
Intro 2 — Learning the language: Path diagrams and command language

Description Remarks and examples Reference Also see

Description
Individual structural equation models are usually described using path diagrams. Path diagrams are

described here.

Path diagrams can be used in sem’s (gsem’s) GUI, known as the SEM Builder or simply the Builder, as

the input to describe the model to be fit. Path diagrams differ a little from author to author, and sem’s and
gsem’s path diagrams differ a little, too. For instance, we omit drawing the variances and covariances

between observed exogenous variables by default.

sem and gsem also provide a command-language interface. This interface is similar to path diagrams

but is typable.

Remarks and examples
Remarks are presented under the following headings:

Using path diagrams to specify standard linear SEMs

Specifying correlation

Using the command language to specify standard linear SEMs

Specifying generalized SEMs: Family and link
Specifying generalized SEMs: Family and link, multinomial logistic regression
Specifying generalized SEMs: Family and link, paths from response variables

Specifying generalized SEMs: Multilevel mixed effects (2 levels)
Specifying generalized SEMs: Multilevel mixed effects (3 levels)
Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
Specifying generalized SEMs: Multilevel mixed effects with random intercepts
Specifying generalized SEMs: Multilevel mixed effects with random slopes
Specifying generalized SEMs: Latent class analysis (LCA)
Specifying generalized SEMs: Latent class analysis, class predictors
Specifying generalized SEMs: Latent class analysis, two latent variables

1
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Using path diagrams to specify standard linear SEMs
In structural equation modeling, models are often illustrated in a path diagram such as this one:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1

This diagram is composed of the following:

1. Boxes and circles with variable names written inside them.

a. Boxes contain variables that are observed in the data.

b. Circles contain variables that are unobserved, known as latent variables.

2. Arrows, called paths, that connect some of the boxes and circles.

a. When a path points from one variable to another, it means that the first variable affects

the second.

b. More precisely, if 𝑠 → 𝑑, it means to add 𝛽𝑘𝑠 to the linear equation for 𝑑. 𝛽𝑘 is called

the path coefficient.

c. Sometimes small numbers are written along the arrow connecting two variables. This

means that 𝛽𝑘 is constrained to be the value specified. (Some authors use the term

“path coefficient” to mean standardized path coefficient. We do not.)

d. When no number is written along the arrow, the corresponding coefficient is to be

estimated from the data. Sometimes symbols are written along the path arrow to em-

phasize this and sometimes not.

e. The same path diagram used to describe the model can be used to display the results

of estimation. In that case, estimated coefficients appear along the paths.

3. There are other elements that may appear on the diagram to indicate variances and between-

variable correlations. We will get to them later.

Thus the above figure corresponds to the equations

𝑥1 = 𝛼1 + 𝛽1𝑋 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝛽2𝑋 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝛽3𝑋 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝛽4𝑋 + 𝑒.𝑥4
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There’s a third way of writing this model, namely,

(x1<-X) (x2<-X) (x3<-X) (x4<-X)

This is the way we would write the model if we wanted to use sem’s or gsem’s command syntax rather

than drawing the model in the Builder. The full command we would type is

. sem (x1<-X) (x2<-X) (x3<-X) (x4<-X)

We will get to that later.

By the way, the above model is a linear single-level model. Linear single-level models can be fit by

sem or by gsem. sem is the preferred way to fit linear single-level models because it has added features

for these models that you might find useful later. Nonetheless, if you want to fit the model with gsem,
you would type

. gsem (x1<-X) (x2<-X) (x3<-X) (x4<-X)

Whether we use sem or gsem, we obtain the same results.

However we write this model, what is it? It is a measurement model, a term loaded with meaning

for some researchers. 𝑋 might be mathematical ability. 𝑥1, 𝑥2, 𝑥3, and 𝑥4 might be scores from tests

designed to measure mathematical ability. 𝑥1 might be the score based on your answers to a series of

questions after reading this section.

The model we have just drawn, or written in mathematical notation, or written in Stata command

notation, can be interpreted in other ways, too. Look at this diagram:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

y

e.y

1

Despite appearances, this diagram is identical to the previous diagram except that we have renamed

𝑥4 to be 𝑦. The fact that we changed a name obviously does not matter substantively. The fact that

we have rearranged the boxes in the diagram is irrelevant, too; paths connect the same variables in the

same directions. The equations for the above diagrams are the same as the previous equations with the

substitution of 𝑦 for 𝑥4:

𝑥1 = 𝛼1 + 𝑋𝛽1 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝑋𝛽2 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝑋𝛽3 + 𝑒.𝑥3

𝑦 = 𝛼4 + 𝑋𝛽4 + 𝑒.𝑦

https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesUsingpathdiagramstospecifystandardlinearSEMs
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The Stata command notation changes similarly:

(x1<-X) (x2<-X) (x3<-X) (y<-X)

Many people looking at the model written this way might decide that it is not a measurement model

but a measurement-error model. 𝑦 depends on 𝑋 but we do not observe 𝑋. We do observe 𝑥1, 𝑥2, and

𝑥3, each a measurement of 𝑋, but with error. Our interest is in knowing 𝛽4, the effect of true 𝑋 on 𝑦.
A few others might disagree and instead see a model for interrater agreement. Obviously, we have

three or four raters who each make a judgment, and we want to know how well the judgment process

works and how well each of these raters performs.

Specifying correlation
One of the key features of SEM is the ease with which you can allow correlation between latent vari-

ables to adjust for the reality of the situation. In the measurement model in the previous section, we drew

the following path diagram:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1

which corresponded to the equations

𝑥1 = 𝛼1 + 𝑋𝛽1 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝑋𝛽2 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝑋𝛽3 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝑋𝛽4 + 𝑒.𝑥4

(𝑋, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑒.𝑥1, 𝑒.𝑥2, 𝑒.𝑥3, 𝑒.𝑥4) ∼ i.i.d. with mean vector µ and covariance matrix 𝚺

where i.i.d. means that observations are independent and identically distributed.

We must appreciate that µ and 𝚺 are estimated, just as are 𝛼1, 𝛽1, . . . , 𝛼4, 𝛽4. Some of the elements

of 𝚺, however, are constrained to be 0; which elements are constrained is determined by how we specify

the model. In the above diagram, we drew the model in such a way that we assumed that error variables

were uncorrelated with each other. We could have drawn the diagram differently.

https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesUsingpathdiagramstospecifystandardlinearSEMs
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If we wish to allow for a correlation between 𝑒.𝑥2 and 𝑒.𝑥3, we add a curved path between the vari-

ables:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1

The curved path states that there is a correlation to be estimated between the variables it connects. The

absence of a curved path—say, between 𝑒.𝑥1 and 𝑒.𝑥4—means that the variables are constrained to be

uncorrelated. That is not to say that 𝑥1 and 𝑥4 are uncorrelated; obviously, they are correlated because

both are functions of the same 𝑋. Their corresponding error variables, however, are uncorrelated. The

equations for this model, in their full detail, are

𝑥1 = 𝛼1 + 𝑋𝛽1 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝑋𝛽2 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝑋𝛽3 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝑋𝛽4 + 𝑒.𝑥4

(𝑋, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑒.𝑥1, 𝑒.𝑥2, 𝑒.𝑥3, 𝑒.𝑥4) ∼ i.i.d. with mean µ and variance 𝚺
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𝚺 is constrained such that

𝜎𝑒.𝑥1,𝑒.𝑥2
= 𝜎𝑒.𝑥2,𝑒.𝑥1

= 0
𝜎𝑒.𝑥1,𝑒.𝑥3

= 𝜎𝑒.𝑥3,𝑒.𝑥1
= 0

𝜎𝑒.𝑥1,𝑒.𝑥4
= 𝜎𝑒.𝑥4,𝑒.𝑥1

= 0
𝜎𝑒.𝑥2,𝑒.𝑥4

= 𝜎𝑒.𝑥4,𝑒.𝑥2
= 0

𝜎𝑒.𝑥3,𝑒.𝑥4
= 𝜎𝑒.𝑥4,𝑒.𝑥3

= 0

𝜎𝑋,𝑒.𝑥1
= 𝜎𝑒.𝑥1,𝑋 = 0

𝜎𝑋,𝑒.𝑥2
= 𝜎𝑒.𝑥2,𝑋 = 0

𝜎𝑋,𝑒.𝑥3
= 𝜎𝑒.𝑥3,𝑋 = 0

𝜎𝑋,𝑒.𝑥4
= 𝜎𝑒.𝑥4,𝑋 = 0

µ is constrained such that

𝜇𝑋 = 0
𝜇𝑒.𝑥1

= 0
𝜇𝑒.𝑥2

= 0
𝜇𝑒.𝑥3

= 0
𝜇𝑒.𝑥4

= 0

The parameters to be estimated are

𝛼1, 𝛽1, . . . , 𝛼4, 𝛽4,
µ

𝚺

Look carefully at the above list. You will not find a line reading

𝜎𝑒.𝑥2,𝑒.𝑥3
= 𝜎𝑒.𝑥3,𝑒.𝑥2

= 0

although you will find lines constraining the other covariances between error terms to be 0. The line is

missing because we drew a curved path between 𝑒.𝑥2 and 𝑒.𝑥3.

There are lots of other curved arrows we could have drawn. By not drawing them, we are asserting

that the corresponding covariance is 0.
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Some authors would draw the above model as

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1

A curved path from a variable to itself indicates a variance. All covariances could be shown, including

those between latent variables and between observed exogenous variables.

When we draw diagrams, however, we will assume variance paths and omit drawing them, and we

will similarly assume but omit drawing covariances between observed exogenous variables (there are

no observed exogenous variables in this model). The Builder in sem mode has an option concerning

the latter. Like everyone else, we will not assume correlations between latent variables unless they are

shown.

In sem’s (gsem’s) command-language notation, curved paths between variables are indicated via an

option:

(x1<-X) (x2<-X) (x3<-X) (x4<-X), cov(e.x2*e.x3)

Using the command language to specify standard linear SEMs
You can describe your model to sem by using path diagrams with the Builder, or you can describe

your model by using sem’s command language. Here are the tradeoffs:

1. If you use path diagrams, you can see the results of your estimation as path diagrams or as

standard computer output.

2. If you use the command language, only standard computer output is available.

3. Typing models in the command language is usually quicker than drawing them in the Builder.

4. You can type models in the command language and store them in do-files. By doing so, you

can more easily correct the errors you make.
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Translating from path diagrams to command language is easy.

1. Path diagrams have squares and circles to distinguish observed from latent variables.

In the command language, variables are assumed to be observed if they are typed in lowercase

and are assumed to be latent if the first letter is capitalized. Variable educ is observed, while

variable Knowledge or KNOWLEDGE is latent.

If the observed variables in your dataset have uppercase names, type rename all, lower to

covert them to lowercase; see [D] rename group.

2. When typing path diagrams in the command language, remember the /// continuation line

indicator. You may type

. sem (x1<-X) (x2<-X) (x3<-X) (y<-X)

or you may type

. sem (x1<-X) (x2<-X) ///
(x3<-X) (y<-X)

or you may type

. sem (x1<-X) ///
(x2<-X) ///
(x3<-X) ///
(y<-X)

3. In path diagrams, you draw arrows connecting variables to indicate paths. In the command

language, you type variable names and arrows. So long as your arrow points the correct way,

it does not matter which variable comes first. The following mean the same thing:

(x1 <- X)

(X -> x1)

4. In the command language, you may type multiple variables on either side of the arrow:

(X -> x1 x2 x3 x4)

The above means the same as

(X -> x1) (X -> x2) (X -> x3) (X -> x4)

which means the same as

(x1 <- X) (x2 <- X) (x3 <- X) (x4 <- X)

which means the same as

(x1 x2 x3 x4 <- X)

In a more complicated measurement model, we might have

(X Y -> x1 x2 x3) (X -> x4 x5) (Y -> x6 x7)

https://www.stata.com/manuals/drenamegroup.pdf#drenamegroup
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The above means the same as

(X -> x1 x2 x3 x4 x5) ///
(Y -> x1 x2 x3 x6 x7)

which means

(X -> x1) (X -> x2) (X -> x3) (X -> x4) (X -> x5) ///
(Y -> x1) (Y -> x2) (Y -> x3) (Y -> x6) (Y -> x7)

5. In path diagrams, you are required to show the error variables. In the command language, you

may omit the error variables. sem knows that each endogenous variable needs an error variable.

You can type

(x1 <- X) (x2 <- X) (x3 <- X) (x4 <- X)

and that means the same thing as

(x1 <- X e.x1) ///
(x2 <- X e.x2) ///
(x3 <- X e.x3) ///
(x4 <- X e.x4)

except that we have lost the small numeric 1s we had next to the arrows from e.x1 to x1, e.x2
to x2, and so on. To constrain the path coefficient, you type

(x1 <- X e.x1@1) ///
(x2 <- X e.x2@1) ///
(x3 <- X e.x3@1) ///
(x4 <- X e.x4@1)

It is easier to simply type

(x1 <- X) (x2 <- X) (x3 <- X) (x4 <- X)

but now you know that if you wanted to constrain the path coefficient x2<-X to be 2, you could

type

(x1 <- X) (x2 <- X@2) (x3 <- X) (x4 <- X)

If you wanted to constrain the path coefficients x2<-X and x3<-X to be equal, you could type

(x1 <- X) (x2 <- X@b) (x3 <- X@b) (x4 <- X)

We have not covered symbolic constraints with path diagrams yet, but typing symbolic names

along the paths in either the Builder or the command language is how you constrain coefficients

to be equal.

6. Curved paths are specified with the cov() option after you have specified your model:

(x1 x2 x3 x4 <- X), cov(e.x2*e.x3)

If you wanted to allow for correlation of e.x2*e.x3 and e.x3*e.x4, you can specify that in a
single cov() option,

(x1 x2 x3 x4 <- X), cov(e.x2*e.x3 e.x3*e.x4)
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or in separate cov() options:

(x1 x2 x3 x4 <- X), cov(e.x2*e.x3) cov(e.x3*e.x4)

7. Nearly all the above applies equally to gsem. We have to say “nearly” because sometimes, in

some models, some concepts simply vanish. For instance, in a logistic model, there are no er-

ror terms. For generalized responses with family Gaussian, link log, there are error terms, but

they cannot be correlated. Also, for responses with family Gaussian, link identity, and censor-

ing, there are error terms, but they cannot be correlated. gsem also takes observed exogenous

variables as given and so cannot estimate the covariances between them.

Specifying generalized SEMs: Family and link
We began this discussion by showing you a linear measurement model:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1

In this model, we observe continuous measurements x1, . . . , x4. What if x1, . . . , x4 were instead

binary outcomes such as success and failure or passed and failed? That is, what if x1, . . . , x4 took on

values of only 1 and 0?

In that case, we would want to fit a model appropriate to binary outcomes. Perhaps we want to fit a

logistic regression model or a probit model. To do either one, we will have to use gsem rather than sem.
We will use a probit model.

The path diagram for the measurement model with binary outcomes is

X

x1

Bernoulli

probit

x2

Bernoulli

probit

x3

Bernoulli

probit

x4

Bernoulli

probit
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What were plain boxes for x1, . . . , x4 now say “Bernoulli” and “probit” at the top and bottom, meaning

that the variable is from the Bernoulli family and is using the probit link. In addition, e.x1, . . . , e.x4
(the error terms for x1, . . . , x4) have disappeared. In the generalized linear framework, there are error

terms only for the Gaussian family.

Perhaps some math will clear up the issue. The generalized linear model is

𝑔{𝐸(𝑦 | 𝑋)} = xβ

and in the case of probit, 𝑔{𝐸(𝑦 | 𝑋)} = Φ−1{𝐸(𝑦 | 𝑋)}, where Φ(⋅) is the cumulative normal distribu-

tion. Thus the equations are

Φ−1{𝐸(𝑥1 | 𝑋)} = 𝛼1 + 𝑋𝛽1

Φ−1{𝐸(𝑥2 | 𝑋)} = 𝛼2 + 𝑋𝛽2

Φ−1{𝐸(𝑥3 | 𝑋)} = 𝛼3 + 𝑋𝛽3

Φ−1{𝐸(𝑥4 | 𝑋)} = 𝛼4 + 𝑋𝛽4

Note that there are no error terms. Equivalently, the above can be written as

Pr(𝑥1 = 1 | 𝑋) = Φ(𝛼1 + 𝑋𝛽1)

Pr(𝑥2 = 1 | 𝑋) = Φ(𝛼2 + 𝑋𝛽2)

Pr(𝑥3 = 1 | 𝑋) = Φ(𝛼3 + 𝑋𝛽3)

Pr(𝑥4 = 1 | 𝑋) = Φ(𝛼4 + 𝑋𝛽4)

In gsem’s command language, we write this model as

(x1 x2 x3 x4<-X, family(bernoulli) link(probit))

or as

(x1<-X, family(bernoulli) link(probit))
(x2<-X, family(bernoulli) link(probit))
(x3<-X, family(bernoulli) link(probit))
(x4<-X, family(bernoulli) link(probit))

In the command language, you can simply type probit to mean family(bernoulli) link(probit),
so the model could also be typed as

(x1 x2 x3 x4<-X, probit)

or even as

(x1<-X, probit) (x2<-X, probit) (x3<-X, probit) (x4<-X, probit)

Whether you type family(bernoulli) link(probit) or type probit, when all the response variables
are probit, you can type

(x1 x2 x3 x4<-X), probit

or

(x1<-X) (x2<-X) (x3<-X) (x4<-X), probit
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The response variables do not have to be all from the same family and link. Perhaps x1, x2, and x3
are pass/fail variables but x4 is a continuous variable. Then the model would be diagrammed as

X

x1

Bernoulli

probit

x2

Bernoulli

probit

x3

Bernoulli

probit

x4

Gaussian

identity

e.x4

1

The words “Gaussian” and “identity” now appear for variable x4 and e.x4 is back! Just as previously,

the generalized linear model is

𝑔{𝐸(𝑦 | 𝑋)} = xβ

and in the case of linear regression, 𝑔(𝜇) = 𝜇, so our fourth equation becomes

𝐸(𝑥4 | 𝑋) = 𝑋𝛽4

or

𝑥4 = 𝛼 + 𝑋𝛽4 + 𝑒.𝑥4

and the entire set of equations to be estimated is

Pr(𝑥1 = 1 | 𝑋) = Φ(𝛼1 + 𝑋𝛽1)

Pr(𝑥2 = 1 | 𝑋) = Φ(𝛼2 + 𝑋𝛽2)

Pr(𝑥3 = 1 | 𝑋) = Φ(𝛼3 + 𝑋𝛽3)

𝑥4 = 𝛼4 + 𝑋𝛽4 + 𝑒.𝑥4

This can be written in the command language as

(x1 x2 x3<-X, family(bernoulli) link(probit))
(x4 <-X, family(gaussian) link(identity))

or as

(x1 x2 x3<-X, probit) (x4<-X, regress)

regress is a synonym for family(gaussian) link(identity). Because family(gaussian)
link(identity) is the default, we can omit the option altogether:

(x1 x2 x3<-X, probit) (x4<-X)
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We demonstrated generalized linear models above by using probit (family Bernoulli, link probit), but

we could just as well have used logit (family Bernoulli, link logit). Nothing changes except that in the

path diagrams, where you see probit, logit would now appear. Likewise, in the command, where you see

probit, logit would appear.

The same is true with almost all the other possible generalized linear models. What they all have in

common is

1. There are no e. error terms, except for family Gaussian.

2. Response variables appear the ordinary way except that the family is listed at the top of the box

and the link is listed at the bottom of the box, except for family multinomial, link logit (also

known as multinomial logistic regression or mlogit).

Concerning item 1, we just showed you a combined probit and linear regression with its 𝑒.𝑥4 term.

Linear regression is family Gaussian.

Concerning item 2, multinomial logistic regression is different enough that we need to show it to you.

Specifying generalized SEMs: Family and link, multinomial logistic regression
Let’s consider a multinomial logistic model in which 𝑦 takes on one of four possible outcomes and is

determined by 𝑥1 and 𝑥2. Such a model could be fit by Stata’s mlogit command:

. mlogit y x1 x2

The model could also be fit by gsem. The path diagram would be

2.y

multinomial

logit

3.y

multinomial

logit

4.y

multinomial

logit

x1

x2

Note that there are three boxes for 𝑦, boxes containing 2.𝑦, 3.𝑦, and 4.𝑦. When specifying a multinomial

logistic regression model in which the dependent variables can take one of 𝑘 different values, you draw

𝑘 − 1 boxes. Names like 1.𝑦, 2.𝑦, . . . , mean 𝑦 = 1, 𝑦 = 2, and so on. Logically speaking, you have to

omit one of them. Which you omit is irrelevant and is known as the base outcome. Estimated coefficients

in the model relevant to the other outcomes will be measured as a difference from the base outcome. We

said which you choose is irrelevant, but it might be easier for you to interpret your model if you chose a

meaningful base outcome, such as the most frequent outcome. In fact, that is just what Stata’s mlogit
command does by default when you do not specify otherwise.
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In path diagrams, you may implicitly or explicitly specify the base outcome. We implicitly specified

the base by omitting 1.𝑦 from the diagram. We could have included it by drawing a box for 1.𝑦 and

labeling it 1b.𝑦. Stata understands the b to mean base category. See [SEM] Example 37g for an example.

Once you have handled specification of the base category, you draw path arrows from the predictors

to the remaining outcome boxes. We drew paths from 𝑥1 and 𝑥2 to all the outcome boxes, but if we

wanted to omit 𝑥1 to 3.𝑦 and 4.𝑦, we could have omitted those paths.

Our example is simple in that 𝑦 is the final outcome. If we had a more complex model where 𝑦’s
outcome affected another response variable, arrows would connect all or some of 2.𝑦, 3.𝑦, and 4.𝑦 to the

other response variable.

The command syntax for our simple example is

(2.y 3.y 4.y<-x1 x2), mlogit

2.y, 3.y, and 4.y are examples of Stata’s factor-variable syntax. The factor-variable syntax has some

other features that can save typing in command syntax. i.y, for instance, means 1b.y, 2.y, 3.y, and
4.y. It is especially useful because if we had more levels, say, 10, it would mean 1b.y, 2.y, . . . , 10.y.
To fit the model we diagrammed, we could type

(i.y<-x1 x2), mlogit

If we wanted to include some paths and not others, we need to use the more verbose syntax. For

instance, to omit paths from 𝑥1 to 3.𝑦 and 4.𝑦, we would type

(2.y<-x1 x2) (3.y 4.y<-x2), mlogit

or

(i.y<-x2) (2.y<-x1), mlogit

For more information on specifying mlogit paths, see [SEM] Intro 3, [SEM] Example 37g, and

[SEM] Example 41g.

Specifying generalized SEMs: Family and link, paths from response variables
When we draw a path from one response variable to another, we are stating that the first endogenous

variable is a predictor of the other endogenous variable. The diagram might look like this:

x1 y1

e.y1

y2

e.y2

x2

The command syntax might look like (y1<-x1) (y2<-y1 x2).

https://www.stata.com/manuals/semexample37g.pdf#semExample37g
https://www.stata.com/manuals/semintro3.pdf#semIntro3
https://www.stata.com/manuals/semexample37g.pdf#semExample37g
https://www.stata.com/manuals/semexample41g.pdf#semExample41g
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The response variables in the model are linear, and note that there is a path from 𝑦1 to 𝑦2. Could we

change 𝑦1 to be a member of the generalized linear family, such as probit, logit, and so on? It turns out

that we can:

x1 y1

Bernoulli

probit

y2

e.y2

x2

In the command syntax, we could write this model as (y1<-x1, probit) (y2<-y1 x2). (In this case,

the observed values and not the expectations are used to fit the y1->y2 coefficient. In general, this is

true for all generalized responses that are not family Gaussian, link identity.)

We canmake the substitution from linear to generalized linear if the path from 𝑦1 appears in a recursive

part of the model. We will define recursive shortly, but trust us that the above model is recursive all the

way through. The substitution would not have been okay if the path had been in a nonrecursive portion

of the model. The following is a through-and-through nonrecursive model:

x1

x2

x3

y1 e.y1

y2 e.y2

It could be written in command syntax as (y1<-y1 x1 x2) (y2<-y2 x2 x3).

In this model, we could not change 𝑦1 to be family Bernoulli and link probit or any other generalized

linear response variable. If we tried to fit the model with such a change, we would get an error message:

invalid path specification;
a loop among the paths between y1 and y2 is not allowed
r(198);

The software will spot the problem, but you can spot it for yourself.

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(198)
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Nonrecursive models have loops. Do you see the loop in the above model? You will if you work out

the total effect of a change in 𝑦2 from a change in 𝑦1. Assume a change in 𝑦1. Then that change directly

affects 𝑦2, the new value of 𝑦2 affects 𝑦1, which in turn indirectly affects 𝑦2 again, which affects 𝑦1, and

on and on.

Now follow the same logic with either the probit or the continuous recursive models above. The

change in 𝑦1 affects 𝑦2 and it stops right there.

We sympathize if you think that we have interchanged the terms recursive and nonrecursive. Remem-

ber it this way: total effects in recursive models can be calculated nonrecursively because the model itself

is recursive, and total effects in nonrecursive models must be calculated recursively because the model

itself is nonrecursive.

Anyway, you may draw paths from generalized linear response variables to other response variables,

whether linear or generalized linear, as long as no loops are formed.

We gave special mention to multinomial logistic regression in the previous section because those

models look different from the other generalized linear models. Multinomial logistic regression has a

plethora of response variables. In the case of multinomial logistic regression, a recursive model with a

path from the multinomial logistic outcome 𝑦1 to (linear) 𝑦2 would look like this:

2.y1

multinomial

logit

3.y1

multinomial

logit

y2

e.y2

x2

x1

4.y1

multinomial

logit

In the command syntax, the model could be written as

(2.y1 3.y1 4.y1<-x1, mlogit) (y2<-2.y1 3.y1 4.y1 x2)

In multinomial logistic regression models, outcomes are numbered 1, 2, . . . , 𝑘. The outcomes might

correspond to walk, take public transportation, drive a car, and fly. In ordered probit and logistic models,

outcomes are also numbered 1, 2, . . . , 𝑘, and the outcomes are otherwise similar to multinomial logistic

models except that the outcomes are also naturally ordered. The outcomes might be did poorly, did okay,

did fairly well, and did well. After taking account of the ordering, you would probably want to model

your remaining response variables in the same way you did for multinomial logistic regression. In that

case, you would diagram the model like this:

https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesSpecifyinggeneralizedSEMsFamilyandlink,multinomiallogisticregression
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y1

ordinal

logit

y2

e.y2

x2

x1

2.y1

3.y1

4.y1

In the command syntax, the model could be written as

(y1<-x1, ologit) (y2<-2.y1 3.y1 4.y1 x2)

Unlike multinomial logistic regression, in which the 𝑘 outcomes result in the estimation of 𝑘 − 1

equations, in ordered probit and logistic models, only one equation is estimated, and thus the response

variable is specified simply as 𝑦1 rather than 2.𝑦1, 3.𝑦1, and 4.𝑦1. Even so, you probably will want the

different outcomes to have separate coefficients in the 𝑦2 equation so that the effects of being in groups 1,

2, 3, and 4 are 𝛽0, 𝛽0 +𝛽1, 𝛽0 +𝛽2, and 𝛽0 +𝛽3, respectively. If you drew the diagram with a single path

from 𝑦1 to 𝑦2, the effects of being in the groups would be 𝛽0 + 1𝛽1, 𝛽0 + 2𝛽1, 𝛽0 + 3𝛽1, and 𝛽0 + 4𝛽1,

respectively.

Specifying generalized SEMs: Multilevel mixed effects (2 levels)
The models above are all single-level models or, equivalently, observational-level models. Let’s re-

consider our original measurement model:

X

x1

e.x1

1

x2

e.x2

1

x3

e.x3

1

x4

e.x4

1
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The data for this model would look something like this:

. list in 1/5

x1 x2 x3 x4

1. 96 82 96 43
2. 106 81 93 40
3. 127 95 96 134
4. 123 98 94 109
5. 119 99 100 108

Let’s pretend that the observations are students and that x1, . . . , x4 are four test scores.

Now let’s pretend that we have new data with students from different schools. Apart of our data might

look like this:

. list in 1/10

school x1 x2 x3 x4

1. 1 116 128 125 127
2. 1 92 104 101 103
3. 1 105 117 114 116
4. 1 117 129 126 128
5. 1 102 114 111 113

6. 2 116 122 120 121
7. 2 95 101 99 100
8. 2 80 86 84 85
9. 2 96 102 100 101

10. 2 107 113 111 112

We have four test scores from various students in various schools. Our corresponding model might be

The school1 inside double circles in the figure tells us, “I am a latent variable at the school level—

meaning that I am constant within school and vary across schools—and I correspond to the latent variable

named M1.” That is, double circles denote a latent variable named M#, where # is the subscript of the

variable name inside the double circles. Meanwhile, the variable name inside the double circles specifies

the level of the M# variable.
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The equivalent command-language form for this model is

(x1 x2 x3 x4<-X M1[school])

The M1 part of M1[school] is the latent variable’s name, while the [school] part means “at the school
level”. Thus M1[school] denotes latent variable M1, which varies at the school level or, equivalently,

which is constant within school.

By the way, we gave the latent variable the name M1 just to match what the Builder does by default.

In real life, we would probably give it a different name, such as S.

The mathematical way of writing this model is

𝑥1 = 𝛼1 + 𝛽1𝑋 + 𝛾1𝑀1,𝑆 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝛽2𝑋 + 𝛾2𝑀1,𝑆 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝛽3𝑋 + 𝛾3𝑀1,𝑆 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝛽4𝑋 + 𝛾4𝑀1,𝑆 + 𝑒.𝑥4

where 𝑆 = school number.

Thus we have three different ways of referring to the same thing: school1 inside double circles in

the path diagram corresponds to M1[school] in the command language, which in turn corresponds to

𝑀1,𝑆 in the mathematical notation.

Rabe-Hesketh, Skrondal, and Pickles (2004) use boxes to identify different levels of the model. Our

path diagrams are similar to theirs, but they do not use double circles for multilevel latent variables. We

can put a box around the individual-level part of the model, producing something that looks like this:

X

x1 e.x1 x2 e.x2 x3 e.x3 x4 e.x4

school1

You can do that in the Builder, but the box has no special meaning to gsem; however, adding the box

does make the diagram easier to understand in presentations.

However you diagram the model, this model is known as a two-level model. The first level is the

student or observational level, and the second level is the school level.
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Specifying generalized SEMs: Multilevel mixed effects (3 levels)
A three-level model adds another latent variable at yet another level. For instance, perhaps we have

data on four test scores for individual students, who are nested within school, which are nested within

counties. The beginning of our data might look like this:

. list in 1/10

county school x1 x2 x3 x4

1. 1 1 103 122 117 120
2. 1 1 88 107 102 105
3. 1 1 106 125 120 123
4. 1 1 108 127 122 125
5. 1 1 100 119 114 117

6. 1 2 90 99 97 98
7. 1 2 87 96 94 95
8. 1 2 121 130 128 129
9. 1 2 100 109 107 108

10. 1 2 88 97 95 96

Further down, the data might look like this:

. list in 991/l

county school x1 x2 x3 x4

991. 2 1 90 86 87 87
992. 2 1 99 95 96 96
993. 2 1 68 64 65 65
994. 2 1 100 96 97 97
995. 2 1 79 75 76 76

996. 2 2 104 110 108 109
997. 2 2 94 100 98 99
998. 2 2 105 111 109 110
999. 2 2 90 96 94 95

1000. 2 2 99 105 103 104
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We might diagram the student-within-school-within-county model as

X

x1

e.x1

x2

e.x2

x3

e.x3

x4

e.x4

school2

county1

Now we have two variables in double circles: county1 and school2.

county1 tells us, “I am a latent variable at the county level—meaning that I am constant within

county and vary across counties—and I correspond to the latent variable named M1.”

school2 tells us, “I am a latent variable at the school level—meaning that I am constant within

school and vary across schools—and I correspond to the latent variable named M2.”

Do not read anything into the fact that the latent variables are named M1 and M2 rather than M2 and

M1. When we diagrammed the figure in the Builder, we diagrammed county first and then we added

school. Had we diagrammed them the other way around, the latent variable names would have been

reversed. We can edit the names after the fact, but we seldom bother.

The equivalent command-language form for this three-level model is

(x1 x2 x3 x4<-X M1[county] M2[county>school])

or

(x1 x2 x3 x4<-X M1[county] M2[school<county])

The [school<county] part is usually spoken aloud as “school within county”, and

[county>school] is spoken aloud as “county containing school”. When we write [county>school]
or [school<county], we are saying that the counties contain schools or, equivalently, that school is

nested within county. Thus the model we are specifying is in fact a three-level nested model.
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The order in which we specify the level effects is irrelevant; we could just as well type

(x1 x2 x3 x4<-X M2[county>school] M1[county])

or

(x1 x2 x3 x4 <- X M2[school<county] M1[county])

The mathematical way of writing this model is

𝑥1 = 𝛼1 + 𝛽1𝑋 + 𝛾1𝑀1,𝐶 + 𝛿1𝑀2,𝑆 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝛽2𝑋 + 𝛾2𝑀1,𝐶 + 𝛿2𝑀2,𝑆 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝛽3𝑋 + 𝛾3𝑀1,𝐶 + 𝛿3𝑀2,𝑆 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝛽4𝑋 + 𝛾4𝑀1,𝐶 + 𝛿4𝑀2,𝑆 + 𝑒.𝑥4

where 𝐶 = county number and 𝑆 = school number.

Three-level nested models are often double-boxed (or double-shaded) in presentation:

X

x1

e.x1

x2

e.x2

x3

e.x3

x4

e.x4

school2

county1

The darker box highlights the first level (student, in our case), and the lighter box highlights the second

level (school, in our case). As we previously mentioned, you can add these boxes using the Builder, but

they are purely aesthetic and have no meaning to gsem.
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Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
We have now diagrammed one-, two-, and three-level nested models. You can draw with the Builder

and fit with gsem higher-level models, but you will usually need lots of data to be successful in fitting

those models and, even so, you may run into other estimation problems.

Specifying generalized SEMs: Multilevel mixed effects with random intercepts
Let’s change gears and consider with the following simple model a linear regression of 𝑦 on 𝑥1 and

𝑥2:

y e.y

x1

x2

In the command language, this model is specified as

(x1 x2->y)

or

(y<-x1 x2)

and the mathematical representation is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝑒.𝑦

Now assume that we have data not just on 𝑦, 𝑥1, and 𝑥2, but also on county of residence. If we wanted

to add a random intercept—a random effect—for county, the diagram becomes

y e.y

x1

x2

county1
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The command-language equivalent is

(x1 x2 M1[county]->y)

or

(y<-x1 x2 M1[county])

and the mathematical representation is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝑀1,𝐶 + 𝑒.𝑦

where 𝐶 = county number. Actually, the model is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝛿𝑀1,𝐶 + 𝑒.𝑦

but 𝛿 is automatically constrained to be 1 by gsem. The software is not reading our mind; consider a

solution for 𝑀1,𝐶 with 𝛿 = 0.5. Then another equivalent solution is 𝑀1,𝐶/2 with 𝛿 = 1, and another is

𝑀1,𝐶/4 with 𝛿 = 2, and on and on, because in all cases, 𝛿𝑀1,𝐶 will equal the same value. The fact is

that 𝛿 is unidentified. Whenever a latent variable is unidentified because of such scaling considerations,

gsem (and sem) automatically set the coefficient to 1 and thus set the scale.

This is a two-level model: the first level is the observational level and the second level is county.

Just as we demonstrated previously with the measurement model, we could have a three-level nested

model. We could imagine the observational level nested within the county level nested within the state

level. The path diagram would be

y e.y

x1

x2

county1

state2

The command-language equivalent is

(y<-x1 x2 M1[county<state] M2[state])

and the mathematical representation is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝑀1,𝐶 + 𝑀2,𝑆 + 𝑒.𝑦
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where 𝐶 = county number and 𝑆 = state number. Just as previously, the actual form of the equation is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝛿𝑀1,𝐶 + 𝜁𝑀2,𝑆 + 𝑒.𝑦

but the constraints 𝛿 = 𝜁 = 1 are automatically applied by the software.

You can specify higher-level models, but just as we mentioned when discussing the higher-level mea-

surement models, you will need lots of data to fit them successfully and you still may run into other

estimation problems.

You can also fit crossed models, such as county and occupation. Unlike county and state, where a

particular county appears only in one state, the same occupation will appear in more than one county,

which is to say, occupation and county are crossed, not nested. Except for a change in the names of the

variables, the path diagram for this model looks identical to the diagram for the state and county-within-

state model:

y e.y

x1

x2

county1

occup2

When we enter the model into the Builder, however, we will specify that the two effects are crossed rather

than nested.

The command-language way of expressing this crossed model is

(y<-x1 x2 M1[county] M2[occupation])

and the mathematical representation is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝑀1,𝐶 + 𝑀2,𝑂 + 𝑒.𝑦

where 𝐶 = county number and 𝑂 = occupation number.

Higher-order crossed models are theoretically possible, and you will find gsem game to try to fit

them. However, you are unlikely to be successful unless you have lots of data so that all the effects can

be identified. In fact, you can specify crossed models anywhere you can specify nested models, but the

same comment applies.
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Specifying generalized SEMs: Multilevel mixed effects with random slopes
Perhaps we feel that county does not affect the intercept, but it affects the slope of x1. In that case,

we just shift the path from county1 to instead point to the path between 𝑦 and 𝑥1.

y e.y

x1

x2

county1

The command-language equivalent for this model is

(y<-x1 c.x1#M1[county]) (y<-x2)

or

(y<-x1 c.x1#M1[county] x2)

To include a random slope (coefficient) on a variable in the command language, include the variable on

which you want the random slope just as you ordinarily would:

(y<-x1

Then, before closing the parenthesis, type

c.variable#latent variable[grouping variable]

In our case, the variable on which we want the random coefficient is x1, the latent variable we want

to create is named M1, and the grouping variable within which the latent variable will be constant is

county, so we type

(y<-x1 c.x1#M1[county]

Finally, finish off the command by typing the rest of the model:

(y<-x1 c.x1#M1[county] x2)

This is another example of Stata’s factor-variable notation.

The mathematical representation of the random-slope model is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝛿𝑀1,𝐶𝑥1 + 𝑒.𝑦

where 𝐶 = county number and 𝛿 = 1.
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You can simultaneously specify both random slope and random intercept by putting together what we

have already done. The first time you see the combined path diagram, you may think there is a mistake:

y e.y

x1

x2

county1county2

County appears twice in two different double circles, once with a subscript of 1 and the other with

a subscript of 2! We would gamble at favorable odds that you would have included county in double

circles once and then would have drawn two paths from it, one to the path between x1 and y, and the

other to y itself. That model, however, would make an extreme assumption.

Consider what you would be saying. There is one latent variable M1. The random intercepts would

be equal to M1. The random slopes would be equal to 𝛾M1, a scalar replica of the random intercepts! You

would be constraining the random slopes and intercepts to be correlated 1.

What you usually want, however, is one latent variable for the random slopes and another for the

random intercepts. They might be correlated, but they are not related by a multiplicative constant. Thus

we also included a covariance between the two random effects.

The command-language equivalent of the correct path diagram (the one shown above) is

(y<-x1 x2 c.x1#M2[county] M1[county])

You will learn later that the command language assumes covariances exist between latent exogenous

variables unless an option is specified. Meanwhile, the Builder assumes those same covariances are 0

unless a curved covariance path is drawn.

The mathematical representation of the model is

𝑦 = 𝛼 + 𝛽𝑥1 + 𝛾𝑥2 + 𝛿𝑀2,𝐶𝑥1 + 𝜁𝑀1,𝐶 + 𝑒.𝑦
where 𝐶 = county number and 𝛿 = 𝜁 = 1.

Specifying generalized SEMs: Latent class analysis (LCA)
All the latent variables discussed in the previous sections are continuous latent variables. We can also

fit models with categorical latent variables using gsem. The unobserved levels of a categorical latent

variable are known as latent classes. The classes represent groups in a population such as groups of

consumers with different buying preferences. In this manual, we refer to models with categorical latent

variables as latent class models, and we refer to an analysis involving categorical latent variables as a

latent class analysis (LCA).
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Latent class models have distinct parameters for each class. We also estimate the probability of being

in each class.

Let’s consider a simple latent class model with a categorical latent variable C that has two classes

and with three observed binary variables, x1, x2, and x3, that are modeled using logistic regression.

Some textbooks draw a path diagram for this model as a measurement model. For instance, you may see

something like

C

x1

Bernoulli

logit

x2

Bernoulli

logit

x3

Bernoulli

logit

When we fit this model, we will actually estimate one intercept for x1 in class 1 and one intercept for

x1 in class 2. Likewise, we will estimate class-specific intercepts for x2 and for x3. Mathematically, the

logistic equations for class 1 are

Pr(𝑥1 = 1 | 𝐶 = 1) = exp(𝛼11)
1 + exp(𝛼11)

Pr(𝑥2 = 1 | 𝐶 = 1) = exp(𝛼21)
1 + exp(𝛼21)

Pr(𝑥3 = 1 | 𝐶 = 1) = exp(𝛼31)
1 + exp(𝛼31)

and the equations for class 2 are

Pr(𝑥1 = 1 | 𝐶 = 2) = exp(𝛼12)
1 + exp(𝛼12)

Pr(𝑥2 = 1 | 𝐶 = 2) = exp(𝛼22)
1 + exp(𝛼22)

Pr(𝑥3 = 1 | 𝐶 = 2) = exp(𝛼32)
1 + exp(𝛼32)

In a sense, C has an effect on x1, x2, and x3, but we do not estimate any coefficients on C. Rather,
the two classes of C partition our model into two component models, each with the same x variables

but with different coefficients (intercepts) on those x variables. In Stata’s path diagrams, arrows always

represent coefficients, so the path diagram above does not actually correspond with the model we fit. A

more accurate description would be to draw the diagram as
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x1

Bernoulli

logit

x2

Bernoulli

logit

x3

Bernoulli

logit

for the first class and again as

x1

Bernoulli

logit

x2

Bernoulli

logit

x3

Bernoulli

logit

for the second class. Now, we could place the six estimated intercepts in the six boxes.

However, these two diagrams do not fully describe the model. We also estimate the probability of

being in each class using multinomial logistic regression,

Pr(𝐶 = 1) = 𝑒𝛾1

𝑒𝛾1 + 𝑒𝛾2

Pr(𝐶 = 2) = 𝑒𝛾2

𝑒𝛾1 + 𝑒𝛾2

where 𝛾1 and 𝛾2 are intercepts in the multinomial logit model. By default, the first class will be treated

as the base, so 𝛾1 = 0. We do not have a place for the 𝛾 parameter estimates on our diagrams above.

Thus, we cannot draw path diagrams in the Builder to fit latent class models. Instead, we fit latent class

models using the command language.

We specify this model using the command language as

(x1 x2 x3 <- ), logit lclass(C 2)

lclass(C 2) says that our categorical latent variable is named C and has two classes. Because we are

only estimating an intercept in each equation, we do not include any variables on the right side of the

arrow. We could directly specify that a constant, cons, is included by typing

(x1 x2 x3 <- _cons), logit lclass(C 2)

We could also be more explicit about having separate models for the two classes by including 1: at the

beginning of the path specification for class 1 and including 2: at the beginning of the path specification

for class 2.

(1: x1 x2 x3 <- _cons) (2: x1 x2 x3 <- _cons), logit lclass(C 2)

We could even write a separate path specification for each class and outcome variable combination.

(1: x1 <- _cons) (1: x2 <- _cons) (1: x3 <- _cons)
(2: x1 <- _cons) (2: x2 <- _cons) (2: x3 <- _cons),
logit lclass(C 2)

In any case, the model is the same.
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We can build on this to fit different models for different classes and for different outcome variables.

For instance, if x3 is ordinal, we could use an ordinal logit model for this variable by typing

(1: x1 <- _cons, logit) (1: x2 <- _cons, logit)
(1: x3 <- _cons, ologit) (2: x1 <- _cons, logit)
(2: x2 <- _cons, logit) (2: x3 <- _cons, ologit),
lclass(C 2)

Or we can add a constraint that the intercepts for x1 and x2 are equal in class 2.

(1: x1 <- _cons) (1: x2 <- _cons) (1: x3 <- _cons)
(2: x1 <- _cons@c) (2: x2 <- _cons@c) (2: x3 <- _cons),
logit lclass(C 2)

Other than including continuous latent variables, all command-language features of gsem discussed

above can be used to modify and extend this latent class model.

Specifying generalized SEMs: Latent class analysis, class predictors
We can include variables in a latent class model that predict class membership. Extending the model

above, we simply add exogenous variables to the multinomial logit model for C. If we believe that z
predicts class membership, our multinomial logit model becomes

Pr(𝐶 = 1) = 𝑒𝛾1+𝑧𝛽1

𝑒𝛾1+𝑧𝛽1 + 𝑒𝛾2+𝑧𝛽2

Pr(𝐶 = 2) = 𝑒𝛾2+𝑧𝛽2

𝑒𝛾1+𝑧𝛽1 + 𝑒𝛾2+𝑧𝛽2

where 𝛾1 = 0 and 𝛽1 = 0 when C = 1 is the base class.

To fit this model using the command language, we type

(x1 x2 x3 <- _cons, logit) (C <- z), lclass(C 2)

We can also allow different predictors for different classes. For instance, if C has three levels, we can

type

(x1 x2 x3 <- _cons, logit)
(1.C <- z1 z2 z3)
(2.C <- z1 z2)
(3.C <- z1 z2 z3),
lclass(C 3)

where z1, z2, and z3 are predictors of class membership, but only z1 and z2 are predictors of C = 2.

Specifying generalized SEMs: Latent class analysis, two latent variables
Latent class models can include more than one categorical latent variable. Let’s consider an example

where C has two classes and D has three classes.

We could extend our model from Specifying generalized SEMs: Latent class analysis (LCA) to in-

clude D by typing

(x1 x2 x3 <- _cons), logit lclass(C 2) lclass(D 3)

https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesSpecifyinggeneralizedSEMsLatentclassanalysis(LCA)
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Now, if we want to refer to a specific class, we use factor-variable notation before the colon. The

most verbose specification of this model is

(1.C#1.D: x1 <- _cons) (1.C#1.D: x2 <- _cons) (1.C#1.D: x3 <- _cons)
(2.C#1.D: x1 <- _cons) (2.C#1.D: x2 <- _cons) (2.C#1.D: x3 <- _cons)
(1.C#2.D: x1 <- _cons) (1.C#2.D: x2 <- _cons) (1.C#2.D: x3 <- _cons)
(2.C#2.D: x1 <- _cons) (2.C#2.D: x2 <- _cons) (2.C#2.D: x3 <- _cons)
(1.C#3.D: x1 <- _cons) (1.C#3.D: x2 <- _cons) (1.C#3.D: x3 <- _cons)
(2.C#3.D: x1 <- _cons) (2.C#3.D: x2 <- _cons) (2.C#3.D: x3 <- _cons),
logit lclass(C 2) lclass(D 3)

As before, this allows us to specify different models for different outcomes or for different classes. It

also allows us to specify constraints. For instance, if we want equal intercepts for x3 when C = 2 and

D = 2 and when C = 2 and D = 3, we type

(1.C#1.D: x1 <- _cons) (1.C#1.D: x2 <- _cons) (1.C#1.D: x3 <- _cons)
(2.C#1.D: x1 <- _cons) (2.C#1.D: x2 <- _cons) (2.C#1.D: x3 <- _cons)
(1.C#2.D: x1 <- _cons) (1.C#2.D: x2 <- _cons) (1.C#2.D: x3 <- _cons)
(2.C#2.D: x1 <- _cons) (2.C#2.D: x2 <- _cons) (2.C#2.D: x3 <- _cons@a)
(1.C#3.D: x1 <- _cons) (1.C#3.D: x2 <- _cons) (1.C#3.D: x3 <- _cons)
(2.C#3.D: x1 <- _cons) (2.C#3.D: x2 <- _cons) (2.C#3.D: x3 <- _cons@a),
logit lclass(C 2) lclass(D 3)

We can allow predictors of class membership just as we did with a single categorical latent variable.

For specifying z as a predictor of the classes of C, we type

(x1 x2 x3 <- _cons, logit) (C <- z), lclass(C 2) lclass(D 3)

We can also add predictors of specific cells in the interaction between C and D. For instance,

(x1 x2 x3 <- _cons, logit) (1.C#3.D <- z), lclass(C 2) lclass(D 3)

Adding predictors or even an intercept (by specifying cons) to an individual cell induces correlation
between the categorical latent variables C and D.

And now you, too, are an expert on Stata’s path diagrams and command language for SEM.
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