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Description
The methods and formulas for the gsem command are presented below.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Families of distributions

The Bernoulli family
The beta family
The binomial family
The ordinal family
The multinomial family
The Poisson family
The negative binomial family
The Gaussian family
Reliability
Point mass

Link functions
The logit link
The probit link
The complementary log–log link
The log link
The identity link

Survival distributions
The exponential distribution
The Weibull distribution
The gamma distribution
The loglogistic distribution
The lognormal distribution

Models with continuous latent variables
The likelihood
Gauss–Hermite quadrature
Adaptive quadrature
Laplacian approximation
Survey data
Predictions

Empirical Bayes
Other predictions

Models with categorical latent variables
The likelihood
The EM algorithm
Survey data
Predictions
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Introduction
gsem fits generalized linear models with categorical or continuous latent variables via maximum like-

lihood. Here is a table identifying the family/link combinations that gsem allows.

logit probit cloglog log identity

Bernoulli x x x

beta x x x

binomial x x x

ordinal x x x

multinomial x

Poisson x

negative binomial x

Gaussian x x

exponential x

Weibull x

gamma x

loglogistic x

lognormal x

pointmass x

Log-likelihood calculations for fitting any model with continuous latent variables require integrating

out the latent variables. One widely used modern method is to directly estimate the integral required to

calculate the log likelihood by Gauss–Hermite quadrature or some variation thereof. gsem implements

four different methods for numerically evaluating the integrals.

1. Gauss–Hermite quadrature (GHQ)

2. Mean–variance adaptive Gauss–Hermite quadrature (MVAGHQ)

3. Mode-curvature adaptive Gauss–Hermite quadrature (MCAGHQ)

4. Laplacian approximation

The default method is MVAGHQ. The numerical integration method for MVAGHQ is based on Rabe-

Hesketh, Skrondal, and Pickles (2005), and the other numerical integration methods described in this

manual entry are based on Skrondal and Rabe-Hesketh (2004, chap. 6.3).

Families of distributions
gsem implements the most commonly used distribution families associated with generalized linear

models. gsem also implements distributions for ordinal and multinomial outcomes.

In this manual entry, observed endogenous variables are also known as generalized responses or gen-

eralized outcomes, but we will simply refer to them as responses or outcomes. The random variable

corresponding to a given response will be denoted by 𝑌. An observed value of 𝑌 will be denoted by 𝑦,
and the expected value of 𝑌 by 𝜇. For the ordinal and multinomial families, we will refer to a linear

prediction, denoted by 𝑧, instead of the expected value.

The Bernoulli family

The Bernoulli family is a binary response model. The response 𝑌 is assumed to take on the values 0

or 1; however, gsem allows any nonzero and nonmissing value to mean 1.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesAdaptivequadrature
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesAdaptivequadrature
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The log of the conditional probability mass function is

log𝑓(𝑦|𝜇) = 𝑦 log𝜇 + (1 − 𝑦) log(1 − 𝜇)
where 𝜇 is also known as the probability of a success. The default link for the Bernoulli family is the

logit link.

The beta family

The beta family is a fractional response model. The response 𝑌 is assumed to take on the real values

between 0 and 1.

The log of the conditional probability density function is

log𝑓(𝑦|𝜇, 𝑠) = log{Γ(𝑠)} − log{Γ(𝜇𝑠)} − log{Γ(𝑠 − 𝜇𝑠)}
+ (𝜇𝑠 − 1) log𝑦 + (𝑠 − 𝜇𝑠 − 1) log(1 − 𝑦)

where 𝜇 is the mean of 𝑌, and 𝑠 is the scale parameter. gsem fits 𝑠 in the log scale. The default link for

the beta family is the logit link.

The binomial family

The binomial family is a count response model and generalizes the Bernoulli family by taking the

sum of 𝑘 independent Bernoulli outcomes. The response 𝑌 is assumed to take on the values 0, 1, . . . , 𝑘.
The log of the conditional probability mass function is

log𝑓(𝑦|𝜇) = log{Γ(𝑘 + 1)} − log{Γ(𝑦 + 1)} − log{Γ(𝑘 − 𝑦 + 1)}
+ 𝑦 log𝜇 + (1 − 𝑦) log(1 − 𝜇)

where 𝜇 is the expected value for a single Bernoulli outcome. The default link for the binomial family

is the logit link.

The ordinal family

The ordinal family is a discrete response model. The response 𝑌 is assumed to take on one of 𝑘 unique
values. The actual values are irrelevant except that higher values are assumed to correspond to “higher”

outcomes. Without loss of generality, we will assume that 𝑌 takes on the values 1, . . . , 𝑘. The ordinal
family with 𝑘 outcomes has cutpoints 𝜅0, 𝜅1, . . . , 𝜅𝑘, where 𝜅0 = −∞, 𝜅𝑦 < 𝜅𝑦+1, and 𝜅𝑘 = +∞.

Given a linear prediction 𝑧, the probability that a random response 𝑌 takes the value 𝑦 is

Pr(𝑌 = 𝑦|𝑧) = Pr(𝑌 ∗ < 𝜅𝑦 − 𝑧) − Pr(𝑌 ∗ < 𝜅𝑦−1 − 𝑧)
where 𝑌 ∗ is the underlying stochastic component for 𝑌. The distribution for 𝑌 ∗ is determined by the link

function. gsem allows logit, probit, and cloglog for the ordinal family. The logit link assigns 𝑌 ∗

the extreme value distribution that is synonymous with the logit link for Bernoulli outcomes. The probit
link assigns 𝑌 ∗ the standard normal distribution that is synonymous with the probit link for Bernoulli

outcomes. The cloglog link assigns 𝑌 ∗ the distribution that is synonymous with the complementary

log–log link for Bernoulli outcomes. The default link for the ordinal family is the logit link.

The multinomial family

The multinomial family is a discrete response model. The response 𝑌 is assumed to take on one of

𝑘 unique values. The actual values are irrelevant and order does not matter; however, gsem requires

that the values are nonnegative integers. Without loss of generality, we will assume that 𝑌 takes on the

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslogit
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslogit
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslogit
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values 1, . . . , 𝑘. Each of the 𝑘 outcomes has its own linear prediction. For the model to be identified,

one of the outcomes is chosen to be the base or reference. The linear prediction for the base outcome is

constrained to be 0 for all observations. Without loss of generality, we will assume the base outcome is

the first outcome. Let 𝑧𝑖 be the prediction for outcome 𝑖, where 𝑧1 = 0 for the base outcome.

Given the 𝑘 linear predictions z′ = (𝑧1, 𝑧2, . . . , 𝑧𝑘), the log of the conditional probability mass

function is

log𝑓(𝑦|z) = 𝑧𝑦 − log{
𝑘

∑
𝑖=1

exp(𝑧𝑖)}

The only link allowed for the multinomial family is the logit link.

The Poisson family

The Poisson family is a count-data response model. The response 𝑌 is assumed to take on nonnegative

integer values.

The log of the conditional probability mass function is

log𝑓(𝑦|𝜇) = −𝜇 + 𝑦 log𝜇 − logΓ(𝑦 + 1)

The only link allowed for the Poisson family is the log link.

The negative binomial family

The negative binomial family is another count-data response model. It is commonly thought of as a

Poisson family with overdispersion. gsem allows two parameterizations for the dispersion in this family:

mean dispersion and constant dispersion.

The log of the conditional probability mass function is

log𝑓(𝑦|𝜇, 𝛼) = log{Γ(𝑦 + 𝑚)} − log{Γ(𝑦 + 1)} − log{Γ(𝑚)}
+ 𝑚 log𝑝 + 𝑦 log(1 − 𝑝)

where 𝑚 and 𝑝 depend on the form of dispersion.

The only link allowed for the negative binomial family is the log link.

For mean dispersion, we have

𝑚 = 1/𝛼

𝑝 = 1
1 + 𝛼𝜇

where 𝜇 is the expected value of 𝑌 and 𝛼 is the scale parameter. gsem fits 𝛼 in the log scale.

For constant dispersion, we have

𝑚 = exp( log𝜇 − log𝛿)

𝑝 = 1
1 + 𝛿

where 𝜇 is the expected value of 𝑌 and 𝛿 is the scale parameter. gsem fits 𝛿 in the log scale.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslog
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslog
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The Gaussian family

The Gaussian family is a continuous response model and is synonymous with the normal distribution.

When the Gaussian family is specified with the identity link but no censoring, gsem fits this family

by using a single multivariate density function and allows the following two special features:

1. gsem can fit covariances between the Gaussian error variables.

2. gsem can fit paths between Gaussian responses, including nonrecursive systems.

The log of the conditional probability density function is

log𝑓(y|µ, 𝚺) = −1
2

{𝑑 log2𝜋 + log|𝚺| + (y − µ)′𝚺−1(y − µ)}

where 𝑑 is the dimension of the observed response vector y, µ is the mean of the responses, and 𝚺 is the

variance matrix of their unexplained errors.

When the Gaussian family is specified with the log link or censoring, the two special features de-

scribed above no longer apply. In addition, the multivariate density function is no longer used. Instead,

for each response using the log link, the log of the conditional probability density function corresponds

to the formula above with 𝑑 = 1. For censored responses, the log likelihood corresponds to the one in

the Methods and formulas for [R] intreg.

Reliability

For a given Gaussian response variable with the identity link, the reliability 𝑌 may be specified as 𝑝 or
100× 𝑝%. The variance of 𝑌’s associated error variable is then constrained to (1− 𝑝) times the observed
variance of 𝑌.

Point mass

gsem, with categorical latent variables, allows an outcome to have a unit probability mass at a single
integer value. This feature is useful for fitting models like the zero-inflated Poisson model.

Link functions
Except for the ordinal and multinomial families, the link function defines the transformation between

the mean and the linear prediction for a given response. If 𝑌 is the random variable corresponding to an

observed response variable 𝑦, then the link function performs the transformation

𝑔(𝜇) = 𝑧

where 𝜇 = 𝐸(𝑌 ) and 𝑧 is the linear prediction. In practice, the likelihood evaluator function uses the

inverse of the link function to map the linear prediction to the mean.

The logit link

The logit link is

𝑔(𝜇) = log𝜇 − log(1 − 𝜇)

and its inverse is

𝜇 = 𝑔−1(𝑧) = 1
1 + 𝑒𝑧

https://www.stata.com/manuals/rintreg.pdf#rintregMethodsandformulas
https://www.stata.com/manuals/rintreg.pdf#rintreg
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The probit link

The probit link is

𝑔(𝜇) = Φ−1(𝜇)

and its inverse is

𝜇 = 𝑔−1(𝑧) = Φ(𝑧)

where Φ(⋅) is the cumulative distribution function for the standard normal distribution and Φ−1(⋅) is its
inverse.

The complementary log–log link

The complementary log–log link is

𝑔(𝜇) = log{− log(1 − 𝜇)}

and its inverse is

𝜇 = 𝑔−1(𝑧) = 1 − exp{− exp(𝑧)}

The log link

The log link is

𝑔(𝜇) = log𝜇

and its inverse is

𝜇 = 𝑔−1(𝑧) = 𝑒𝑧

The identity link

The identity link is 𝑔(𝜇) = 𝜇.

Survival distributions
gsem also implements themost commonly used parametric distributions associated with survival anal-

ysis. This includes support for time-varying covariates and right-censoring. See [ST] streg for more

background information on parametric survival models.

In this section, the observed endogenous variables are survival times. The random variable corre-

sponding to a given response will continue to be denoted by 𝑌, with observed value denoted by 𝑦 and

expected value denoted by 𝜇. The response 𝑌 is assumed to be a nonnegative real value. The starting

time under observation is denoted by 𝑦0, where 𝑦0 ≥ 0. The indicator for failure is denoted by 𝑑, where
𝑑 = 0 indicates a right-censored survival time, and 𝑑 = 1 indicates failure at observed time 𝑦.

The log likelihood for these models is given by

𝑙(𝑦, 𝑦0, 𝑑) = 𝑑 log𝑓(𝑦) + (1 − 𝑑) log𝑆(𝑦) − log𝑆(𝑦0)

where 𝑆(⋅) is the survivor function for 𝑌, and 𝑓(⋅) is the corresponding density function. The relationship
between the survivor function and the density is

𝑓(𝑦) = −𝜕𝑆(𝑦)
𝜕𝑦

https://www.stata.com/manuals/ststreg.pdf#ststreg
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In the following, we provide formulas for the survivor functions with respect to a linear prediction,

denoted by 𝑧.
The log link is the only link allowed with the survival distributions. Except for the gamma distribu-

tion, the use of the log link is merely a nod to the fact that the expected value of the outcome involves

exponentiating the linear prediction. A formula for the expected value of 𝑌, as a function of the linear

prediction, is provided for each survival distribution.

The exponential distribution

The survivor function for the exponential distribution is

𝑆(𝑦) = exp(−𝜆𝑦)

where 𝜆 is a function of 𝑧 and is determined by one of the two parameterizations implemented in gsem.
The proportional hazards parameterization is

𝜆 = exp(𝑧)

and the accelerated failure-time parameterization is

𝜆 = exp(−𝑧)

The expected value of 𝑌 is

𝜇 = 1
𝜆

The Weibull distribution

The survivor function for the Weibull distribution is

𝑆(𝑦) = exp(−𝜆𝑦𝑠)

where 𝑠 is a scale parameter, and𝜆 is a function of 𝑧 that is determined by one of the two parameterizations
implemented in gsem. gsem fits 𝑠 in the log scale. The proportional hazards parameterization is

𝜆 = exp(𝑧)

with expected value

𝜇 = Γ(1 + 1/𝑠) exp(−𝑧/𝑠)

and the accelerated failure-time parameterization is

𝜆 = exp(−𝑠𝑧)

with expected value

𝜇 = Γ(1 + 1/𝑠) exp(𝑧)

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleslog
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The gamma distribution

The survivor function for the gamma distribution is

𝑆(𝑦) = ∫
∞

𝑦

1
Γ(𝑠−2) {𝑒𝑧𝑠2}𝑠−2 𝑡𝑠−2−1 exp(− 𝑡

𝑒𝑧𝑠2 ) 𝜕𝑡

where 𝑠 is a scale parameter. gsem fits 𝑠 in the log scale.
The expected value for this distribution is

𝜇 = exp(𝑧)

The loglogistic distribution

The survivor function for the loglogistic distribution is

𝑆(𝑦) = {1 + exp( log𝑦 − 𝑧
𝑠

)}
−1

where 𝑠 is a scale parameter. gsem fits 𝑠 in the log scale.
The expected value for this distribution is

𝜇 = 𝜋𝑠 exp(𝑧)
sin(𝜋𝑠)

The lognormal distribution

The survivor function for the lognormal distribution is

𝑆(𝑦) = 1 − Φ ( log𝑦 − 𝑧
𝑠

)

where 𝑠 is a scale parameter. gsem fits 𝑠 in the log scale.
The expected value for this distribution is

𝜇 = exp(𝑧 + 1
2

𝑠2)
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Models with continuous latent variables

The likelihood

gsem fits generalized linear models with continuous latent variables via maximum likelihood. The

likelihood for the specified model is derived under the assumption that each response variable is indepen-

dent and identically distributed across the estimation sample. The response variables are also assumed to

be independent of each other. These assumptions are conditional on the latent variables and the observed

exogenous variables.

The likelihood is computed by integrating out the latent variables. Let θ be the vector of model

parameters, y be the vector of observed response variables, x be the vector of observed exogenous

variables, and u be the 𝑟 × 1 vector of latent variables. Then, the marginal likelihood looks something

like

ℒ(θ) = ∫
ℜ𝑟

𝑓(y|x,u,θ)𝜙(u|µ𝑢, 𝚺𝑢)𝜕u

where ℜ denotes the set of values on the real line, ℜ𝑟 is the analog in 𝑟-dimensional space, θ is a vector

of the unique model parameters, 𝑓(⋅) is the conditional probability density function for the observed

response variables, 𝜙(⋅) is the multivariate normal density foru,µ𝑢 is the expected value ofu, and𝚺𝑢 is

the covariancematrix foru. All auxiliary parameters are fit directly without any further parameterization,
so we simply acknowledge that the auxiliary parameters are among the elements of θ.

The y variables are assumed to be independent, conditionally on x and u, so 𝑓(⋅) is the product

of the individual conditional densities. One exception to this is when y contains two or more Gaussian

response variables with the identity link, in which case the Gaussian responses are actually modeled using

a multivariate normal density to allow for correlated errors and nonrecursive systems among Gaussian

responses. This one exception does not change how the integral is numerically evaluated, so we make

no effort to represent this distinction in the formulas.

For a single-level model with 𝑛 response variables, the conditional joint density function for a given

observation is

𝑓(y|x,u,θ) =
𝑛

∏
𝑖=1

𝑓𝑖(𝑦𝑖|x,u,θ)

For a two-level model, the likelihood is computed at the cluster level, so the conditional density is also

a product of the observation-level density contributions within a given cluster,

𝑓(y|x,u,θ) =
𝑛

∏
𝑖=1

𝑡
∏
𝑗=1

𝑓𝑖(𝑦𝑖𝑗|x𝑗,u,θ)

where 𝑡 is the number of individuals within the cluster. This extends to more levels by expanding the

products down to the observations nested within the hierarchical groups. Because the single-level model

is a special case of a two-level model where all the groups have a single observation, we will now use

the two-level notation and subscripts.

Except for the ordinal and multinomial families, we use the link function to map the conditional mean

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|x𝑗,u)

to the linear prediction

𝑧𝑖𝑗 = x′
𝑗β𝑖 + x′

𝑗𝚲𝑖u
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where β𝑖 is the vector of the fixed-effect coefficients and 𝚲𝑖 is the matrix of the latent loadings for 𝑦𝑖𝑗.

For notational convenience, we will overload the definitions of 𝑓(⋅) and 𝑓𝑖(⋅) so that they are functions of
the responses and model parameters through the linear predictions z′ = (𝑧1, . . . , 𝑧𝑛). Thus 𝑓(y|x,u,θ)
is equivalently specified as 𝑓(y,z,θ), and 𝑓𝑖(𝑦𝑖𝑗|x𝑗,u,θ) is equivalently specified as 𝑓𝑖(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ). In
this new notation, the likelihood for a given cluster is

ℒ(θ) = ∫
ℜ𝑟

𝑓(y,z,θ)𝜙(u|µ𝑢, 𝚺𝑢)𝜕u

= 1
(2𝜋)𝑟/2√|𝚺𝑢|

∫
ℜ𝑟

exp{ log𝑓(y,z,θ) − 1
2

(u − µ𝑢)′𝚺−1
𝑢 (u − µ𝑢)} 𝜕u

((2))

gsem allows nonrecursive systems between Gaussian response variables with the identity link, but

non-Gaussian responses and Gaussian responses with the log link are not allowed to participate in any

nonrecursive systems. This means that if a given response 𝑦 is specified with a family other than Gaussian
or a link other than identity, then 𝑦 cannot have a path that ultimately leads back to itself. Any response

may participate in a recursive system because the participating responses may be treated as exogenous

variables when predicting other responses in a recursive system.

The latent vector u consists of stacked collections of the latent variables from each level. Within

each level, the latent endogenous variables η are stacked over the latent exogenous variables ξ. Within

a given level, the latent exogenous variables and latent endogenous errors are assumed independent and

multivariate normal,

ξ ∼ 𝑁(κ, 𝚽)
ε ∼ 𝑁(0, 𝚿)

so according to the linear relationship

η = Bη + 𝚪ξ + Ax + ε

we have that the latent variables are jointly multivariate normal. This linear relationship implies that

gsem allows latent variables to predict each other but only within level. It also means that gsem allows

paths from observed variables to latent variables; however, the observed variable must be constant within

group if the path is to a group-level latent variable.

For our two-level model, we have

u ∼ 𝑁(µ𝑢, 𝚺𝑢)

where

µ𝑢 = (
µ𝜂
κ

) 𝚺𝑢 = (𝚺𝜂𝜂 𝚺𝜂𝜉
𝚺𝜉𝜂 𝚽 )

µ𝜂 = (I − B)−1(𝚪κ + Ax)

𝚺𝜂𝜂 = (I − B)−1(𝚪𝚽𝚪′ + 𝚿) {(I − B)−1}′

𝚺𝜂𝜉 = (I − B)−1𝚪𝚽

The vector θ is therefore the set of unique model parameters taken from the following:

β𝑖 is the vector of fixed-effect coefficients for 𝑦𝑖𝑗.

𝚲𝑖 is the matrix of latent loadings for 𝑦𝑖𝑗.
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B is the matrix of latent endogenous coefficients.

𝚪 is the matrix of latent exogenous coefficients.

A is the matrix of latent fixed-effect coefficients.

κ is the vector of latent exogenous means.

𝚽 is the matrix of latent exogenous variances and covariances.

𝚿 is the matrix of latent endogenous error variances and covariances.

Auxiliary parameters are the result from some of the distribution families.

Each level of a multilevel model will have its own set of the following parameters: B, 𝚪,A, κ, 𝚽, and

𝚿. For multilevel models, 𝚺𝑢 is a block-diagonal matrix with a block for each level.

Gauss–Hermite quadrature

The integral in (2) is generally not tractable, so wemust use numerical methods. In the univariate case,

the integral of a function multiplied by the kernel of the standard normal distribution can be approximated

using Gauss–Hermite quadrature (GHQ). For 𝑞-point GHQ, let the abscissa and weight pairs be denoted
by (𝑎∗

𝑘, 𝑤∗
𝑘), 𝑘 = 1, . . . , 𝑞. The Gauss–Hermite approximation is then

∫
∞

−∞
𝑓(𝑥) exp(−𝑥2) 𝑑𝑥 ≈

𝑞

∑
𝑘=1

𝑤∗
𝑘𝑓(𝑎∗

𝑘)

Using the standard normal distribution yields the approximation

∫
∞

−∞
𝑓(𝑥)𝜙(𝑥) 𝑑𝑥 ≈

𝑞

∑
𝑘=1

𝑤𝑘𝑓(𝑎𝑘)

where 𝑎𝑘 =
√
2𝑎∗

𝑘 and 𝑤𝑘 = (𝑤∗
𝑘)/

√
𝜋.

We can use a change-of-variables technique to transform the multivariate integral (2) into a set of

nested univariate integrals. Each univariate integral can then be evaluated using GHQ. Let v be a random

vector whose elements are independently standard normal, and let L be the Cholesky decomposition of

𝚺𝑢; that is, 𝚺𝑢 = LL′
. In the distribution, we have that u = µ𝑢 +Lv, and the linear predictions vector

as a function of v is

𝑧𝑖𝑗 = x′
𝑗β𝑖 + x′

𝑗𝚲𝑖(µ𝑢 + Lv)

so the likelihood for a given cluster is

ℒ(θ) = (2𝜋)−𝑟/2 ∫
∞

−∞
. . .∫

∞

−∞
exp{ log𝑓(y,z,θ) − 1

2

𝑟
∑
𝑘=1

𝑣2
𝑘} 𝑑𝑣1 . . . 𝑑𝑣𝑟 (3)

where 𝑟 is the number of latent variables.
Consider an 𝑟-dimensional quadrature grid containing 𝑞 quadrature points in each dimension. Let the

vector of abscissas ak = (𝑎𝑘1
, . . . , 𝑎𝑘𝑟

)′ be a point in this grid, and let wk = (𝑤𝑘1
, . . . , 𝑤𝑘𝑟

)′ be the

vector of corresponding weights. The Gauss–Hermite approximation to the likelihood for a given cluster

is

ℒGH(θ) =
𝑞

∑
𝑘1=1

. . .

𝑞

∑
𝑘𝑟=1

[ exp{
𝑛

∑
𝑖=1

log𝑓𝑖(𝑦𝑖𝑗, 𝑧𝑖𝑗k,θ)}
𝑟

∏
𝑠=1

𝑤𝑘𝑠
]

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLz
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLz
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where

𝑧𝑖𝑗k = x′
𝑗β + x′

𝑗𝚲𝑖(µ𝑢 + Lak)

Adaptive quadrature

This section sets the stage for mean–variance adaptive Gauss–Hermite quadrature (MVAGHQ) and

mode-curvature adaptive Gauss–Hermite quadrature (MCAGHQ).

Let’s reconsider the likelihood in (3). If we fix the observed variables and the model parameters, we

see that the posterior density for v is proportional to

𝜙(v)𝑓(y,z,θ)

It is reasonable to assume that this posterior density can be approximated by amultivariate normal density

with mean vector µ𝑣 and variance matrix τ𝑣. Instead of using the prior density of v as the weighting

distribution in the integral, we can use our approximation for the posterior density,

ℒ(θ) = ∫
ℜ𝑟

𝑓(y,z,θ)𝜙(v)
𝜙(v,µ𝑣, τ𝑣)

𝜙(v,µ𝑣, τ𝑣) 𝑑v

The likelihood is then approximated with

ℒ∗(θ) =
𝑞

∑
𝑘1=1

. . .

𝑞

∑
𝑘𝑟=1

[ exp{
𝑛

∑
𝑖=1

log𝑓𝑖(𝑦𝑖𝑗, 𝑧∗
𝑖𝑗k,θ)}

𝑟
∏
𝑠=1

𝜔𝑘𝑠
]

where

𝑧∗
𝑖𝑗k = x′

𝑗β + x′
𝑗𝚲𝑖(µ𝑢 + Lαk)

andαk and the 𝜔𝑘𝑠
are the adaptive versions of the abscissas and weights after an orthogonalizing trans-

formation, which eliminates posterior covariances between the latent variables. αk and the 𝜔𝑘𝑠
are

functions of ak andwk and the adaptive parameters µ𝑣 and τ𝑣.

For MVAGHQ, µ𝑣 is the posterior mean and τ𝑣 is the posterior variance of v. They are computed

iteratively by updating the posterior moments by using the mean–variance adaptive Gauss–Hermite ap-

proximation, starting with a 0 mean vector and identity variance matrix.

ForMCAGHQ, µ𝑣 is the posterior mode for v, and τ𝑣 is the curvature at the mode. They are computed

by optimizing the integrand in (3) with respect to v.

Laplacian approximation

Let’s reconsider the likelihood in (2) and denote the argument in the exponential function by

ℎ(u) = log𝑓(y,z,θ) − 1
2

(u − µ𝑢)′𝚺−1
𝑢 (u − µ𝑢)

=
𝑛

∑
𝑖=1

𝑡
∑
𝑗=1

log𝑓𝑖(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ) − 1
2

(u − µ𝑢)′𝚺−1
𝑢 (u − µ𝑢)

where

𝑧𝑖𝑗 = x′
𝑗β𝑖 + x′

𝑗𝚲𝑖u

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLv
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLv
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLz
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The Laplacian approximation is based on a second-order Taylor expansion of ℎ(u) about the value of u
that maximizes it. The first and second partials with respect to u are

ℎ′(u) = 𝜕ℎ(u)
𝜕u

=
𝑛

∑
𝑖=1

𝑡
∑
𝑗=1

𝜕 log𝑓𝑖(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ)
𝜕𝑧𝑖𝑗

𝚲′
𝑖x𝑗 − 𝚺−1(u − µ𝑢)

H(u) = 𝜕2ℎ(u)
𝜕u𝜕u′ =

𝑛
∑
𝑖=1

𝑡
∑
𝑗=1

x′
𝑗𝚲𝑖

𝜕2 log𝑓𝑖(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ)
𝜕𝑧𝑖𝑗𝜕𝑧𝑖𝑗

𝚲′
𝑖x𝑗 − 𝚺−1

The maximizer of ℎ(u) is û such that ℎ′(û) = 0. The integral in (2) is proportional to the posterior

density of u given the data, so û is also the posterior mode.

The second-order Taylor approximation then takes the form

ℎ(u) ≈ ℎ(û) + 1
2

(u − û)′H(û)(u − û) (4)

because the first-order derivative term is 0. The integral is approximated by

∫
ℜ𝑟

exp{ℎ(u)} 𝑑u ≈ exp{ℎ(û)}(2𝜋)𝑟/2 |−H(û)|−1/2

because the second term in (4) is the kernel of a multivariate normal density once it is exponentiated.

The Laplacian approximation for the log likelihood is

logℒLap(θ) = −1
2
log|𝚺𝑢| − 1

2
log |−H(û)| + ℎ(û)

Survey data

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted log

pseudolikelihood for a two-level model is given as

logℒ(θ) =
𝑀

∑
𝑗=1

𝑤𝑗 log∫
∞

−∞
exp{

𝑛𝑗

∑
𝑖=1

𝑤𝑖|𝑗 log𝑓(𝑦𝑖𝑗|𝜂𝑖𝑗)} 𝜙(v𝑗1) 𝑑v𝑗1

where 𝑤𝑗 is the inverse of the probability of selection for the 𝑗th cluster; 𝑤𝑖|𝑗 is the inverse of the condi-

tional probability of selection of individual 𝑖, given the selection of cluster 𝑗; 𝑓(⋅) is as defined previously;
and 𝜙(⋅) is the standard multivariate normal density.

Weighted estimation is achieved through the direct application of 𝑤𝑗 and 𝑤𝑖|𝑗 into the likelihood

calculations as detailed above to reflect replicated clusters for 𝑤𝑗 and replicated observations within

clusters for 𝑤𝑖|𝑗. Because this estimation is based on replicated clusters and observations, frequency

weights are handled similarly.

Weights are not allowed with crossed models or the Laplacian approximation.

Predictions

We begin by considering the prediction of the latent variables u for a given cluster in a two-level

model. Prediction of latent variables in multilevel generalized linear models involves assigning values

to the latent variables, and there are many methods for doing so; see Skrondal and Rabe-Hesketh (2009)

and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive review. Stata offers two methods

of predicting latent variables: empirical Bayes means (also known as posterior means) and empirical

Bayes modes (also known as posterior modes). Below we provide more details about the two methods.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLz
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLapprox
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Empirical Bayes

Let θ̂ denote the estimated model parameters. Empirical Bayes (EB) predictors of the latent variables

are the means or modes of the empirical posterior distribution with the parameter estimates θ replaced

with their estimates θ̂. The method is called “empirical” because θ̂ is treated as known. EB combines

the prior information about the latent variables with the likelihood to obtain the conditional posterior

distribution of latent variables. Using Bayes’s theorem, the empirical conditional posterior distribution

of the latent variables for a given cluster is

𝜔(u|y,x; θ̂) =
𝑓(y|u,x; θ̂) 𝜙(u; µ̂𝑢, �̂�𝑢)

∫ 𝑓(y|u,x; θ̂) 𝜙(u; µ̂𝑢, �̂�𝑢) 𝑑u

=
𝑓(y|u,x; θ̂) 𝜙(u; µ̂𝑢, �̂�𝑢)

ℒ(θ̂)

The denominator is just the likelihood contribution of the given cluster.

EB mean predictions of latent variables, ũ, also known as posterior means, are calculated as

ũ = ∫
ℜ𝑟

u𝜔(u|y,x; θ̂) 𝑑u

where we use the notation ũ rather than û to distinguish predicted values from estimates. This multivari-

ate integral is approximated by MVAGHQ. If you have multiple latent variables within a level or latent

variables across levels, the calculation involves orthogonalizing transformations with the Cholesky trans-

formation because the latent variables are no longer independent under the posterior distribution.

When all the response variables are normal, the posterior density is multivariate normal, and EBmeans

are also best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227). In gener-

alized mixed-effects models, the posterior density tends to multivariate normal as cluster size increases.

EB modal predictions can be approximated by solving for ̃̃u such that

𝜕
𝜕u

log𝜔(u|y,x; θ̂)∣
u=̃̃u

= 0

Because the denominator in 𝜔(⋅) does not depend on u, we can omit it from the calculation to obtain the

EB mode. The calculation of EB modes does not require numerical integration; thus they are often used

in place of EB means. As the posterior density gets closer to being multivariate normal, EB modes get

closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there are many methods

of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)

for a comprehensive review.

Stata uses the posterior standard deviation as the standard error of the posterior means predictor of

random effects. For a given level, the EB posterior covariance matrix of the random effects is given by

Cov(ũ|y,x; θ̂) = ∫
ℜ𝑟

(u − ũ)(u − ũ)′ 𝜔(u|y,x; θ̂) 𝑑u

The posterior covariance matrix and the integrals are approximated by MVAGHQ.

Conditional standard errors for the estimated posterior modes are derived from standard theory of

maximum likelihood, which dictates that the asymptotic variance matrix of ̃̃u is the negative inverse of

the Hessian matrix.
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Other predictions

In what follows, we show formulas with the posterior means estimates of random effects ũ, which are
used by default or if the conditional(ebmeans) option is specified. If the conditional(ebmodes)
option is specified, ũ are simply replaced with the posterior modes ̃̃u in these formulas.

For the 𝑖th response in the 𝑗th observation within a given cluster in a two-level model, the linear

predictor is computed as

̂𝑧𝑖𝑗 = x′
𝑗β̂ + x′

𝑗�̂�𝑖ũ

The linear predictor includes the offset or exposure variable if one was specified during estimation, unless

the nooffset option is specified. If the fixedonly option is specified, the linear predictor is computed

as

̂𝑧𝑖𝑗 = x′
𝑗β̂

The predicted mean, conditional on the predicted latent variables, is

̂𝜇𝑖𝑗 = 𝑔−1( ̂𝑧𝑖𝑗)

where 𝑔−1(⋅) is the inverse link function defined in Link functions above. For the ordinal and multi-

nomial families, the predicted mean is actually a probability, and gsem can produce a probability for

each outcome value as described in The ordinal family and The multinomial family above. For the sur-

vival distributions, the predicted mean is computed using the formulas provided in Survival distributions

above.

Models with categorical latent variables

The likelihood

gsem fits generalized linear models with categorical latent variables via maximum likelihood. The

likelihood for the specified model is derived under the assumption that each response variable is indepen-

dent and identically distributed across the estimation sample. The response variables are also assumed

to be independent of each other. These assumptions are conditional on the categorical latent variables

and the observed exogenous variables.

The likelihood is computed by combining the conditional likelihoods from each latent class (level

combinations of the categorical latent variables) weighted by the associated latent class probabilities. Let

θ be the vector of model parameters. For a given observation, let y be the vector of observed response

variables and x be the vector of observed exogenous variables. Without loss of generality, we will

assume a single categorical latent variable 𝐶 with 𝑘 levels 1, . . . , 𝑘. The marginal likelihood for a given
observation looks something like

ℒ𝐶(θ) =
𝑘

∑
𝑖=1

𝜋𝑖𝑓𝑖(y|x, 𝑐𝑖 = 1,θ)

where 𝜋𝑖 is the probability for the 𝑖th latent class, 𝑓𝑖(⋅) is the conditional probability density function for
the observed response variables in the 𝑖th latent class, and c′ = (𝑐1, . . . , 𝑐𝑘) is the vector of latent class
indicators. When 𝑐𝑖 = 1, all other elements of c are 0. All auxiliary parameters are fit directly without

any further parameterization, so we simply acknowledge that the auxiliary parameters are among the

elements of θ.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesLinkfunctions
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesTheordinalfamily
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesThemultinomialfamily
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesSurvivaldistributions
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The y variables are assumed to be independent, conditionally on x and 𝐶, so 𝑓𝑖(⋅) is the product
of the individual conditional densities. One exception to this is when y contains two or more Gaussian

response variables with the identity link, in which case the Gaussian responses are actually modeled using

a multivariate normal density to allow for correlated errors and nonrecursive systems among Gaussian

responses. This one exception does not meaningfully change the following discussion, so we make no

effort to represent this distinction in the formulas.

For the 𝑖th latent class with 𝑛 response variables, the conditional joint density function for a given

observation is

𝑓𝑖(y|x,θ) =
𝑛

∏
𝑗=1

𝑓𝑖𝑗(𝑦𝑖𝑗|x,θ)

Except for the ordinal and multinomial families, we use the link function to map the conditional mean

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗|x, 𝑐𝑖 = 1)

to the linear prediction

𝑧𝑖𝑗 = x′β𝑖𝑗

where β𝑖𝑗 is the vector of the coefficients for 𝑦𝑖𝑗. For notational convenience, we will overload the

definitions of 𝑓𝑖(⋅) and 𝑓𝑖𝑗(⋅) so that they are functions of the responses and model parameters through
the linear predictions z′

𝑖 = (𝑧𝑖1, . . . , 𝑧𝑖𝑛). Thus 𝑓𝑖(y|x,θ) is equivalently specified as 𝑓𝑖(y,z𝑖,θ), and
𝑓𝑖𝑗(𝑦𝑖𝑗|x,θ) is equivalently specified as 𝑓𝑖𝑗(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ). In this new notation, the likelihood for a given

observation is

ℒ(θ) =
𝑘

∑
𝑖=1

𝜋𝑖

𝑛
∏
𝑗=1

𝑓𝑖𝑗(𝑦𝑖𝑗, 𝑧𝑖𝑗,θ) (1)

gsem uses the multinomial distribution to model the probabilities for the latent classes. For the 𝑖th
latent class, the probability is given by

𝜋𝑖 = Pr(𝑐𝑖 = 1|x) = exp(𝑧𝑖)
∑𝑎 exp(𝑧𝑎)

where the linear prediction for the 𝑖th latent class is

𝑧𝑖 = x′𝛄𝑖

and 𝛄𝑖 is the associated vector of coefficients. gsem assumes the first latent class is the base level; 𝛄1 is

a vector of zeros so that 𝑧1 = 0 and exp(𝑧1) = 1.

The vector θ is therefore the set of unique model parameters taken from the following:

𝛄𝑖 is the vector of coefficients for the 𝑖th latent class.
β𝑖𝑗 is the vector of coefficients for 𝑦𝑖𝑗.

Auxiliary parameters that result from some of the distribution families.

Each latent class will have its own set of these parameters.

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesTheordinalfamily
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesThemultinomialfamily
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The EM algorithm

gsem uses the EM algorithm to refine starting values before maximizing the likelihood in (1).

The EM algorithm uses the complete-data likelihood, a likelihood where it is as if we have observed

values for the latent class indicator variables c. In the complete-data case, the likelihood for a given

observation is

𝐿(θ) =
𝑘

∏
𝑖=1

{𝜋𝑖𝑓𝑖(y,z𝑖,θ)}𝑐𝑖

so the complete-data log likelihood is

log𝐿(θ) =
𝑘

∑
𝑖=1

𝑐𝑖 { log𝜋𝑖 + log 𝑓𝑖(y,z𝑖,θ)}

We intend to maximize the expected complete-data log likelihood given the observed variables y and x.
This is an iterative process in which we use the 𝑔th guess of the model parameters, denoted θ(𝑔), then

compute the next guess θ(𝑔+1).

In the expectation (E) step, we derive the functional form of the expected complete-data log likelihood.

The complete-data log likelihood is a linear function of the latent class indicator variables, so

E(𝑐𝑖|y,x,θ(𝑔)) =
𝜋𝑖𝑓𝑖(y,z𝑖,θ(𝑔))

∑𝑘
𝑗=1 𝜋𝑗𝑓𝑗(y,z𝑗,θ(𝑔))

We denote this posterior probability by 𝑝𝑖, so the expected complete-data log likelihood for a given

observation is given by

𝑄(θ|θ(𝑔)) =
𝑘

∑
𝑖=1

𝑝𝑖 { log𝜋𝑖 + log 𝑓𝑖(y,z𝑖,θ)}

Note that 𝑄(θ|θ(𝑔)) is a function of θ(𝑔) solely through the posterior probabilities 𝑝𝑖.

Now that we have the conditional complete-data log likelihood, the maximization (M) step is to max-

imize 𝑄(θ|θ(𝑔)) with respect to θ to find θ(𝑔+1).

Survey data

gsem with categorical latent variables also supports estimation with survey data; however, only the

linearized variance estimator is supported. For details on VCEs with survey data, see [SVY] Variance

estimation.

Predictions

The predicted mean for a given response within a latent class is computed by applying the associated

link function to the linear prediction; see Link functions above. For ordinal and multinomial responses,

the predicted mean for a given response level is the predicted probability for that level. For survival

outcomes, the formulas for predicted means are provided in Survival distributions above.

Let ̂𝑧𝑖 be the linear prediction for the 𝑖th latent class; then, the predicted probability for the 𝑖th latent
class is given by

̂𝜋𝑖 = exp( ̂𝑧𝑖)
∑𝑘

𝑎=1 exp( ̂𝑧𝑎)

https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexampleseqLCz
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesLinkfunctions
https://www.stata.com/manuals/semmethodsandformulasforgsem.pdf#semMethodsandformulasforgsemRemarksandexamplesSurvivaldistributions
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The predicted posterior probability for the 𝑖th latent class is given by

̃𝜋𝑖 = ̂𝜋𝑖𝑓𝑖(y, ẑ𝑖, θ̂)
∑𝑘

𝑗=1 ̂𝜋𝑗𝑓𝑗(y, ẑ𝑗, θ̂)

Let ̂𝜇𝑖 be the predicted mean of response 𝑦 in the 𝑖th latent class. The predicted overall mean of 𝑦,
using the fitted latent class probabilities, is given by

̂𝜇 =
𝑘

∑
𝑖=1

̂𝜋𝑖 ̂𝜇𝑖

The predicted overall mean of 𝑦, using the posterior latent class probabilities, is given by

̃𝜇 =
𝑘

∑
𝑖=1

̃𝜋𝑖 ̂𝜇𝑖
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