spgenerate — Generate variables containing spatial lags

Description

spgenerate creates new variables containing \(Wx \). These are the same spatial lag variables that you include in models that you fit with the Sp estimation commands.

Quick start

Create variable \(x_nearby \) equal to \(Wc*x \), the spatial lag of \(x \) using spatial weighting matrix \(Wc \)

\[\text{spgenerate } x_nearby = Wc*x \]

Menu

Statistics > Spatial autoregressive models

Syntax

\[\text{spgenerate } [\text{type}] \ newvar = spmatname*varname [\text{if}] [\text{in}] \]

Remarks and examples

Remarks are presented under the following headings:

Use with Sp data
Use with other datasets

Use with Sp data

The \(Wx \) variables that spgenerate creates are literally the variables that the Sp estimation commands include in the models when \(x \) is not the dependent variable. Nonetheless, do not type

\[. \text{spmatrix create contiguity } W \]
\[. \text{spgenerate } Wcollege = W*college \]
\[. \text{spregress unemployment college } Wcollege, \text{ gs2sls} \]

Instead, type

\[. \text{spmatrix create contiguity } W \]
\[. \text{spregress unemployment college, gs2sls ivarlag}(W:\text{college}) \]
spregress will report the same result either way because **college** is an exogenous variable. But some postestimation commands will produce incorrect results because they will not know that \(W_{\text{college}} = W \ast \text{college} \).

You can use \(W_{\text{college}} \) after fitting models, however, to better understand results.

In an example in *Fitting models with a spatial lag of independent variables* of [SP] **Intro 7**, we fit the model

```stata
. use texas_ue
. spmatrix create contiguity W
. spregress unemployment college, gs2sls ivarlag(W:college)
(254 observations)
(254 observations (places) used)
(weighting matrix defines 254 places)
Spatial autoregressive model
GS2SLS estimates
Number of obs = 254
Wald chi2(2) = 81.13
Prob > chi2 = 0.0000
Pseudo R2 = 0.2421

| Variable   | Coefficient | Std. err. | z    | P>|z| | [95% conf. interval] |
|------------|-------------|-----------|------|-----|----------------------|
| unemployment | -.0779977   | .0138127  | -5.65| 0.000 | -.1050695 -.0509245 |
| college     | 7.424453    | .3212299  | 23.11| 0.000 | 6.794854  8.054053  |
| _cons       |             |           |      |       |                      |
W
| college     | -.0823959   | .0191586  | -4.30| 0.000 | -.1199461 -.0448458 |
| _cons       |             |           |      |       |                      |
```

Matrix \(W \) is the contiguity matrix for first-order neighbors.

If \(W \ast \text{college} \) is something of a mystery to you, you can use **spgenerate** to create the variable and explore it. Type

```
. spgenerate Wcollege = W*college
```

In this example, variables **college** and \(W_{\text{college}} \) have similar summary statistics. They usually do.

```stata
. summarize unemployment college Wcollege

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unemployment</td>
<td>254</td>
<td>4.731102</td>
<td>1.716514</td>
<td>1.5</td>
<td>12.4</td>
</tr>
<tr>
<td>college</td>
<td>254</td>
<td>17.95906</td>
<td>7.355919</td>
<td>2.6</td>
<td>49.4</td>
</tr>
<tr>
<td>Wcollege</td>
<td>254</td>
<td>15.68765</td>
<td>5.303385</td>
<td>1.279117</td>
<td>36.43961</td>
</tr>
</tbody>
</table>
```

It turns out that variables **college** and \(W_{\text{college}} \) have a surprisingly low correlation, which is not typical:

```
. correlate unemployment college Wcollege
(obs=254)

<table>
<thead>
<tr>
<th></th>
<th>unemployment</th>
<th>college</th>
<th>Wcollege</th>
</tr>
</thead>
<tbody>
<tr>
<td>unemployment</td>
<td>1.0000</td>
<td>-0.4323</td>
<td>-0.3833</td>
</tr>
<tr>
<td>college</td>
<td>-0.4323</td>
<td>1.0000</td>
<td>0.3852</td>
</tr>
<tr>
<td>Wcollege</td>
<td>-0.3833</td>
<td>0.3852</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```
You can use \(W_{\text{college}} \) to assess practical significance. We know from the regression output that the coefficient on \(W_{\text{college}} \) is \(-0.0824\) and statistically significant. Is \(-0.0824\) practically significant? From the `summarize` output, we know that the mean of \(W_{\text{college}} \) is 15.69. Thus at its average, \(W_{\text{college}} \) is contributing \(-0.0824 \times 15.69 = -1.29\) to unemployment, which itself has mean 4.73.

Use with other datasets

Consider another analysis that has nothing to do with the spatial analyses discussed in this manual. You are fitting a logistic regression model using `outcome.dta`. The dataset contains observations on thousands of people whom you call subjects. It has lots of variables, too, among which is \(fips \), the county code in which each subject resides. You want to include the county unemployment rate as an exogenous variable in your model, but `outcome.dta` does not have that variable.

Obtaining unemployment would be easy enough if you had another dataset containing it, and you do. You have `ue_texas.dta`, the Sp dataset you used to fit the spatial model above. It is irrelevant that the dataset is spatial; you just want to borrow its county unemployment variable. You could type

```
. use texas_ue, clear
. keep fips unemployment
. save unemploymentvar
. use outcome, clear
. sort fips
. merge m:1 fips using unemploymentvar, keep(master)
. erase unemploymentvar.dta
. logistic outcome ... unemployment ...
```

You had to perform an \(m:1 \) merge because `outcome.dta` might contain multiple subjects living in the same county. You had to `keep(master)` because there might be some counties in which no one in the data lived. None of that bothers you—you just want the unemployment for the county in which each subject resides, and now you have it, and you fit your model.

What you may not know is that you can include spatial lags of unemployment as an exogenous variable in your logistic model and be on firm statistical ground. A spatial lag is \(W_{\text{unemployment}} \), and \(W \) is fixed and unemployment is exogenous in your logistic model. To do that, you would type

```
. use texas_ue, clear
. spmatrix create contiguity W
. spgenerate Wunemployment = W*unemployment
. keep fips unemployment Wunemployment
. save unemploymentvar
. use outcome, clear
. sort fips
. merge m:1 fips using unemploymentvar, keep(master)
. erase unemploymentvar.dta
. logistic outcome ... unemployment Wunemployment ...
```

Also see

[SP] **Intro** — Introduction to spatial data and SAR models

[SP] **spmatrix create** — Create standard weighting matrices

[SP] **spregress** — Spatial autoregressive models