gsem — Generalized structural equation model estimation command

Description

`gsem` fits generalized SEMs. When you use the Builder in `gsem` mode, you are using the `gsem` command.

Menu

Statistics > SEM (structural equation modeling) > Model building and estimation

Syntax

```
gsem paths [if] [in] [weight] [ , options ]
```

where `paths` are the paths of the model in command-language path notation; see [SEM] `sem` and `gsem path notation`.

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>model_description_options</code></td>
<td>fully define, along with <code>paths</code>, the model to be fit</td>
</tr>
<tr>
<td><code>group_options</code></td>
<td>fit model for different groups</td>
</tr>
<tr>
<td><code>lclass_options</code></td>
<td>fit model with latent classes</td>
</tr>
<tr>
<td><code>estimation_options</code></td>
<td>method used to obtain estimation results</td>
</tr>
<tr>
<td><code>reporting_options</code></td>
<td>reporting of estimation results</td>
</tr>
<tr>
<td><code>syntax_options</code></td>
<td>controlling interpretation of syntax</td>
</tr>
</tbody>
</table>

Factor variables and time-series operators are allowed. bootstrap, by, collect, jackknife, permute, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands. Weights are not allowed with the bootstrap prefix; see [R] bootstrap. vce() and weights are not allowed with the svy prefix; see [SVY] svy. fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Also see [SEM] `gsem postestimation` for features available after estimation.

Options

`model_description_options` describe the model to be fit. The model to be fit is fully specified by `paths`—which appear immediately after `gsem`—and the options covariance(), variance(), and means(). See [SEM] `gsem model description options` and [SEM] `sem` and `gsem path notation`.

1
gsem — Generalized structural equation model estimation command

group_options allow the specified model to be fit for different subgroups of the data, with some parameters free to vary across groups and other parameters constrained to be equal across groups. See [SEM] gsem group options.

lclass_options allow the specified model to be fit across a specified number of latent classes, with some parameters free to vary across classes and other parameters constrained to be equal across classes. See [SEM] gsem lclass options.

estimation_options control how the estimation results are obtained. These options control how the standard errors (VCE) are obtained and control technical issues such as choice of estimation method. See [SEM] gsem estimation options.

reporting_options control how the results of estimation are displayed. See [SEM] gsem reporting options.

syntax_options control how the syntax that you type is interpreted. See [SEM] sem and gsem syntax options.

Remarks and examples

gsem provides important features not provided by **sem** and correspondingly omits useful features provided by **sem**. The differences in capabilities are the following:

1. **gsem** allows generalized linear response functions as well as the linear response functions allowed by **sem**.
2. **gsem** allows for multilevel models, something **sem** does not.
3. **gsem** allows for categorical latent variables, which are not allowed by **sem**.
4. **gsem** allows Stata’s factor-variable notation to be used in specifying models, something **sem** does not.
5. **gsem**’s method ML is sometimes able to use more observations in the presence of missing values than can **sem**’s method ML. Meanwhile, **gsem** does not provide the MLMV method provided by **sem** for explicitly handling missing values.
6. **gsem** cannot produce standardized coefficients.
7. **gsem** cannot use summary statistic datasets (SSDs); **sem** can.

gsem has nearly identical syntax to **sem**. Differences in syntax arise because of differences in capabilities. The resulting differences in syntax are the following:

1. **gsem** adds new syntax to **paths** to handle latent variables associated with multilevel modeling.
2. **gsem** adds new options to handle the family and link of generalized linear responses.
3. **gsem** adds new syntax to handle categorical latent variables.
4. **gsem** deletes options related to features it does not have, such as SSDs.
5. **gsem** adds technical options for controlling features not provided by **sem**, such as numerical integration (quadrature choices), number of integration points, and a number of options dealing with starting values, which are a more difficult proposition in the generalized SEM framework.

For a readable explanation of what **gsem** can do and how to use it, see the intro sections. You might start with [SEM] Intro 1.

For examples of **gsem** in action, see the example sections. You might start with [SEM] Example 1.

For detailed syntax and descriptions, see the references below.
Remarks on three advanced topics are presented under the following headings:

- Default normalization constraints
- Default covariance assumptions
- How to solve convergence problems

Default normalization constraints

`gsem` applies the same rules as `sem` to identify models; see [SEM] `sem` and see [SEM] Intro 4. Everything said there about continuous latent variables applies to multilevel latent variables such as \(M1[school] \) and \(M2[school>teacher] \).

Default covariance assumptions

`gsem` assumes the same covariance structures as does `sem`; see [SEM] `sem` and see [SEM] Intro 4. `gsem`, however, treats covariances between observed exogenous variables as given. Actually, so does `sem` unless you specify an override. The override cannot be specified with `gsem`.

How to solve convergence problems

See [SEM] Intro 12.

Stored results

`gsem` stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(N_clust)` number of clusters
- `e(N_groups)` number of groups
- `e(k)` number of parameters
- `e(k_cat#)` number of categories for the \(\# \)th `depvar`, ordinal
- `e(k_dv)` number of dependent variables
- `e(k_eq)` number of equations in `e(b)`
- `e(k_out#)` number of outcomes for the \(\# \)th `depvar`, mlogit
- `e(k_rc)` number of covariances
- `e(k_rs)` number of variances
- `e(ll)` log likelihood
- `e(n_quad)` number of integration points
- `e(rank)` rank of `e(V)`
- `e(ic)` number of iterations
- `e(rc)` return code

Macros

- `e(cmd)` `gsem`
- `e(cmdline)` command as typed
- `e(depvar)` names of dependent variables
- `e(eqnames)` names of equations
- `e(ute)` weight type
- `e(wexp)` weight expression
- `e(fweightk)` `fweight` variable for \(k \)th level, if specified
- `e(pweightk)` `pweight` variable for \(k \)th level, if specified
- `e(iweightk)` `iweight` variable for \(k \)th level, if specified
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
In addition to the above, the following is stored in \texttt{r()}:

Matrices
\begin{itemize}
\item \texttt{r(table)} \quad \text{matrix containing the coefficients with their standard errors, test statistics, } p\text{-values, and confidence intervals}
\end{itemize}

Note that results stored in \texttt{r()} are updated when the command is replayed and will be replaced when any \texttt{r-class} command is run after the estimation command.
References

Also see

[SEM] Intro 1 — Introduction

[SEM] sem and gsem path notation — Command syntax for path diagrams

[SEM] gsem path notation extensions — Command syntax for path diagrams

[SEM] gsem model description options — Model description options

[SEM] gsem group options — Fitting models on different groups

[SEM] gsem lcclass options — Fitting models with latent classes

[SEM] gsem estimation options — Options affecting estimation

[SEM] gsem reporting options — Options affecting reporting of results

[SEM] sem and gsem syntax options — Options affecting interpretation of syntax

[SEM] gsem postestimation — Postestimation tools for gsem

[SEM] Methods and formulas for gsem — Methods and formulas for gsem

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands