
gsem path notation extensions — Command syntax for path diagrams

Description Syntax Options Remarks and examples Also see

Description
This entry concerns gsem only.

The command syntax for describing generalized SEMs is fully specified by paths, covariance(),
variance(), covstructure(), and means(); see [SEM] sem and gsem path notation and [SEM] sem

and gsem option covstructure().

With gsem, the notation is extended to allow for generalized linear response variables, multilevel

latent variables, categorical latent variables, and comparisons of groups. That is the subject of this entry.

Syntax
gsem paths ... [, covariance() variance() means() group() lclass()]
gsem paths ... [, covstructure() means() group() lclass()]

paths specifies the direct paths between the variables of your model.

The model to be fit is fully described by paths, covariance(), variance(), covstructure(), and
means().

The syntax of these elements is modified when the group() or lclass() option is specified.

Options
covariance(), variance(), and means() are described in [SEM] sem and gsem path notation.

covstructure() is described in [SEM] sem and gsem option covstructure().

group(varname) allowsmodels specified with paths, covariance(), variance(), covstructure(),
and means() to be automatically interacted with the groups defined by varname; see [SEM] In-

tro 6. The syntax of paths and the arguments of covariance(), variance(), covstructure(),
and means() gain an extra syntactical piece when group() is specified.

lclass() allows models specified with paths, covariance(), variance(), and covstructure() to

be automatically interacted with categorical latent variables; see [SEM] Intro 2. The syntax of paths

and the arguments of covariance(), variance(), and covstructure() gain an extra syntactical

piece when lclass() is specified.

Remarks and examples
Remarks are presented under the following headings:

Specifying family and link
Specifying multilevel nested latent variables
Specifying multilevel crossed latent variables
Specifying paths for a specific group
Specifying paths for a specific latent class
Specifying paths for a specific group and latent class

1

https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation
https://www.stata.com/manuals/semsemandgsemoptioncovstructure.pdf#semsemandgsemoptioncovstructure()
https://www.stata.com/manuals/semsemandgsemoptioncovstructure.pdf#semsemandgsemoptioncovstructure()
https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation
https://www.stata.com/manuals/semsemandgsemoptioncovstructure.pdf#semsemandgsemoptioncovstructure()
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/semintro6.pdf#semIntro6
https://www.stata.com/manuals/semintro6.pdf#semIntro6
https://www.stata.com/manuals/semintro2.pdf#semIntro2

gsem path notation extensions — Command syntax for path diagrams 2

Specifying family and link
gsem fits not only linear models but also generalized linear models. There is a set of options for

specifying the specific model to be fit. These options are known as family-and-link options, which

include family() and link(), but those options are seldom used in favor of other family-and-link

shorthand options such as logit, which means family(bernoulli) and link(logit). These options
are explained in [SEM] gsem family-and-link options.

In the command language, you can specify these options among the shared options at the end of a

gsem command:

. gsem ..., ... logit ...

That is convenient but only if all the equations in the model are using the same specific response function.

Many models include multiple equations with each using a different response function.

You can specify any of the family-and-link options within paths. For instance, typing

. gsem (y <- x1 x2), logit

has the same effect as typing

. gsem (y <- x1 x2, logit)

Thus you can type

. gsem (y1 <- x1 L, logit) (y2 <- x2 L, poisson) ..., ...

The y1 equation would be logit, and the y2 equation would be Poisson. If you wanted y2 to be linear

regression, you could type

. gsem (y1 <- x1 L, logit) (y2 <- x2 L, regress) ..., ...

or you could be silent and let y2 default to linear regression,

. gsem (y1 <- x1 L, logit) (y2 <- x2 L) ..., ...

Specifying multilevel nested latent variables
Latent variables are indicated by a name in which at least the first letter is capitalized. This generic

form of the name is often written Lname.

In regular latent variables, which we will call level-1 latent variables, the unobserved values vary

observation by observation. Level-1 latent variables are the more common kinds of latent variables.

gsem allows higher-level latent variables as well as the level-1 variables. Let’s consider three-level

data: students at the observational level, teachers at the second level, and schools at the third. In these

data, each observation is a student. We have data on students nestedwithin teachers nestedwithin schools.

Let’s assume that we correspondingly have three identification (ID) variables. We number the follow-

ing list with the nesting level of the data:

3. Variable school contains a school ID number. If two observations have the same value of

school, then both of those students attended the same school.

2. Variable teacher contains a teacher ID number, or it contains a teacher-within-school ID num-

ber. That is, we do not care whether different schools assigned teachers the same ID number. It

will be sufficient for us that the ID number is unique within school.

https://www.stata.com/manuals/semgsemfamily-and-linkoptions.pdf#semgsemfamily-and-linkoptions

gsem path notation extensions — Command syntax for path diagrams 3

1. Variable student contains a student ID number, or it contains a student-within-school ID num-

ber, or even a student-within-teacher-within-school ID number. That is, we do not care whether

different observations have the same student ID as long as they have different teacher IDs or

different school IDs.

Here is how you write latent variable names at each level of the model:

3. Level 3 is the school level. Latent variables are written as

Lname[school]

An example would be SchQuality[school].

The unobserved values of Lname[school] vary across schools and are constant within school.

If Lname[school] is endogenous, its error variable is e.Lname[school].

You must refer to Lname[school] without omitting the [school] part. Lname by itself looks

like another latent variable to gsem.

2. Level 2 is the teacher-within-school level. Latent variables are written as

Lname[school>teacher] or

Lname[teacher<school]

An example would be TeachQuality[school>teacher] or

TeachQuality[teacher<school].

To gsem, Lname[school>teacher] and Lname[teacher<school] mean the same thing.

You can even refer to TeachQuality[school>teacher] in one place and refer to

TeachQuality[teacher<school] in another, and there will be no confusion.

The unobserved values of Lname[school>teacher] vary across schools and teachers, and

they are constant within teacher.

If Lname[school>teacher] is endogenous, its error variable is

e.Lname[school>teacher] or, equivalently, e.Lname[teacher<school].

1. Level 1 is the student or observational level. Latent variables are written as

Lname[school>teacher>student] or

Lname[student<teacher<school] or

Lname

Everybody just writes Lname. These are the latent variables that correspond to the latent vari-

ables that sem provides. Unobserved values within the latent variable vary observation by

observation.

If Lname is endogenous, its error variable is e.Lname.

You can use multilevel latent variables in paths and options just as you would use any other latent

variable; see [SEM] sem and gsem path notation. Remember, however, that you must type out the full

name of all but the first-level latent variables. You type, for instance, SchQual[school>teacher].
There is a real tendency to type just SchQual when the name is unique.

Changing the subject, we see that the names by which effects are referred to are a function of the top

level. We just discussed a three-level model. The three levels of the model were

(3) school
(2) school>teacher
(1) school>teacher>student

https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation

gsem path notation extensions — Command syntax for path diagrams 4

If we had a two-level model, the levels would be

(2) teacher
(1) teacher>student

Thus, if we had started with a two-level model and then wanted to add a third, higher level onto it,

latent variables that were previously referred to as, say, TeachQual[teacher] would now be referred

to as TeachQual[school>teacher].

Specifying multilevel crossed latent variables
In our previous example, we had a three-level nested model in which student was nested within

teacher, which was nested within school.

Let’s consider data on employees that also have the characteristics of working in an occupation and

working in an industry. These variables are not nested. Just as before, we will assume we have variable

employee containing an employee ID and variables industry and occupation. The latent variables
associated with this model could be the following:

Level Latent-variable name

occupation Lname[occupation]
industry Lname[industry]
employee (observational) Lname

Specifying paths for a specific group
The group(varname) option,

. gsem ..., ... group(varname)

specifies that the model be fit separately for the different values of varname. varnamemight be sex, and
then the model would be fit separately for males and females, or varname might be something else and

perhaps take on more than two values.

Whatever varname is, group(varname) defaults to letting some of the path coefficients, covariances,

variances, and means of your model vary across the groups and constraining others to be equal. Which

parameters vary and which are constrained is described in [SEM] gsem group options, but that is a minor

detail right now.

In what follows, we will assume that varname is mygrp and takes on three values. Those values are

1, 2, and 3, but they could just as well be 2, 9, and 12.

Consider typing

. gsem ..., ...

and typing

. gsem ..., ... group(mygrp)

Whatever paths, covariance(), variance(), covstructure(), and means() are that describe the
model, there are now three times as many parameters because each group has its own unique set. In fact,

when you give the second command, you are not merely asking for three times the parameters, you are

specifying three models, one for each group! In this case, you specified the same model three times

without knowing it.

https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesSpecifyingmultilevelnestedlatentvariables
https://www.stata.com/manuals/semgsemgroupoptions.pdf#semgsemgroupoptions

gsem path notation extensions — Command syntax for path diagrams 5

You can vary the model specified across groups.

1. Let’s write the model you wish to fit as

. gsem (a) (b) (c), cov(d) cov(e) var(f)

where a, b, . . . , f stand for what you type. In this generic example, we have two cov() options just

because multiple cov() options often occur in real models. When you type

. gsem (a) (b) (c), cov(d) cov(e) var(f) group(mygrp)

results are as if you typed

. gsem (1: a) (2: a) (3: a) ///
(1: b) (2: b) (3: b) ///
(1: c) (2: c) (3: c), ///

cov(1: d) cov(2: d) cov(3: d) ///
cov(1: e) cov(2: e) cov(3: e) ///
var(1: f) cov(2: f) cov(3: f) group(mygrp)

The 1:, 2:, and 3: identify the groups for which paths, covariances, or variances are being added,

modified, or constrained.

If mygrp contained the unique values 5, 8, and 10 instead of 1, 2, and 3, then 5: would appear in

place of 1:, 8: would appear in place of 2:, and 10: would appear in place of 3:.

2. Consider the model

. gsem (y <- x) (b) (c), cov(d) cov(e) var(f) group(mygrp)

The default ginvariant() option constrains all intercepts, coefficients, and loadings to be the same
across all groups. If you wanted to constrain the path coefficient (y <- x) to be the same across all

three groups, but let all other parameters be group specific, you could type

. gsem (y <- x@c1) (b) (c), cov(d) cov(e) var(f) group(mygrp) ginvariant(none)

This works because the expansion of (y <- x@c1) is

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1)

See item 12 in [SEM] sem and gsem path notation for more examples of specifying constraints.

3. Consider the model

. gsem (y <- x) (b) (c), cov(d) cov(e) var(f) group(mygrp)

If you wanted to constrain the path coefficient (y <- x) to be the same in groups 2 and 3, you could

type

. gsem (1: y <- x) (2: y <- x@c1) (3: y <- x@c1) (b) (c), ///
cov(d) cov(e) var(f) group(mygrp)

The default ginvariant() option still constrains the other coefficients to be equal to each other,

but not necessarily equal to the coefficient in groups 2 and 3. In our example, mygrp has 3 levels,

so the above effectively removed the default constraint on the group 1 coefficient.

4. Instead of following item 3, you could type

. gsem (y <- x) (2: y <- x@c1) (3: y <- x@c1) (b) (c), ///
cov(d) cov(e) var(f) group(mygrp)

The part (y <- x) (2: y <- x@c1) (3: y <- x@c1) expands to

(1: y <- x) (2: y <- x) (3: y <- x) (2: y <- x@c1) (3: y <- x@c1)

https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotationRemarksandexamplesmodel_item12
https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item3

gsem path notation extensions — Command syntax for path diagrams 6

and thus the path is defined twice for group 2 and twice for group 3. When a path is defined more

than once, the definitions are combined. In this case, the second definition adds more information,

so the result is as if you typed

(1: y <- x) (2: y <- x@c1) (3: y <- x@c1)

5. Instead of following item 3 or item 4, you could type

. gsem (y <- x@c1) (1: y <- x@c2) (b) (c), ///
cov(d) cov(e) var(f) group(mygrp)

The part (y <- x@c1) (1: y <- x@c2) expands to

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1) (1: y <- x@c2)

When results are combined from repeated definitions, then definitions that appear later take prece-

dence. In this case, results are as if the expansion read

(1: y <- x@c2) (2: y <- x@c1) (3: y <- x@c1)

Thus coefficients for groups 2 and 3 are constrained. The group-1 coefficient is constrained to c2.
If c2 appears nowhere else in the model specification, then results are as if the path for group 1 were

unconstrained.

6. Instead of following item 3, item 4, or item 5, you could not type

. gsem (y <- x@c1) (1: y <- x) (b) (c), ///
cov(d) cov(e) var(f) group(mygrp)

The expansion of (y <- x@c1) (1: y <- x) reads

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1) (1: y <- x)

and you might think that 1: y <- x would replace 1: y <- x@c1. Information, however, is com-

bined, and even though precedence is given to information appearing later, silence does not count as

information. Thus the expanded and reduced specification reads the same as if 1: y <- x was never

specified:

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1)

7. Items 1–6, stated in terms of paths, apply equally to what is typed inside the means(), variance(),
covariance(), and covstructure() options. For instance, if you typed

. gsem (a) (b) (c), var(e.y@c1) group(mygrp)

then you are constraining the variance to be equal across all three groups.

If you wanted to constrain the variance to be equal in groups 2 and 3, you could type

. gsem (a) (b) (c), var(e.y) var(2: e.y@c1) var(3: e.y@c1), group(mygrp)

You could omit typing var(e.y) because it is implied. Alternatively, you could type

. gsem (a) (b) (c), var(e.y@c1) var(1: e.y@c2) group(mygrp)

https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item3
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item4
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item3
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item4
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item5
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item1
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexamplesgroup_item6

gsem path notation extensions — Command syntax for path diagrams 7

You could not type

. gsem (a) (b) (c), var(e.y@c1) var(1: e.y) group(mygrp)

because silence does not count as information when specifications are combined.

Similarly, if you typed

. gsem (a) (b) (c), cov(e.y1*e.y2@c1) group(mygrp)

then you are constraining the covariance to be equal across all groups. If you wanted to constrain

the covariance to be equal in groups 2 and 3, you could type

. gsem (a) (b) (c), cov(e.y1*e.y2) ///
cov(2: e.y1*e.y2@c1) cov(3: e.y1*e.y2@c1) ///
group(mygrp)

You could not omit cov(e.y1*e.y2) because it is not assumed. By default, error variables are

assumed to be uncorrelated. Omitting the option would constrain the covariance to be 0 in group 1

and to be equal in groups 2 and 3.

Alternatively, you could type

. gsem (a) (b) (c), cov(e.y1*e.y2@c1) ///
cov(1: e.y1*e.y2@c2) ///
group(mygrp)

8. In the examples above, we have referred to the groups with their numeric values, 1, 2, and 3. Had

the values been 5, 8, and 10, then we would have used those values.

If the group variable mygrp has a value label, you can use the label to refer to the group. For instance,
imagine mygrp is labeled as follows:

. label define grpvals 1 Male 2 Female 3 ”Unknown sex”

. label values mygrp grpvals

We could type

. gsem (y <- x) (Female: y <- x@c1) (Unknown sex: y <- x@c1) ..., ...

or we could type

. gsem (y <- x) (2: y <- x@c1) (3: y <- x@c1) ..., ...

Specifying paths for a specific latent class
The lclass() option in

. gsem ..., ... lclass(C 3)

specifies that the model be fit separately for each of 3 classes of the categorical latent variable C. The
classes of C are 1, 2, and 3. gsem allows for more than one categorical latent variable to be specified by

allowing more than one lclass() option. The two lclass() options in

. gsem ..., ... lclass(C 3) lclass(D 2)

specify that the model be fit separately for each of the 6 latent classes defined by the interaction between

the categorical latent variables C and D.

gsem path notation extensions — Command syntax for path diagrams 8

Whatever the number of classes and latent variables, gsem defaults to letting some of the path co-

efficients, covariances, and variances of your model to vary across the latent classes and constraining

others to be equal. Which parameters vary and which are constrained is described in [SEM] gsem lclass

options, but that is a minor detail right now.

Consider typing

. gsem ..., ...

then typing

. gsem ..., ... lclass(C 3)

Whatever paths, covariance(), variance(), and covstructure() are that describe the model, there

are now three times asmany parameters because each latent class has its own unique set. In fact, when you

give the second command, you are not merely asking for three times the parameters, you are specifying

three models, one for each latent class, and a multinomial model for latent class probabilities.

You can vary the model specified across latent classes.

1. Let’s write the model you wish to fit as

. gsem (a) (b) (c), cov(d) cov(e) var(f)

where a, b, . . . , f stand for what you type. In this generic example, we have two cov() options just

because multiple cov() options can occur in real models. When you type

. gsem (a) (b) (c), cov(d) cov(e) var(f) lclass(C 3)

results are as if you typed

. gsem (1: a) (2: a) (3: a) ///
(1: b) (2: b) (3: b) ///
(1: c) (2: c) (3: c) ///
(1.C <- _cons@0) ///
(2.C <- _cons) ///
(3.C <- _cons), ///

cov(1: d) cov(2: d) cov(3: d) ///
cov(1: e) cov(2: e) cov(3: e) ///
var(1: f) cov(2: f) cov(3: f) ///
lclass(C 3)

The 1:, 2:, and 3: identify the latent classes for which paths, covariances, or variances are being

added, modified, or constrained.

The paths to 1.C, 2.C, and 3.C identify linear predictions for the multinomial probabilities for the

categorical latent variable C.

2. Consider the model

. gsem (y <- x) (b) (c), cov(d) cov(e) var(f) lclass(C 3)

If you wanted to constrain the path coefficient (y <- x) to be the same across all three latent classes,

you could type

. gsem (y <- x@c1) (b) (c), cov(d) cov(e) var(f) lclass(C 3)

This works because the expansion of (y <- x@c1) is

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1)

See item 12 in [SEM] sem and gsem path notation for more examples of specifying constraints.

https://www.stata.com/manuals/semgsemlclassoptions.pdf#semgsemlclassoptions
https://www.stata.com/manuals/semgsemlclassoptions.pdf#semgsemlclassoptions
https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotationRemarksandexamplesmodel_item12
https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation

gsem path notation extensions — Command syntax for path diagrams 9

3. Consider the model

. gsem (y <- x) (b) (c), cov(d) cov(e) var(f) lclass(C 3)

If you wanted to constrain the path coefficient (y <- x) to be the same in latent classes 2 and 3, you

could type

. gsem (1: y <- x) (2: y <- x@c1) (3: y <- x@c1) (b) (c), ///
cov(d) cov(e) var(f) lclass(C 3)

4. Instead of following item 3, you could type

. gsem (y <- x) (2: y <- x@c1) (3: y <- x@c1) (b) (c), ///
cov(d) cov(e) var(f) lclass(C 3)

The part (y <- x) (2: y <- x@c1) (3: y <- x@c1) expands to

(1: y <- x) (2: y <- x) (3: y <- x) (2: y <- x@c1) (3: y <- x@c1)

and thus the path is defined twice for latent class 2 and twice for latent class 3. When a path is

defined more than once, the definitions are combined. In this case, the second definition adds more

information, so the result is as if you typed

(1: y <- x) (2: y <- x@c1) (3: y <- x@c1)

5. Instead of following item 3 or item 4, you could type

. gsem (y <- x@c1) (1: y <- x@c2) (b) (c), ///
cov(d) cov(e) var(f) lclass(C 3)

The part (y <- x@c1) (1: y <- x@c2) expands to

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1) (1: y <- x@c2)

When results are combined from repeated definitions, then definitions that appear later take prece-

dence. In this case, results are as if the expansion read

(1: y <- x@c2) (2: y <- x@c1) (3: y <- x@c1)

Thus coefficients for latent classes 2 and 3 are constrained. The first latent class coefficient is

constrained to c2. If c2 appears nowhere else in the model specification, then results are as if the

path for the first latent class were unconstrained.

6. Instead of following item 3, item 4, or item 5, you could not type

. gsem (y <- x@c1) (1: y <- x) (b) (c), ///
cov(d) cov(e) var(f) lclass(C 3)

The expansion of (y <- x@c1) (1: y <- x) reads

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1) (1: y <- x)

and you might think that 1: y <- x would replace 1: y <- x@c1. Information, however, is com-

bined, and even though precedence is given to information appearing later, silence does not count as

information. Thus the expanded and reduced specification reads the same as if 1: y <- x was never

specified:

(1: y <- x@c1) (2: y <- x@c1) (3: y <- x@c1)

7. Items 1–6, stated in terms of paths, apply equally to what is typed inside the variance(),
covariance(), and covstructure() options. For instance, if you typed

. gsem (a) (b) (c), var(e.y@c1) lclass(C 3) lcinvariant(none)

https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item3
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item3
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item4
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item3
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item4
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item5
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item1
https://www.stata.com/manuals/semgsempathnotationextensions.pdf#semgsempathnotationextensionsRemarksandexampleslclass_item6

gsem path notation extensions — Command syntax for path diagrams 10

then you are constraining the error variance of y to be equal across all three latent classes. Without

the lcinvariant(none) option, gsem would constrain all error variances to be equal across all

groups.

If you wanted to constrain the variance to be equal in latent classes 2 and 3, you could type

. gsem (a) (b) (c), var(e.y) var(2: e.y@c1) var(3: e.y@c1), lclass(C 3)

You could omit typing var(e.y) because it is implied. Alternatively, you could type

. gsem (a) (b) (c), var(e.y@c1) var(1: e.y@c2) lclass(C 3)

You could not type

. gsem (a) (b) (c), var(e.y@c1) var(1: e.y) lclass(C 3)

because silence does not count as information when specifications are combined.

Similarly, if you typed

. gsem (a) (b) (c), cov(e.y1*e.y2@c1) lclass(C 3)

then you are constraining the covariance to be equal across all latent classes. If you wanted to

constrain the covariance to be equal in latent classes 2 and 3, you could type

. gsem (a) (b) (c), cov(e.y1*e.y2) ///
cov(2: e.y1*e.y2@c1) cov(3: e.y1*e.y2@c1) ///
lclass(C 3)

You could not omit cov(e.y1*e.y2) because it is not assumed. By default, error variables are

assumed to be uncorrelated. Omitting the option would constrain the covariance to be 0 in latent

class 1 and to be equal in latent classes 2 and 3.

Alternatively, you could type

. gsem (a) (b) (c), cov(e.y1*e.y2@c1) cov(1: e.y1*e.y2@c2) lclass(C 3)

8. The above examples focused on models with a single categorical latent variable. The same rules

apply for models with two or more categorical latent variables, with the added requirement that the

latent class prefix is specified using factor-variable notation.

For example, suppose your model is

. gsem (a), cov(b) var(c) lclass(C 3) lclass(D 2)

The result is as if you typed

. gsem (1.C#1.D: a) (1.C#2.D: a) ///
(2.C#1.D: a) (2.C#2.D: a) ///
(3.C#1.D: a) (3.C#2.D: a) ///
(1.C <- _cons@0) (2.C <- _cons) (3.C <- _cons) ///
(1.D <- _cons@0) (2.D <- _cons), ///

cov(1.C#1.D: b) cov(1.C#2.D: b) ///
cov(2.C#1.D: b) cov(2.C#2.D: b) ///
cov(3.C#1.D: b) cov(3.C#2.D: b) ///
var(1.C#1.D: c) var(1.C#2.D: c) ///
var(2.C#1.D: c) var(2.C#2.D: c) ///
var(3.C#1.D: c) var(3.C#2.D: c) ///
lclass(C 3) lclass(D 2)

Each of the paths, variance(), covariance(), and covstructure() options is now targeted to

a specific latent class.

gsem path notation extensions — Command syntax for path diagrams 11

9. From the above example, we see that the multinomial probabilities for the latent classes are modeled

as if C and D were independent. For example, the linear prediction for the latent class 3.C#2.D is

composed of the intercept for 3.C plus the intercept for 2.D.

Add the path 3.C#2.D <- cons to the above model specification, and the linear prediction for the

latent class 3.C#2.D will be composed of the intercept for 3.C, plus the intercept for 2.D, plus
the new specified intercept for 3.C#2.D. With this new intercept, C and D are no longer modeled

independently.

10. Consider the model

. gsem (y <- x), lclass(C 3) lclass(D 2)

If you wanted to constrain the path coefficient (y <- x) to be the same in all latent classes with 1.C,
then add the path (1.C: y <- x@c1) so that the model is

. gsem (y <- x) (1.C: y <- x@c1), lclass(C 3) lclass(D 2)

This essentially expands to

. gsem (1.C#1.D: y <- x@c1) (1.C#2.D: y <- x@c1) ///
(2.C#1.D: y <- x) (2.C#2.D: y <- x) ///
(3.C#1.D: y <- x) (3.C#2.D: y <- x) ///
(1.C <- _cons@0) (2.C <- _cons) (3.C <- _cons) ///
(1.D <- _cons@0) (2.D <- _cons), ///

lclass(C 3) lclass(D 2)

This shortcut syntax works similarly for options covariance(), variance(), and

covstructure().

Specifying paths for a specific group and latent class
gsem allows models where both option group() and option lclass() are specified. Building on the

examples from the above sections, the model

. gsem ..., ... group(mygrp) lclass(D 2)

specifies that the model with categorical latent variable D be fit separately for each level of mygrp. The
number of model parameters multiplies when options group() and lclass() are specified.

For example, the model

. gsem (y <- x), group(mygrp) lclass(D 2)

with mygrp having levels 1, 2, and 3, is equivalent to

. gsem (1.mygrp#1.D: y <- x) (1.mygrp#2.D: y <- x) ///
(2.mygrp#1.D: y <- x) (2.mygrp#2.D: y <- x) ///
(3.mygrp#1.D: y <- x) (3.mygrp#2.D: y <- x) ///
(1.mygrp: 1.D <- _cons@0) (1.mygrp: 2.D <- _cons) ///
(2.mygrp: 1.D <- _cons@0) (2.mygrp: 2.D <- _cons) ///
(3.mygrp: 1.D <- _cons@0) (3.mygrp: 2.D <- _cons), ///

group(mygrp) lclass(D 2)

The path (y <- x) expands to 6 paths, one for each group and latent class combination. The number of

covariances and variances is similarly multiplied by 6. The linear predictions for D expand by the number
of group levels.

gsem path notation extensions — Command syntax for path diagrams 12

Also see
[SEM] gsem — Generalized structural equation model estimation command

[SEM] gsem group options — Fitting models on different groups

[SEM] gsem lclass options — Fitting models with latent classes

[SEM] sem and gsem path notation — Command syntax for path diagrams

[SEM] Intro 2 — Learning the language: Path diagrams and command language

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/semgsem.pdf#semgsem
https://www.stata.com/manuals/semgsemgroupoptions.pdf#semgsemgroupoptions
https://www.stata.com/manuals/semgsemlclassoptions.pdf#semgsemlclassoptions
https://www.stata.com/manuals/semsemandgsempathnotation.pdf#semsemandgsempathnotation
https://www.stata.com/manuals/semintro2.pdf#semIntro2
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

