM are 𝑛 × 𝑛 spatial weighting matrices with 0 diagonal elements; and

𝜆 and 𝜌 are scalar parameters.

Log-likelihood function

We give the log-likelihood function assuming that ε ∼ 𝑁(0, 𝜎2I𝑛). Lee (2004) gives formal results
on the consistency and asymptotic normality of the QML estimator when the innovations are i.i.d. but not

necessarily normally distributed. Violations of the assumption that the innovations are i.i.d. can cause

the QML estimator to produce inconsistent results.

The reduced form of (4) is

y = (I𝑛 − 𝜆W)−1Xf 𝜁 + (I𝑛 − 𝜆W)−1(I𝑛 − 𝜌M)−1ε

The unconcentrated log-likelihood function is

ln𝐿(y | 𝜁, 𝜆, 𝜌, 𝜎2) = −𝑛
2
ln(2𝜋) − 𝑛

2
ln(𝜎2) + ln||I𝑛 − 𝜆W|| + ln||I𝑛 − 𝜌M||

− 1
2𝜎2 {(I𝑛 − 𝜆W)y− Xf 𝜁}′ (I𝑛 − 𝜌M)′(I𝑛 − 𝜌M) {(I𝑛 − 𝜆W)y− Xf 𝜁}

(5)
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We can concentrate the log-likelihood function by taking first-order derivatives with respect to 𝜁 and
𝜎2 in (5) and setting them to 0, yielding the maximizers

̂𝜁(𝜆, 𝜌) = {X′
f(I𝑛 − 𝜌M)′(I𝑛 − 𝜌M)Xf}

−1
X′

f(I𝑛 − 𝜌M)′(I𝑛 − 𝜌M)(I𝑛 − 𝜆W)y

𝜎2(𝜆, 𝜌) = 1
𝑛

{(I𝑛 − 𝜆W)y− Xf
̂𝜁(𝜆, 𝜌)}

′
(I𝑛 − 𝜌M)′(I𝑛 − 𝜌M)

× {(I𝑛 − 𝜆W)y− Xf
̂𝜁(𝜆, 𝜌)}

Substituting ̂𝜁(𝜆, 𝜌) and 𝜎2(𝜆, 𝜌) into the log-likelihood function in (5), we have the concentrated

log-likelihood function

ln𝐿𝑐(y | 𝜆, 𝜌) = −𝑛
2

{ ln(2𝜋) + 1} − 𝑛
2
ln{𝜎2(𝜆, 𝜌)} + ln ||I𝑛 − 𝜆W|| + ln ||I𝑛 − 𝜌M||

The QML estimates for �̂� and ̂𝜌 can be computed bymaximizing the concentrated log likelihood. Then,
we can calculate the QML estimates for 𝜁 and 𝜎2 as ̂𝜁(�̂�, ̂𝜌) and 𝜎2(�̂�, ̂𝜌).

spregress, ml uses a grid search to find reasonable initial values for 𝜆 and 𝜌.
The formula for the robust VCE is given in Lee (2004).

Pseudo-R2

The pseudo-𝑅2 is calculated as {corr(𝑦, ̂𝑦)}2, where ̂𝑦 is the reduced-form prediction of 𝑦.
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