Example 46g — Endogenous treatment-effects model

Description

To illustrate the treatment-effects model, we use the following data:

. use https://www.stata-press.com/data/r16/gsem_union3
(NLSY 1972)
. describe

Contains data from https://www.stata-press.com/data/r16/gsem_union3.dta
obs: 1,693 NLSY 1972
vars: 24 29 Mar 2018 11:39
(._dta has notes)

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>idcode</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>NLS ID</td>
</tr>
<tr>
<td>year</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>interview year</td>
</tr>
<tr>
<td>birth_yr</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>birth year</td>
</tr>
<tr>
<td>age</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>age in current year</td>
</tr>
<tr>
<td>race</td>
<td>byte</td>
<td>%8.0g</td>
<td>racelbl</td>
<td>race</td>
</tr>
<tr>
<td>msp</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if married, spouse present</td>
</tr>
<tr>
<td>nev_mar</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if never married</td>
</tr>
<tr>
<td>grade</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>current grade completed</td>
</tr>
<tr>
<td>collgrad</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if college graduate</td>
</tr>
<tr>
<td>not_smsa</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if not SMSA</td>
</tr>
<tr>
<td>c_city</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if central city</td>
</tr>
<tr>
<td>south</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if south</td>
</tr>
<tr>
<td>ind_code</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>industry of employment</td>
</tr>
<tr>
<td>occ_code</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>occupation</td>
</tr>
<tr>
<td>union</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if union</td>
</tr>
<tr>
<td>wks_ue</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>weeks unemployed last year</td>
</tr>
<tr>
<td>ttl_exp</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>total work experience</td>
</tr>
<tr>
<td>tenure</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>job tenure, in years</td>
</tr>
<tr>
<td>hours</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>usual hours worked</td>
</tr>
<tr>
<td>wks_work</td>
<td>int</td>
<td>%8.0g</td>
<td></td>
<td>weeks worked last year</td>
</tr>
<tr>
<td>ln_wage</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>ln(wage/GNP deflator)</td>
</tr>
<tr>
<td>wage</td>
<td>double</td>
<td>%10.0g</td>
<td></td>
<td>real wage</td>
</tr>
<tr>
<td>black</td>
<td>float</td>
<td>%9.0g</td>
<td></td>
<td>race black</td>
</tr>
<tr>
<td>smsa</td>
<td>byte</td>
<td>%8.0g</td>
<td></td>
<td>1 if SMSA</td>
</tr>
</tbody>
</table>

Sorted by: idcode
. notes
._dta:
2. This data was subsetted for purposes of demonstration. Among other things, it contains data only for 1972.

See Structural models 8: Dependencies between response variables and Structural models 9: Unobserved inputs, outputs, or both in [SEM] Intro 5 for background.
We wish to fit the following model:

\[
\begin{align*}
\varepsilon_1 & \sim \text{Gaussian} \\
\varepsilon_2 & \sim \text{Gaussian} \\
\text{llunion} & \sim \text{identity} \\
\text{ulunion} & \sim \text{identity} \\
\text{wage} & \sim \text{identity} \\
\text{grade} & \sim \text{identity} \\
\text{tenure} & \sim \text{identity} \\
\text{age} & \sim \text{identity} \\
\text{1.smsa} & \sim \text{identity} \\
\text{1.union} & \sim \text{identity}
\end{align*}
\]

We wish to estimate the “treatment effect” of being a union member. That is, we speculate that union membership has an effect on wages, and we want to measure that effect. The problem would be easy if we had data on the same workers from two different but nearly identical universes, one in which the workers were not union members and another in which they were.

The model above is similar to the Heckman selection model we fit in [SEM] Example 45g. The differences are that the continuous variable \(\text{wage}\) is observed in all cases and that we have a path from the treatment indicator (previously selection, now treatment) to the continuous variable. Just as with the Heckman selection model, we allow for correlation by introducing a latent variable with model identification constraints.

Before we can fit this model, we need to create new variables \text{llunion} and \text{ulunion}. \text{llunion} will equal 0 if \text{union} is 1 and missing otherwise. \text{ulunion} is the complement of \text{llunion}: it equals 0 if \text{union} is 0 and missing otherwise. \text{llunion} and \text{ulunion} will be used as the dependent variables in the treatment equation, providing the equivalent of a scaled probit regression.

```
. generate llunion = 0 if union == 1
     (1,433 missing values generated)
. generate ulunion = 0 if union == 0
     (709 missing values generated)
```
We can now fit this model with command syntax by typing

```
gsem (wage <- age grade i.smsa i.black tenure 1.union L)
> (llunion <- i.black tenure i.south L01,
>     family(gaussian, udepvar(ulunion))),
>     var(L01 e.wage@a e.llunion@a)
```

Fitting fixed-effects model:

Iteration 0:  log likelihood = -3376.1731
Iteration 1:  log likelihood = -3096.7893
Iteration 2:  log likelihood = -3061.7875
Iteration 3:  log likelihood = -3061.4973
Iteration 4:  log likelihood = -3061.497
Iteration 5:  log likelihood = -3061.497

Refining starting values:
Grid node 0:  log likelihood = -3064.9724

Fitting full model:

Iteration 0:  log likelihood = -3064.9427
Iteration 1:  log likelihood = -3060.3304
Iteration 2:  log likelihood = -3055.0099
Iteration 3:  log likelihood = -3096.6772
Iteration 4:  log likelihood = -3062.6735
Iteration 5:  log likelihood = -3054.2853
Iteration 6:  log likelihood = -3051.673
Iteration 7:  log likelihood = -3051.5758
Iteration 8:  log likelihood = -3051.575
Iteration 9:  log likelihood = -3051.575

Generalized structural equation model

<table>
<thead>
<tr>
<th>Response</th>
<th>wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Link</td>
<td>identity</td>
</tr>
</tbody>
</table>

Censoring of obs:

<table>
<thead>
<tr>
<th>Lower response</th>
<th>llunion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncensored</td>
<td>= 0</td>
</tr>
<tr>
<td>Upper response</td>
<td>ulunion</td>
</tr>
<tr>
<td>Left-censored</td>
<td>= 957</td>
</tr>
<tr>
<td>Family</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Right-censored</td>
<td>= 253</td>
</tr>
<tr>
<td>Link</td>
<td>identity</td>
</tr>
<tr>
<td>Interval-cens.</td>
<td>= 0</td>
</tr>
</tbody>
</table>

Log likelihood = -3051.575

( 1) [llunion]L = 1
( 2) - [/]var(e.wage) + [/]var(e.llunion) = 0
( 3) [/]var(L) = 1

|            | Coef.  | Std. Err. | z      | P>|z|  | [95% Conf. Interval] |
|------------|--------|-----------|--------|------|----------------------|
| wage       |        |           |        |      |                      |
| age        | .1487409 | .0193291  | 7.70   | 0.000 | .1108566 .1866252    |
| grade      | .4205658 | .0293577  | 14.33  | 0.000 | .3630258 .4781057    |
| 1.smsa     | .9117044 | .1249041  | 7.30   | 0.000 | .6668969 1.156512    |
| 1.black    | -.7882472 | .1367077  | -5.77  | 0.000 | -1.056189 -.520305   |
| tenure     | .1524015 | .0369595  | 4.12   | 0.000 | .0799621 .2248408    |
| 1.union    | 2.945816 | .2749549  | 10.71  | 0.000 | 2.406914 3.484718    |
| _cons      | -1.706795 | .1288024  | -13.25 | 0.000 | -1.959243 -1.454347  |

| llunion    |        |           |        |      |                      |
| 1.black    | .6704049 | .148057   | 4.53   | 0.000 | .3802185 .9605913    |
| tenure     | .1282024 | .0357986  | 3.58   | 0.000 | .0580384 .1983664    |
| 1.south    | -.8542673 | .136439   | -6.26  | 0.000 | -1.121683 -.586518   |
| L          | 1 (constrained) |        |        |      |                      |
| _cons      | -1.302676 | .1407538  | -9.25  | 0.000 | -1.578548 -1.026804  |
Example 46g — Endogenous treatment-effects model

<table>
<thead>
<tr>
<th>var(L)</th>
<th>1 (constrained)</th>
</tr>
</thead>
<tbody>
<tr>
<td>var(e.wage)</td>
<td>1.163821 .2433321 .7725324 1.753298</td>
</tr>
<tr>
<td>var(e.llun-n)</td>
<td>1.163821 .2433321 .7725324 1.753298</td>
</tr>
</tbody>
</table>

Notes:

1. The treatment effect is measured by the coefficient on the path `treatment_variable->continuous_variable` or, in our case, `1.union->wage`. It is estimated to be 2.9458, which is practically large and statistically significant.

2. The interpretation formulas are the same as for the Heckman selection model in [SEM] Example 45g, namely,

\[
\beta = \beta^* \\
\gamma = \gamma^*/\sqrt{\sigma^2 + 1} \\
\sigma^2 = \sigma^2 + \kappa^2 \\
\rho = \kappa/\sqrt{(\sigma^2 + \kappa^2)(\sigma^2 + 1)}
\]

To remind you, \( \beta \) are the coefficients in the continuous-outcome equation, \( \gamma \) are the coefficients in the treatment equation, \( \sigma^2 \) is the variance of the error in the continuous-outcome equation, and \( \rho \) is the correlation between the errors in the treatment and continuous-outcome equations.

3. In the output above, \( \sigma^2 \) (\( \text{var(e.wage)} \)) is 1.1638 and \( \kappa \) (the path coefficient on `wage<-L`) is -1.7068. In [SEM] Example 45g, we calculated \( \rho \) by hand and then showed how to use the software to obtain the value and its standard error. This time, we will go right to the software.

After obtaining symbolic names by typing `gsem, coeflegend`, we type the following to obtain \( \rho \):

```stata
. nlcom (rho: _b[wage:L]/(sqrt(_b[var(e.wage)] + 1)*sqrt(_b[var(e.wage)] + _b[wage:L]^2)))
```

| Coef. | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|-------|-----------|-----|-----|---------------------|
| rho   | -0.574648 | 0.060969 | -9.43 | 0.000 | -0.6941451 -0.4551509 |

4. We can obtain the untransformed treatment coefficients just as we did in [SEM] Example 45g.

5. Just as with the Heckman selection model, with `gsem`, the treatment-effects model can be applied to generalized outcomes and include multilevel effects. See Skrondal and Rabe-Hesketh (2004, chap. 14.5) for an example with a Poisson response function.

### Fitting the model with the Builder

Use the diagram in *Fitting the treatment-effects model* above for reference.

1. Open the dataset.

   In the Command window, type

   ```stata
   . use https://www.stata-press.com/data/r16/gsem_union3
   . generate llunion = 0 if union == 1
   . generate ulunion = 0 if union == 0
   ```
2. Open a new Builder diagram.
   Select menu item **Statistics > SEM (structural equation modeling) > Model building and estimation.**

3. Put the Builder in **gsem** mode by clicking on the $\text{g}$ button.

4. Create the independent variables.
   Select the Add observed variables set tool, $\text{a}$, and then click in the diagram about one-fourth of the way in from the left and one-fourth of the way up from the bottom.

   In the resulting dialog box,
   a. select the **Select variables** radio button (it may already be selected);
   b. type 1.south, 1.black, tenure, age, grade, 1.smsa, and 1.union in the **Variables** control (typing 1.varname rather than using the $\text{a}$ button to create i.varname prevents the rectangle corresponding to the base category for these binary variables from being created);
   c. select **Vertical** in the **Orientation** control; and
   d. click on **OK**.

   If you wish, move the set of variables by clicking on any variable and dragging it.

5. Create the generalized response for llunion.
   a. Select the Add generalized response variable tool, $\text{f}$.
   b. Click about one-third of the way in from the right side of the diagram, to the right of the 1.black rectangle.
   c. In the Contextual Toolbar, select Gaussian, Identity in the **Family/Link** control (it may already be selected).
   d. In the Contextual Toolbar, select llunion in the **Variable** control.
   e. In the Contextual Toolbar, click on the **Properties...** button.
   f. In the resulting **Variable properties** dialog box, click on the **Censoring...** button in the **Variable** tab.
   g. In the resulting **Censoring** dialog box, select the **Interval measured, depvar is lower boundary** radio button. In the resulting **Interval measured** box below, use the **Upper bound** control to select the variable ulunion.
   h. Click on **OK** in the **Censoring** dialog box, and then click on **OK** in the **Variable properties** dialog box. The Details pane will now show llunion as the lower bound and ulunion as the upper bound for our interval measure.

6. Create the endogenous wage variable.
   a. Select the Add observed variable tool, $\text{a}$, and then click about one-third of the way in from the right side of the diagram, to the right of the grade rectangle.
   b. In the Contextual Toolbar, select wage with the **Variable** control.

7. Create paths from the independent variables to the dependent variables.
   a. Select the Add path tool, $\text{−}$. 
   b. Click in the right side of the 1.south rectangle (it will highlight when you hover over it), and drag a path to the left side of the llunion rectangle (it will highlight when you can release to connect the path).
c. Continuing with the tool, create the following paths by clicking first in the right side of the rectangle for the independent variable and dragging it to the left side of the rectangle for the dependent variable:

1.black -> llunion
tenure -> llunion
1.black -> wage
tenure -> wage
age -> wage
grade -> wage
1.smsa -> wage
1.union -> wage

8. Clean up the direction of the error terms.

We want the error for llunion to be above the rectangle and the error for wage to be below the rectangle, but it is likely they have been created in other directions.

a. Choose the Select tool.
b. Click in the llunion rectangle.
c. Click on one of the Error rotation buttons, in the Contextual Toolbar until the error is above the rectangle.
d. Click in the wage rectangle.
e. Click on one of the Error rotation buttons, , in the Contextual Toolbar until the error is below the rectangle.

9. Create the latent variable.

a. Select the Add latent variable tool, .
b. In the Contextual Toolbar, type L in the Name control and press Enter.

10. Draw paths from the latent variable to each endogenous variable.

a. Select the Add path tool, .
b. Click in the upper-left quadrant of the L oval, and drag a path to the right side of the llunion rectangle.
c. Continuing with the tool, create another path by clicking first in the lower-left quadrant of the L oval and dragging a path to the right side of the wage rectangle.

11. Place constraints on the variances and on the path from L to llunion.

a. Choose the Select tool.
b. Click on the L oval. In the Contextual Toolbar, type 1 in the box and press Enter.
c. Click on the error oval attached to the wage rectangle. In the Contextual Toolbar, type a in the box and press Enter.
d. Click on the error oval attached to the llunion rectangle. In the Contextual Toolbar, type a in the box and press Enter.
e. Click on the path from L to llunion. In the Contextual Toolbar, type 1 in the box and press Enter.
12. Clean up the location of the paths.

If you do not like where a path has been connected to its variables, use the Select tool, ![Select tool], to click on the path, and then simply click on where it connects to a variable and drag the endpoint.


Click on the **Estimate** button, ![Estimate button], in the Standard Toolbar, and then click on **OK** in the resulting **GSEM estimation options** dialog box.

You can open a completed diagram in the Builder by typing

```
.webgetsem gsem_treat
```

### References


### Also see

[SEM] **Example 34g** — Combined models (generalized responses)

[SEM] **Example 45g** — Heckman selection model

[SEM] **Intro 5** — Tour of models

[SEM] **gsem** — Generalized structural equation model estimation command