Description Syntax Options Remarks and examples Also see

Description

These options control how results are obtained, from starting values, to numerical integration (also known as quadrature), to how variance estimates are obtained.

Syntax

gsem paths ..., ... estimation_options

method (m1)method used to obtain the estimated parameters; only one method available with gsemvce(vcetype)vcetype may be oim, opg, robust, or cluster clustvar pweights(varlist)pweights(varlist)sampling weight variables for each levelfweights(varlist)frequency weight variables for each leveliweights(varlist)importance weight variables for each levelfrom(matname)specify starting valuesstartyalues(symethod)method for obtaining starting valuesstartyrigt[(gridspec)]perform a grid search to improve starting valuesmoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetclerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedintmethodDescriptionmy aghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	estimation_options	Description
pweights(varlist)sampling weight variables for each levelfweights(varlist)frequency weight variables for each leveliweights(varlist)importance weight variables for each levelfrom(matname)specify starting valuesstartyalues(svmethod)method for obtaining starting valuesstartgrid[(gridspec)]perform a grid search to improve starting valuesemopts(maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmitmethodDescriptionmitmethodDescription	<u>meth</u> od(ml)	
fweights (varlist)frequency weight variables for each leveliweights (varlist)importance weight variables for each levelfrom (matname)specify starting valuesstartyalues (symethod)method for obtaining starting valuesstartgrid[(gridspec)]perform a grid search to improve starting valuesemopts (maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts (adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedintmethodDescriptionmyaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	vce(<i>vcetype</i>)	<i>vcetype</i> may be oim, opg, <u>r</u> obust, or <u>cl</u> uster <i>clustvar</i>
iweights(varlist)importance weight variables for each levelfrom(matname)specify starting valuesstartyalues(symethod)method for obtaining starting valuesstartgrid[(gridspec)]perform a grid search to improve starting valuesemopts(maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedintmethodDescriptionmvaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	pweights(varlist)	sampling weight variables for each level
from (matname)specify starting valuesstartvalues(svmethod)method for obtaining starting valuesstartgrid[(gridspec)]perform a grid search to improve starting valuesemopts(maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodmean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<u>fw</u> eights(<i>varlist</i>)	frequency weight variables for each level
startvalues(symethod)method for obtaining starting valuesstartgrid[(gridspec)]perform a grid search to improve starting valuesemopts(maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedintmethodDescriptionmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescription	<pre>iweights(varlist)</pre>	importance weight variables for each level
startgrid[(gridspec)]perform a grid search to improve starting valuesemopts(maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmyaghermite mcaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<pre>from(matname)</pre>	specify starting values
emopts (maxopts)control EM algorithm for improved starting valuesnoestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmyaghermite mcaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<pre>startvalues(symethod)</pre>	method for obtaining starting values
noestimatedo not fit the model; show starting values insteadintmethod(intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmvaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<pre>startgrid[(gridspec)]</pre>	perform a grid search to improve starting values
intmethod (intmethod)integration methodintpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmvaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	emopts(maxopts)	control EM algorithm for improved starting values
intpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmyaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<u>noest</u> imate	do not fit the model; show starting values instead
intpoints(#)set the number of integration (quadrature) pointsadaptopts(adaptopts)options for adaptive quadraturelistwiseapply sem's (not gsem's) rules for omitting observations with missing valuesdnumericaluse numerical derivative techniquesetolerance(#)set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely usedmaximize_optionscontrol maximization process for specified model; seldom usedintmethodDescriptionmyaghermitemean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<pre>intmethod(intmethod)</pre>	integration method
adaptopts(adaptopts) options for adaptive quadrature listwise apply sem's (not gsem's) rules for omitting observations with missing values dnumerical use numerical derivative techniques etolerance(#) set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely used maximize_options control maximization process for specified model; seldom used intmethod Description mvaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	intpoints(#)	•
with missing values dnumerical use numerical derivative techniques etolerance(#) set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely used maximize_options control maximization process for specified model; seldom used intmethod Description myaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	<u>=</u>	
etolerance(#) set the rescaling tolerance to # to prevent numerical overflow in models with continuous latent variables; rarely used maximize_options control maximization process for specified model; seldom used intmethod Description mvaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	listwise	
in models with continuous latent variables; rarely used maximize_options control maximization process for specified model; seldom used intmethod Description mvaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mode-curvature adaptive Gauss-Hermite quadrature	dnumerical	use numerical derivative techniques
intmethod Description mvaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mcaghermite mode-curvature adaptive Gauss-Hermite quadrature	<pre>etolerance(#)</pre>	
<u>mv</u> aghermite mean-variance adaptive Gauss-Hermite quadrature; the default <u>mc</u> aghermite mode-curvature adaptive Gauss-Hermite quadrature	maximize_options	control maximization process for specified model; seldom used
mvaghermite mean-variance adaptive Gauss-Hermite quadrature; the default mcaghermite mode-curvature adaptive Gauss-Hermite quadrature	intmethod	Description
mcaghermite mode-curvature adaptive Gauss-Hermite quadrature	muagharmita	Å
	-	
ghermite nonadaptive (failss-Hermite dijadrature	ghermite	nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation	<u> </u>	· ·

adaptopts	Description
[no]log	whether to display the iteration log for each numerical integral calculation
<pre>iterate(#)</pre>	set the maximum number of iterations of the adaptive technique; default is iterate(1001)
<u>tol</u> erance(#)	set tolerance for determining convergence of the adaptive parameters; default is tolerance(1e-8)

Options

- method(ml) is the default and is the only method available with gsem. This option is included for compatibility with sem, which provides several methods; see [SEM] sem option method().
- vce(vcetype) specifies the technique used to obtain the variance-covariance matrix of the estimates. See [SEM] sem option method().
- pweights(varlist), fweights(varlist), and iweights(varlist) specify weight variables to be applied from the observation (first) level to the highest level groups. Only one of these options may be specified, and none of them are allowed with crossed models or intmethod(laplace).

pweights(varlist) specifies sampling weights and implies vce(robust) if the vce() option was not also specified.

fweights(varlist) specifies frequency weights.

iweights(varlist) specifies importance weights.

from(matname), startvalues(svmethod), startgrid[(gridspec)], and emopts(maxopts) specify
overriding starting values, specify how other starting values are to be calculated, and provide the
ability to improve the starting values. All of this is discussed in [SEM] Intro 12. Below we provide a
technical description.

from(*matname*) allows you to specify starting values. See [SEM] Intro 12 and see [SEM] sem and gsem option from(). We show the syntax as from(*matname*), but from() has another, less useful syntax, too. An alternative to from() is init() used in the path specifications; see [SEM] sem and gsem path notation.

startvalues() specifies how starting values are to be computed. Starting values specified in from() override the computed starting values, and starting values specified via init() override both.

Starting values options for models without categorical latent variables are as follows:

startvalues(zero) specifies that starting values are to be set to 0.

- startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
 for each response to obtain estimates of intercept and scale parameters, and it substitutes 1 for
 the variances of latent variables.
- startvalues(fixedonly [, maxopts]) builds on startvalues(constantonly) by fitting a
 full fixed-effects model for each response variable to obtain estimates of coefficients along with
 intercept and scale parameters, and it continues to use 1 for the variances of latent variables.

- startvalues(ivloadings [, *maxopts*]) builds on startvalues(fixedonly) by using instrumental-variable methods with the generalized residuals from the fixed-effects models to compute starting values for latent variable loadings, and still uses 1 for the variances of latent variables.
- startvalues(iv [, maxopts]) builds on startvalues(ivloadings) by using
 instrumental-variable methods with generalized residuals to obtain variances of latent variables.
- Starting values options for models with categorical latent variables are as follows:
 - startvalues(factor [, maxopts]) specifies that starting values be computed by assigning each observation to an initial latent class that is determined by running a factor analysis on all the observed variables in the specified model. This is the default for models with categorical latent variables.
 - startvalues(classid varname[, maxopts]) specifies that starting values be computed by assigning each observation to an initial latent class specified in varname. varname is required to have each class represented in the estimation sample.
 - startvalues(classpr varlist[, maxopts]) specifies that starting values be computed using the initial class probabilities specified in varlist. varlist is required to contain k variables for a model with k latent classes. The values in varlist are normalized to sum to 1 within each observation.
 - startvalues(randomid [, draws(#) seed(#) maxopts]) specifies that starting values be computed by randomly assigning observations to initial classes.
 - startvalues(randompr [, draws(#) seed(#) maxopts]) specifies that starting values be computed by randomly assigning initial class probabilities.
 - startvalues(jitter $[\#_c [\#_v], draws(\#) seed(\#) maxopts]$) specifies that starting values be constructed by randomly perturbing the values from a Gaussian approximation to each outcome.
 - $\#_c$ is the magnitude for randomly perturbing coefficients, intercepts, cutpoints, and scale parameters; the default value is 1.
 - $\#_v$ is the magnitude for randomly perturbing variances for Gaussian outcomes; the default value is 1.

Some starting values options have suboptions that allow for tuning the starting values calculations:

maxopts is a subset of the standard maximize_options: difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#), nrtolerance(#); see [R] Maximize.

draws(#) specifies the number of random draws. For startvalues(randomid), startvalues(randompr), and startvalues(jitter), gsem will generate # random draws and select the starting values from the draw with the best log-likelihood value from the EM iterations. The default is draws(1).

seed(#) sets the random-number seed.

startgrid() performs a grid search on variance components of latent variables to improve starting values. This is well discussed in [SEM] **Intro 12**. No grid search is performed by default unless the starting values are found to be not feasible, in which case gsem runs startgrid() to perform a "minimal" search involving 3^L likelihood evaluations, where L is the number of latent variables.

Sometimes this resolves the problem. Usually, however, there is no problem and startgrid() is not run by default. There can be benefits from running startgrid() to get better starting values even when starting values are feasible.

emopts(*maxopts*) controls maximization of the log likelihood for the EM algorithm. The EM algorithm is used only for models with categorical latent variables. *maxopts* is the same subset of *maximize_options* that are allowed in the startvalues() option, but some of the defaults are different for the EM algorithm. The default maximum number of iterations is iterate(20). The default coefficient vector tolerance is tolerance(1e-4). The default log-likelihood tolerance is ltolerance(1e-6).

- noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as modified by the above options if modifications were made), and they are to be shown using the coeflegend style of output. An important use of this option is before you have modified starting values at all; you can type the following:
 - . gsem ..., ... noestimate
 - . matrix b = e(b)
 - (modify elements of b) . . .
 - . gsem ..., ... from(b)
- intmethod(intmethod), intpoints(#), and adaptopts(adaptopts) affect how integration for the latent variables is numerically calculated.

intmethod(*intmethod*) specifies the method and defaults to intmethod(mvaghermite). We recommend this method, although sometimes the more computationally intensive intmethod(mcaghermite) works better for multilevel models that are failing to converge. Sometimes it is useful to fall back on the less computationally intensive and less accurate intmethod(ghermite) and intmethod(laplace) to get the model to converge and then perhaps use one of the other more accurate methods. All of this is explained in [SEM] Intro 12. intmethod(laplace) is the default when fitting crossed models. Crossed models are often difficult.

intpoints(#) specifies the number of integration points to use and defaults to intpoints(7). Increasing the number increases accuracy but also increases computational time. Computational time is roughly proportional to the number specified. See [SEM] Intro 12.

adaptopts(*adaptopts*) affects the adaptive part of adaptive quadrature (another term for numerical integration) and thus is relevant only for intmethod(mvaghermite), intmethod(mcaghermite), and intmethod(laplace).

adaptopts() defaults to adaptopts(nolog iterate(1001) tolerance(1e-8)).

nolog specifies whether iteration logs are shown each time a numerical integral is calculated.

iterate() specifies the maximum number of iterations of the adaptive technique.

tolerance() specifies the tolerance for determining convergence of the adaptive parameters. Convergence is declared when the relative change in the log likelihood is less than or equal to the tolerance.

listwise applies sem's rules rather than gsem's rules for omitting observations with missing values. By default, gsem is sometimes able to use observations containing missing values for fitting parts of the model. sem, meanwhile, applies a listwise-deletion rule unless it is using method (mlmv). Specifying listwise allows us at StataCorp to verify that gsem and sem produce the same results. We find that reassuring. Actually, automated tests verify that results are the same before shipping. For your

information, sem and gsem use different numerical machinery for obtaining results, and thus the near equality of results is a strong test that each is coded correctly. You may find listwise useful if you are reproducing results from another package that uses listwise deletion.

- dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed using numerical techniques instead of analytical formulas. By default, gsem uses analytical formulas for computing the gradient and Hessian for all integration methods except intmethod(laplace).
- etolerance(#) specifies a positive tolerance used to determine when to rescale log-likelihood values that are too big to exponentiate. The formula for the default tolerance is

 $\max(2, nLvars) * \log(p)$

where nLvars is the number of latent variables in the model and p is the number of quadrature points.

The rule gsem uses to determine when to rescale log-likelihood values at a given level is the following: rescale log-likelihood values outside the range

$$[-M, M - #]$$

where M is a limit that represents values beyond which exponentiation can yield a missing value.

This option is rarely ever necessary but can be helpful for multilevel models with large group sizes.

maximize_options specify the standard and rarely specified options for controlling the maximization process; see [R] Maximize. The relevant options for gsem are difficult, technique(algorithm_spec), iterate(#), [no]log, trace, gradient, showstep, hessian, tolerance(#), ltolerance(#), nrtolerance(#) and nonrtolerance.

Remarks and examples

For more information on vce(), see [SEM] Intro 8 and [SEM] Intro 9.

For more information on the other options, see [SEM] Intro 12.

Also see

- [SEM] gsem Generalized structural equation model estimation command
- [SEM] Intro 8 Robust and clustered standard errors
- [SEM] Intro 9 Standard errors, the full story
- [SEM] Intro 12 Convergence problems and how to solve them

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.