
Example 45g — Heckman selection model

Description Remarks and examples References Also see

Description
To demonstrate selection models, we will use the following data:

. use https://www.stata-press.com/data/r19/gsem_womenwk
(Fictional data on women and work)
. summarize

Variable Obs Mean Std. dev. Min Max

age 2,000 36.208 8.28656 20 59
educ 2,000 13.084 3.045912 10 20

married 2,000 .6705 .4701492 0 1
children 2,000 1.6445 1.398963 0 5

wage 1,343 23.69217 6.305374 5.88497 45.80979
. notes
_dta:

1. Fictional data on 2,000 women, 1,343 of whom work.
2. age ....... age in years
3. educ ...... years of schooling
4. married ... 1 if married spouse present
5. children .. # of children under 12 years
6. wage ...... hourly wage (missing if not working)

See Structural models 8: Dependencies between response variables and Structural models 9: Unob-

served inputs, outputs, or both in [SEM] Intro 5 for background.

Remarks and examples
Remarks are presented under the following headings:

The Heckman selection model as an SEM
Fitting the Heckman selection model as an SEM
Transforming results and obtaining rho
Fitting the model with the Builder

The Heckman selection model as an SEM
We demonstrate below how gsem can be used to fit the Heckman selection model (Gronau 1974;

Lewis 1974; Heckman 1976) and produce results comparable to those of Stata’s dedicated heckman
command; see [R] heckman.

Our purpose is not to promote gsem as an alternative to heckman. We have two other purposes.

One is to show that gsem can be used to generalize the Heckman selection model to response functions
other than linear and, in addition or separately, to include multilevel effects when such effects are present.

The other is to show how Heckman selection models can be included in more complicated SEMs.

For those unfamiliar with this model, it deals with a continuous outcome that is observed only when

another equation determines that the observation is selected, and the errors of the two equations are

allowed to be correlated. Subjects often choose to participate in an event or medical trial or even the labor

market, and thus the outcome of interest might be correlated with the decision to participate. Heckman

won a Nobel Prize for this work.
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The model is sometimes cast in terms of female labor supply, but it obviously has broader application.

Nevertheless, we will consider a female labor-supply example.

Women are offered employment at a wage of 𝑤,

𝑤𝑖 = X𝑖β + 𝜖𝑖

Not all women choose to work, and 𝑤 is observed only for those women who do work. Women choose

to work if

Z𝑖𝛄 + 𝜉𝑖 > 0

where

𝜖𝑖 ∼ 𝑁(0, 𝜎2)
𝜉𝑖 ∼ 𝑁(0, 1)

corr(𝜖, 𝜉) = 𝜌

More generally, we can think of this model as applying to any continuously measured outcome 𝑤𝑖,

which is observed only if Z𝑖𝛄 + 𝜉𝑖 > 0. The important feature of the model is that the errors 𝜉𝑖 of the

selection equation and the errors 𝜖𝑖 of the observed-data equation are allowed to be correlated.

The Heckman selection model can be recast as a two-equation SEM—one linear regression (for the

continuous outcome) and the other censored regression (for selection)—and with a latent variable 𝐿𝑖
added to both equations. The latent variable is constrained to have variance 1 and to have coefficient 1 in

the selection equation, leaving only the coefficient in the continuous-outcome equation to be estimated.

For identification, the variance from the censored regression will be constrained to be equal to that of the

linear regression. The results of doing this are the following:

1. Latent variable 𝐿𝑖 becomes the vehicle for carrying the correlation between the two equations.

2. All the parameters given above, namely, β, 𝛄, 𝜎2, and 𝜌, can be recovered from the SEM esti-

mates.

3. If we call the estimated parameters in the SEM formulation β∗, 𝛄∗, and 𝜎2∗
, and let 𝜅 denote

the coefficient on 𝐿𝑖 in the continuous-outcome equation, then

β = β∗

𝛄 = 𝛄∗/√𝜎2∗ + 1
𝜎2 = 𝜎2∗ + 𝜅2

𝜌 = 𝜅/√(𝜎2∗ + 𝜅2)(𝜎2∗ + 1)

This parameterization places no restriction on the range or sign of 𝜌. See Skrondal and Rabe-
Hesketh (2004, 107–108).
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Fitting the Heckman selection model as an SEM
We wish to fit the following Heckman selection model:

married

children

educ

age

selected

Gaussian

identity

ε1 a

wage

ε2 a

L
1

1

What makes this a Heckman selection model is

1. the inclusion of latent variable L in both the continuous-outcome (wage) equation and the

censored-outcome selection equation;

2. constraining the selected <- L path coefficient to be 1;

3. constraining the variance of L to be 1; and

4. constraining the error variances to be equal.

Before we can fit this model, we need to create new variables selected and notselected. selected
will equal 0 if the woman works (wage is not missing) and missing otherwise. notselected is the

complement of selected: it equals 0 if the woman does not work (wage is missing) and missing other-

wise. selected and notselected will be used as the dependent variables in the censored regression,

providing the equivalent of a scaled probit regression.

. generate selected = 0 if wage < .
(657 missing values generated)
. generate notselected = 0 if wage >= .
(1,343 missing values generated)
. tabulate selected notselected, missing

notselected
selected 0 . Total

0 0 1,343 1,343
. 657 0 657

Total 657 1,343 2,000
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Old-time Stata users may be worried that because wage is missing in so many observations, namely,

all those corresponding to nonworking women, there must be something special we need to do so that

gsem uses all the data. There is nothing special we need to do. gsem counts missing values on an

equation-by-equation basis, so it will use all the data for the censored regression part of the model while

simultaneously using only the working-woman subsample for the continuous-outcome (wage) part of the

model. We use all the data for the censored regression because gsem understands the meaning of missing

values in the censored dependent variables so long as one of them is nonmissing.

To fit this model in command syntax, we type

. gsem (wage <- educ age L)
> (selected <- married children educ age L@1,
> family(gaussian, udepvar(notselected))), var(L@1 e.wage@a e.selected@a)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -5752.6506
Iteration 1: Log likelihood = -5260.9961
Iteration 2: Log likelihood = -5209.2571
Iteration 3: Log likelihood = -5208.9039
Iteration 4: Log likelihood = -5208.9038
Refining starting values:
Grid node 0: Log likelihood = -5208.7006
Fitting full model:
Iteration 0: Log likelihood = -5208.5322 (not concave)
Iteration 1: Log likelihood = -5208.0269
Iteration 2: Log likelihood = -5202.872 (not concave)
Iteration 3: Log likelihood = -5202.0258
Iteration 4: Log likelihood = -5198.6178
Iteration 5: Log likelihood = -5193.0576
Iteration 6: Log likelihood = -5191.8655
Iteration 7: Log likelihood = -5178.5058
Iteration 8: Log likelihood = -5178.3095
Iteration 9: Log likelihood = -5178.3046
Iteration 10: Log likelihood = -5178.3046
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Generalized structural equation model Number of obs = 2,000
Response: wage Number of obs = 1,343
Family: Gaussian
Link: Identity
Lower response: selected Number of obs = 2,000
Upper response: notselected Uncensored = 0
Family: Gaussian Left-censored = 657
Link: Identity Right-censored = 1,343

Interval-cens. = 0
Log likelihood = -5178.3046
( 1) [selected]L = 1
( 2) - [/]var(e.wage) + [/]var(e.selected) = 0
( 3) [/]var(L) = 1

Coefficient Std. err. z P>|z| [95% conf. interval]

wage
educ .9899512 .0532552 18.59 0.000 .8855729 1.094329
age .2131282 .020602 10.35 0.000 .172749 .2535074

L 5.923736 .1846818 32.08 0.000 5.561767 6.285706
_cons .4859114 1.076865 0.45 0.652 -1.624705 2.596528

selected
married .6242746 .1054319 5.92 0.000 .4176319 .8309173

children .6152095 .0652002 9.44 0.000 .4874196 .7429995
educ .0781542 .0162868 4.80 0.000 .0462327 .1100757
age .0511983 .006637 7.71 0.000 .0381901 .0642066

L 1 (constrained)
_cons -3.493217 .3730379 -9.36 0.000 -4.224357 -2.762076

var(L) 1 (constrained)

var(e.wage) .9664635 .2689653 .560141 1.66753
var(e.sele~d) .9664635 .2689653 .560141 1.66753

Notes:

1. Some of the estimated coefficients and parameters above will match those reported by the heckman
command and others will not. The above parameters are in the transformed structural equation

modeling metric. That metric can be transformed back to the Heckman metric and results will

match. The relationship to the Heckman metric is

β = β∗

𝛄 = 𝛄∗/√𝜎2∗ + 1
𝜎2 = 𝜎2∗ + 𝜅2

𝜌 = 𝜅/√(𝜎2∗ + 𝜅2)(𝜎2∗ + 1)

2. β refers to the coefficients on the continuous-outcome (wage) equation. We can read those coeffi-

cients directly, without transformation except that we ignore the wage <- L path:

wage = 0.9900 educ + 0.2131 age + 0.4859
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3. 𝛄 refers to the selection equation, and because 𝛄 = 𝛄∗/√𝜎2∗ + 1, we must divide the reported

coefficients by the square root of 𝜎2∗ + 1. What has happened here is that the scaled probit has

variance 𝜎2∗ + 1, and we are merely transforming back to the standard probit model, which has

variance 1. The results are

Pr(selected = 0) =
Φ(0.4452 married + 0.4387 children + 0.0557 educ + 0.0365 age − 2.4910)

4. To calculate 𝜌, we first calculate 𝜎2 = 𝜎2∗ + 𝜅2 and then calculate 𝜌 = 𝜅/√𝜎2(𝜎2∗ + 1) :

𝜎2 = 0.9664 + 5.92372 = 36.0571

𝜌 = 5.9237/√𝜎2(0.9664 + 1) = 0.7035

5. These transformed results match the results that would have been reported had we typed

. heckman wage educ age, select(married children educ age)
(output omitted )

6. There is an easier way to obtain the transformed results than by hand, and the easier way provides

standard errors. That is the subject of the next section.

Transforming results and obtaining rho
We can use Stata’s nlcom command to perform the transformations we made by hand above, and we

can obtain standard errors.

Let’s start by obtaining 𝜎2 and 𝜌. To remind you, the formulas are

𝜎2 = 𝜎2∗ + 𝜅2

𝜌 = 𝜅/√𝜎2(𝜎2∗ + 1)

We must describe these two formulas in a way that nlcom can understand. The Stata notation for param-

eters 𝜎2∗
and 𝜅 fit by gsem is

𝜎2∗
: b[/var(e.wage)]

𝜅: b[wage:L]
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We cannot remember that notation; however, we can type gsem, coeflegend to be reminded. We now

have all that we need to obtain the estimates of 𝜎2 and 𝜌. Because heckman reports 𝜎 rather than 𝜎2, we

will tell nlcom to report the sqrt(𝜎2):

. nlcom (sigma: sqrt(_b[/var(e.wage)] +_b[wage:L]^2))
> (rho: _b[wage:L]/(sqrt((_b[/var(e.wage)]+1)*(_b[/var(e.wage)]
> + _b[wage:L]^2))))

sigma: sqrt(_b[/var(e.wage)] +_b[wage:L]^2)
rho: _b[wage:L]/(sqrt((_b[/var(e.wage)]+1)*(_b[/var(e.wage)]

> + _b[wage:L]^2)))

Coefficient Std. err. z P>|z| [95% conf. interval]

sigma 6.004758 .1656471 36.25 0.000 5.680095 6.32942
rho .703489 .0511861 13.74 0.000 .603166 .8038119

The output above nearly matches what heckman reports. heckman does not report the test statistics

and 𝑝-values for these two parameters. In addition, the confidence interval that heckman reports for 𝜌
will differ slightly from the above and is better. heckman uses a method that will not allow 𝜌 to be outside
of −1 and 1, whereas nlcom is simply producing a confidence interval for the calculation we requested

and in absence of the knowledge that the calculation corresponds to a correlation coefficient. The same

applies to the confidence interval for 𝜎, where the bounds are 0 and infinity.
To obtain the coefficients and standard errors for the selection equation, we type

. nlcom (married: _b[selected:married]/sqrt(_b[/var(e.wage)]+1))
> (children: _b[selected:children]/sqrt(_b[/var(e.wage)]+1))
> (educ: _b[selected:educ]/sqrt(_b[/var(e.wage)]+1))
> (age: _b[selected:age]/sqrt(_b[/var(e.wage)]+1))

married: _b[selected:married]/sqrt(_b[/var(e.wage)]+1)
children: _b[selected:children]/sqrt(_b[/var(e.wage)]+1)

educ: _b[selected:educ]/sqrt(_b[/var(e.wage)]+1)
age: _b[selected:age]/sqrt(_b[/var(e.wage)]+1)

Coefficient Std. err. z P>|z| [95% conf. interval]

married .445177 .0673953 6.61 0.000 .3130847 .5772693
children .4387126 .0277788 15.79 0.000 .3842671 .4931581

educ .0557326 .0107348 5.19 0.000 .0346927 .0767725
age .0365101 .0041534 8.79 0.000 .0283696 .0446505

The above output matches what heckman reports.

Fitting the model with the Builder
Use the diagram in Fitting the Heckman selection model as an SEM above for reference.

1. Open the dataset and create the selection variable.

In the Command window, type

. use https://www.stata-press.com/data/r19/gsem_womenwk

. generate selected = 0 if wage < .

. generate notselected = 0 if wage >= .

https://www.stata.com/manuals/semexample45g.pdf#semExample45gRemarksandexamplesFittingtheHeckmanselectionmodelasanSEM
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2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and esti-

mation.

3. Put the Builder in gsem mode by clicking on the button.

4. Create the independent variables.

Select theAdd observed variables set tool, , and then click in the diagram about one-fourth of the

way in from the left and one-fourth of the way up from the bottom.

In the resulting dialog box,

a. select the Select variables radio button (it may already be selected);

b. use the Variables control to select the variables married, children, educ, and age in this

order;

c. select Vertical in the Orientation control;

d. click on OK.

If you wish, move the set of variables by clicking on any variable and dragging it.

5. Create the generalized response for selection.

a. Select the Add generalized response variable tool, .

b. Click about one-third of theway in from the right side of the diagram, to the right of the married
rectangle.

c. In the Contextual Toolbar, select Gaussian, Identity in the Family/Link control (it may

already be selected).

d. In the Contextual Toolbar, select selected in the Variable control.

e. In the Contextual Toolbar, click on the Properties... button.

f. In the resulting Variable properties dialog box, click on theCensoring... button in theVariable

tab.

g. In the resulting Censoring dialog box, select the Interval-measured, depvar is lower boundary

radio button. In the resulting Interval-measured box below, use the Upper bound control to

select the variable notselected.

h. Click on OK in the Censoring dialog box, and then click on OK in the Variable properties

dialog box. The Details pane will now show selected as the lower bound and notselected
as the upper bound of our interval measure.

6. Create the endogenous wage variable.

a. Select the Add observed variable tool, , and then click about one-third of the way in from

the right side of the diagram, to the right of the age rectangle.

b. In the Contextual Toolbar, select wage with the Variable control.
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7. Create paths from the independent variables to the dependent variables.

a. Select the Add path tool, .

b. Click in the right side of the married rectangle (it will highlight when you hover over it), and

drag a path to the left side of the selected rectangle (it will highlight when you can release to

connect the path).

c. Continuing with the tool, create the following paths by clicking first in the right side of the

rectangle for the independent variable and dragging it to the left side of the rectangle for the

dependent variable:

children -> selected
educ -> selected
age -> selected
educ -> wage
age -> wage

8. Clean up the direction of the error terms.

We want the error for selected to be above the rectangle and the error for wage to be below the

rectangle, but it is likely they have been created in other directions.

a. Choose the Select tool, .

b. Click in the selected rectangle.

c. Click on one of the Error rotation buttons, , in the Contextual Toolbar until the error is

above the rectangle.

d. Click in the wage rectangle.

e. Click on one of the Error rotation buttons, , in the Contextual Toolbar until the error is

below the rectangle.

9. Create the latent variable.

a. Select theAdd latent variable tool, , and then click at the far right of the diagram and vertically

centered between the selected and wage variables.

b. In the Contextual Toolbar, type L in the Name control and press Enter.

10. Draw paths from the latent variable to each endogenous variable.

a. Select the Add path tool, .

b. Click in the upper left quadrant of the L oval, and drag a path to the right side of the selected
rectangle.

c. Continuing with the tool, create another path by clicking first in the lower-left quadrant of

the L oval and dragging a path to the right side of the wage rectangle.

11. Place constraints on the variances and on the path from L to selected.

a. Choose the Select tool, .

b. Click on the L oval. In the Contextual Toolbar, type 1 in the box and press Enter.

c. Click on the error oval attached to the wage rectangle. In the Contextual Toolbar, type a in the

box and press Enter.
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d. Click on the error oval attached to the selected rectangle. In the Contextual Toolbar, type a
in the box and press Enter.

e. Click on the path from L to selected. In the Contextual Toolbar, type 1 in the box and

press Enter.

12. Clean up the location of the paths.

If you do not like where a path has been connected to its variables, use the Select tool, , to click

on the path, and then simply click on where it connects to a rectangle and drag the endpoint.

13. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting

GSEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

. webgetsem gsem_select
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