
Example 30g — Two-level measurement model (multilevel, generalized response)

Description Remarks and examples References Also see

Description
We demonstrate a multilevel measurement model with the same data used in [SEM] Example 29g:

. use https://www.stata-press.com/data/r19/gsem_cfa
(Fictional math abilities data)
. summarize

Variable Obs Mean Std. dev. Min Max

school 500 10.5 5.772056 1 20
id 500 50681.71 29081.41 71 100000
q1 500 .506 .5004647 0 1
q2 500 .394 .4891242 0 1
q3 500 .534 .4993423 0 1

q4 500 .424 .4946852 0 1
q5 500 .49 .5004006 0 1
q6 500 .434 .4961212 0 1
q7 500 .52 .5001002 0 1
q8 500 .494 .5004647 0 1

att1 500 2.946 1.607561 1 5
att2 500 2.948 1.561465 1 5
att3 500 2.84 1.640666 1 5
att4 500 2.91 1.566783 1 5
att5 500 3.086 1.581013 1 5

test1 500 75.548 5.948653 55 93
test2 500 80.556 4.976786 65 94
test3 500 75.572 6.677874 50 94
test4 500 74.078 8.845587 43 96

. notes
_dta:

1. Fictional data on math ability and attitudes of 500 students from 20
schools.

2. Variables q1-q8 are incorrect/correct (0/1) on individual math questions.
3. Variables att1-att5 are items from a Likert scale measuring each

student’s attitude toward math.
4. Variables test1-test4 are test scores from tests of four different

aspects of mathematical abilities. Range of scores: 0-100.

These data record results from a fictional instrument measuring mathematical ability. Variables q1
through q8 are the items from the instrument.

For discussions of multilevel measurement models, including extensions beyond the example we

present here, see Mehta and Neale (2005) and Skrondal and Rabe-Hesketh (2004).

See Single-factor measurement models and Multilevel mixed-effects models in [SEM] Intro 5 for

background.
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Remarks and examples
Remarks are presented under the following headings:

Fitting the two-level model
Fitting the variance-components model
Fitting the model with the Builder

Fitting the two-level model
We extend the measurement model fit in [SEM] Example 29g to better account for our (fictional) data.

In the data, students are nested within school, but we have ignored that so far. In this example, we include

a latent variable at the school level to account for possible school-by-school effects.

The model we wish to fit is

MathAb
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Bernoulli

logit

q2

Bernoulli

logit

q3

Bernoulli

logit

q4

Bernoulli
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q8

Bernoulli
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The double-ringed school1 is new. That new component of the path diagram is saying, “I am a latent

variable at the school level—meaning I am constant within school and vary across schools—and I

correspond to a latent variable named M1”; see Specifying generalized SEMs: Multilevel mixed effects

(2 levels) in [SEM] Intro 2. This new variable will account for the effect, if any, of the identity of the

school.

To fit this model without this new, school-level component in it, we would type

. gsem (MathAb -> q1-q8), logit

https://www.stata.com/manuals/semexample29g.pdf#semExample29g
https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesSpecifyinggeneralizedSEMsMultilevelmixedeffects(2levels)
https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesSpecifyinggeneralizedSEMsMultilevelmixedeffects(2levels)
https://www.stata.com/manuals/semintro2.pdf#semIntro2
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To include the new school-level component, we add M1[school] to the exogenous variables:

. gsem (MathAb M1[school] -> q1-q8), logit
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2750.3114
Iteration 1: Log likelihood = -2749.3709
Iteration 2: Log likelihood = -2749.3708
Refining starting values:
Grid node 0: Log likelihood = -2649.0033
Fitting full model:
Iteration 0: Log likelihood = -2649.0033 (not concave)
Iteration 1: Log likelihood = -2645.0613 (not concave)
Iteration 2: Log likelihood = -2641.9755 (not concave)
Iteration 3: Log likelihood = -2634.3857
Iteration 4: Log likelihood = -2631.1111
Iteration 5: Log likelihood = -2630.7898
Iteration 6: Log likelihood = -2630.2477
Iteration 7: Log likelihood = -2630.2402
Iteration 8: Log likelihood = -2630.2074
Iteration 9: Log likelihood = -2630.2063
Iteration 10: Log likelihood = -2630.2063
Generalized structural equation model Number of obs = 500
Response: q1
Family: Bernoulli
Link: Logit
Response: q2
Family: Bernoulli
Link: Logit
Response: q3
Family: Bernoulli
Link: Logit
Response: q4
Family: Bernoulli
Link: Logit
Response: q5
Family: Bernoulli
Link: Logit
Response: q6
Family: Bernoulli
Link: Logit
Response: q7
Family: Bernoulli
Link: Logit
Response: q8
Family: Bernoulli
Link: Logit
Log likelihood = -2630.2063
( 1) [q1]M1[school] = 1
( 2) [q2]MathAb = 1
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Coefficient Std. err. z P>|z| [95% conf. interval]

q1
M1[school] 1 (constrained)

MathAb 2.807515 .9468682 2.97 0.003 .9516878 4.663343
_cons .0388021 .1608489 0.24 0.809 -.276456 .3540602

q2
M1[school] .6673925 .3058328 2.18 0.029 .0679712 1.266814

MathAb 1 (constrained)
_cons -.4631159 .1201227 -3.86 0.000 -.698552 -.2276798

q3
M1[school] .3555867 .3043548 1.17 0.243 -.2409377 .9521111

MathAb 1.455529 .5187786 2.81 0.005 .4387416 2.472316
_cons .1537831 .1070288 1.44 0.151 -.0559894 .3635556

q4
M1[school] .7073241 .3419273 2.07 0.039 .037159 1.377489

MathAb .8420897 .3528195 2.39 0.017 .1505762 1.533603
_cons -.3252735 .1202088 -2.71 0.007 -.5608784 -.0896686

q5
M1[school] .7295553 .3330652 2.19 0.028 .0767595 1.382351

MathAb 2.399529 .8110973 2.96 0.003 .8098079 3.989251
_cons -.0488674 .1378015 -0.35 0.723 -.3189533 .2212185

q6
M1[school] .484903 .2844447 1.70 0.088 -.0725983 1.042404

MathAb 1.840627 .5934017 3.10 0.002 .6775813 3.003673
_cons -.3139302 .1186624 -2.65 0.008 -.5465042 -.0813563

q7
M1[school] .3677241 .2735779 1.34 0.179 -.1684787 .903927

MathAb 2.444023 .8016872 3.05 0.002 .8727449 4.015301
_cons .1062164 .1220796 0.87 0.384 -.1330552 .3454881

q8
M1[school] .5851299 .3449508 1.70 0.090 -.0909612 1.261221

MathAb 1.606287 .5367614 2.99 0.003 .5542541 2.65832
_cons -.0261962 .1189835 -0.22 0.826 -.2593995 .2070071

var(
M1[school]) .2121216 .1510032 .052558 .8561121
var(MathAb) .2461246 .1372513 .0825055 .7342217
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Notes:

1. The variance of M1[school] is estimated to be 0.21.

2. So how important is M1[school]? The variance of MathAb is estimated to be 0.25, so math ability

and school have roughly the same variance, and both of course have mean 0. The math ability co-

efficients, meanwhile, are larger—often much larger—than the school coefficients in every case, so

math ability is certainly more important than school in explaining whether questions were answered

correctly. At this point, we are merely exploring the magnitude of effect.

3. You could also include a school-level latent variable for each question. For instance, you could type

. gsem (MathAb M1[school] N1[school] -> q1) ///
(MathAb M1[school] N2[school] -> q2) ///
(MathAb M1[school] N3[school] -> q3) ///
(MathAb M1[school] N4[school] -> q4) ///
(MathAb M1[school] N5[school] -> q5) ///
(MathAb M1[school] N6[school] -> q6) ///
(MathAb M1[school] N7[school] -> q7) ///
(MathAb M1[school] N8[school] -> q8), logit

You will sometimes see such effects included in multilevel measurement models in theoretical dis-

cussions of models. Be aware that estimation of models with many latent variables is problematic,

requiring both time and luck.

Fitting the variance-components model
In a variance-components model, school would affect math ability which would affect correctness of

answers to questions. The model might be drawn like this:
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MathAb ε1
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The above is a great way to draw the model. Sadly, gsem cannot understand it. The problem from gsem’s
perspective is that one latent variable is affecting another and the two latent variables are at different

levels.

So we have to draw the model differently:
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q1

Bernoulli

logit

q2

Bernoulli

logit

q3

Bernoulli

logit

q4
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1

1

c2
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c8
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The models may look different, but constraining the coefficients along the paths from math ability and

from school to each question is identical in effect to the model above.
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The result of fitting the model is

. gsem (MathAb M1[school] ->
> q1@1 q2@c2 q3@c3 q4@c4 q5@c5 q6@c6 q7@c7 q8@c8), logit
Fitting fixed-effects model:
Iteration 0: Log likelihood = -2750.3114
Iteration 1: Log likelihood = -2749.3709
Iteration 2: Log likelihood = -2749.3708
Refining starting values:
Grid node 0: Log likelihood = -2642.8248
Fitting full model:
Iteration 0: Log likelihood = -2651.7239 (not concave)
Iteration 1: Log likelihood = -2644.4937
Iteration 2: Log likelihood = -2634.92
Iteration 3: Log likelihood = -2633.9336
Iteration 4: Log likelihood = -2633.5924
Iteration 5: Log likelihood = -2633.5922
Generalized structural equation model Number of obs = 500
(output omitted )

Log likelihood = -2633.5922
( 1) [q1]M1[school] = 1
( 2) [q1]MathAb = 1
( 3) [q2]M1[school] - [q2]MathAb = 0
( 4) [q3]M1[school] - [q3]MathAb = 0
( 5) [q4]M1[school] - [q4]MathAb = 0
( 6) [q5]M1[school] - [q5]MathAb = 0
( 7) [q6]M1[school] - [q6]MathAb = 0
( 8) [q7]M1[school] - [q7]MathAb = 0
( 9) [q8]M1[school] - [q8]MathAb = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

q1
M1[school] 1 (constrained)

MathAb 1 (constrained)
_cons .0385522 .1556214 0.25 0.804 -.2664601 .3435646

q2
M1[school] .3876281 .1156823 3.35 0.001 .1608951 .6143612

MathAb .3876281 .1156823 3.35 0.001 .1608951 .6143612
_cons -.4633143 .1055062 -4.39 0.000 -.6701028 -.2565259

q3
M1[school] .4871164 .1295515 3.76 0.000 .2332001 .7410328

MathAb .4871164 .1295515 3.76 0.000 .2332001 .7410328
_cons .1533212 .1098068 1.40 0.163 -.0618962 .3685386

q4
M1[school] .3407151 .1058542 3.22 0.001 .1332446 .5481856

MathAb .3407151 .1058542 3.22 0.001 .1332446 .5481856
_cons -.3246936 .1011841 -3.21 0.001 -.5230108 -.1263763
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q5
M1[school] .8327426 .1950955 4.27 0.000 .4503624 1.215123

MathAb .8327426 .1950955 4.27 0.000 .4503624 1.215123
_cons -.0490579 .1391324 -0.35 0.724 -.3217524 .2236365

q6
M1[school] .6267415 .1572247 3.99 0.000 .3185868 .9348962

MathAb .6267415 .1572247 3.99 0.000 .3185868 .9348962
_cons -.3135398 .1220389 -2.57 0.010 -.5527317 -.074348

q7
M1[school] .7660343 .187918 4.08 0.000 .3977219 1.134347

MathAb .7660343 .187918 4.08 0.000 .3977219 1.134347
_cons .1039102 .1330652 0.78 0.435 -.1568927 .3647131

q8
M1[school] .5600833 .1416542 3.95 0.000 .2824462 .8377203

MathAb .5600833 .1416542 3.95 0.000 .2824462 .8377203
_cons -.0264193 .1150408 -0.23 0.818 -.2518951 .1990565

var(
M1[school]) .1719347 .1150138 .0463406 .6379187
var(MathAb) 2.062489 .6900045 1.070589 3.973385

1. Note that for each question, the coefficient on MathAb is identical to the coefficient on M1[school].

2. We estimate separate variances for M1[school] and MathAb. They are 0.17 and 2.06. Now that

the coefficients are the same on school and ability, we can directly compare these variances. We see

that math ability has a much larger affect than does school.

Fitting the model with the Builder
Use the diagram in Fitting the two-level model above for reference.

1. Open the dataset.

In the Command window, type

. use https://www.stata-press.com/data/r19/gsem_cfa

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and esti-

mation.

3. Put the Builder in gsem mode by clicking on the button.

4. Create the measurement component for MathAb.

Select the Add measurement component tool, , and then click in the diagram about one-fourth of

the way down from the top and slightly left of the center.

In the resulting dialog box,

a. change the Latent variable name to MathAb;

https://www.stata.com/manuals/semexample30g.pdf#semExample30gRemarksandexamplesFittingthetwo-levelmodel
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b. select q1, q2, q3, q4, q5, q6, q7, and q8 by using the Measurement variables control;

c. check Make measurements generalized;

d. select Bernoulli, Logit in the Family/Link control;

e. select Down in the Measurement direction control;

f. click on OK.

If you wish, move the component by clicking on any variable and dragging it.

5. Create the school-level latent variable.

a. Select theAddmultilevel latent variable tool, , and click about one-fourth of the way up from

the bottom and slightly left of the center.

b. In the Contextual Toolbar, click on the button.

c. Select the nesting level and nesting variable by selecting 2 from the Nesting depth control and

selecting school > Observations in the next control.

d. Specify M1 as the Base name.

e. Click on OK.

6. Create the factor-loading paths for the multilevel latent variable.

a. Select the Add path tool, .

b. Click in the top-left quadrant of the double oval for school1 (it will highlight when you hover

over it), and drag a path to the bottom of the q1 rectangle (it will highlight when you can release
to connect the path).

c. Continuing with the tool, draw paths from school1 to each of the remaining rectangles.

7. Clean up paths.

If you do not like where a path has been connected to its variables, use the Select tool, , to click

on the path, and then simply click on where it connects to a rectangle or oval and drag the endpoint.

8. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting

GSEM estimation options dialog box.

9. To fit the model in Fitting the variance-components model, add constraints to the diagram created

above.

a. From the SEM Builder menu, select Estimation > Clear estimates to clear results from the

previous model.

b. Choose the Select tool, .

c. Click on the path from MathAb to q1. In the Contextual Toolbar, type 1 in the box and press

Enter.

d. Click on the path from school1 to q1. In the Contextual Toolbar, type 1 in the box and

press Enter.

c. Click on the path from MathAb to q2. In the Contextual Toolbar, type c2 in the box and

press Enter.

https://www.stata.com/manuals/semexample30g.pdf#semExample30gRemarksandexamplesFittingthevariance-componentsmodel
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d. Click on the path from school1 to q2. In the Contextual Toolbar, type c2 in the box and

press Enter.

e. Repeat this process to add the c3 constraint on both paths to q3, the c4 constraint on both paths

to q4, . . . , and the c8 constraint on both paths to q8.

10. Estimate again.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting

GSEM estimation options dialog box.

You can open a completed diagram in the Builder for the first model by typing

. webgetsem gsem_mlcfa1

You can open a completed diagram in the Builder for the second model by typing

. webgetsem gsem_mlcfa2

References
Mehta, P. D., and M. C. Neale. 2005. People are variables too: Multilevel structural equations modeling. Psychological

Methods 10: 259–284. https://doi.org/10.1037/1082-989X.10.3.259.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural

Equation Models. Boca Raton, FL: Chapman and Hall/CRC.

Also see
[SEM] Example 27g — Single-factor measurement model (generalized response)

[SEM] Example 29g — Two-parameter logistic IRT model

[SEM] Intro 5 — Tour of models

[SEM] gsem — Generalized structural equation model estimation command

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1037/1082-989X.10.3.259
https://www.stata.com/bookstore/glvm.html
https://www.stata.com/bookstore/glvm.html
https://www.stata.com/manuals/semexample27g.pdf#semExample27g
https://www.stata.com/manuals/semexample29g.pdf#semExample29g
https://www.stata.com/manuals/semintro5.pdf#semIntro5
https://www.stata.com/manuals/semgsem.pdf#semgsem
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

