Description

Remarks and examples

Also see

Description

Below we demonstrate sem's reliability() option with the following data:

```
. use https://www.stata-press.com/data/r19/sem_rel (measurement error with known reliabilities)
```

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
y x1	1,234 1,234	701.081	71.79378 14.1552	487 51	943 149
x2	1,234	100.2066	14.50912	55	150

. notes

_dta:

- 1. Fictional data.
- 2. Variables x1 and x2 each contain a test score designed to measure X. The test is scored to have mean 100.
- 3. Variables x1 and x2 are both known to have reliability 0.5.
- 4. Variable y is the outcome, believed to be related to X.

See [SEM] sem and gsem option reliability() for background.

Remarks and examples

Remarks are presented under the following headings:

Baseline model (reliability ignored) Model with reliability Model with two measurement variables and reliability

Baseline model (reliability ignored)

```
. sem (y <- x1)
Endogenous variables
  Observed: y
Exogenous variables
  Observed: x1
Fitting target model:
Iteration 0: Log likelihood = -11629.745
Iteration 1: Log likelihood = -11629.745
Structural equation model
                                                         Number of obs = 1,234
Estimation method: ml
Log likelihood = -11629.745
```

	Coefficient	OIM std. err.	z	P> z	[95% conf.	interval]
Structural						
У						
x1	3.54976	.1031254	34.42	0.000	3.347637	3.751882
_cons	345.1184	10.44365	33.05	0.000	324.6492	365.5876
var(e.y)	2627.401	105.7752			2428.053	2843.115
LR test of mod	del vs. satura	ted: chi2(0) = 0.00		Prob	> chi2 = .

LR test of model vs. saturated: chi2(0) = 0.00

Notes:

- 1. In these data, variable x1 is measured with error.
- 2. If we ignore that, we obtain a path coefficient for y < -x1 of 3.55.
- 3. We also ran this model for y < -x2. We obtained a path coefficient of 3.48.

Model with reliability

. sem (x1<-X)	(y<-X), relia	bility(x1 .	5)			
Endogenous va Measurement						
Exogenous var Latent: X	iables					
Fitting target Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	Log likelihoo Log likelihoo Log likelihoo Log likelihoo	$\begin{array}{l} \text{d} &= -11661,\\ \text{d} &= -11631,\\ \text{d} &= -11629,\\ \text{d} &= -11629,\\ \text{d} &= -11629. \end{array}$	626 469 755 745			
Structural eq Estimation me					Number of o	bs = 1,234
Log likelihoo (1) [x1]X (2) [/]var						
		OIM				
	Coefficient	uim std. err.	Z	P> z	[95% conf.	interval]
Measurement x1 X	1	(constraine	4)			
_cons	100.278	.4027933	248.96	0.000	99.4885	101.0674
y X _cons	7.09952 701.081	.352463 2.042929	20.14 343.17	0.000	6.408705 697.077	7.790335 705.0851
var(e.x1) var(e.y) var(X)	100.1036 104.631 100.1036	(constraine 207.3381 8.060038	d)		2.152334 85.48963	5086.411 117.2157
LR test of mo	del vs. satura	ted: chi2(0) = 0.00		Prob	> chi2 = .

Notes:

- 1. We wish to estimate the effect of y < -x1 when x1 is measured with error (0.50 reliability). To do that, we introduce latent variable X and write our model as (x1 < -X) (y < -X).
- 2. When we ignored the measurement error of x1, we obtained a path coefficient for y<-x1 of 3.55. Taking into account the measurement error, we obtain a coefficient of 7.1.

Model with two measurement variables and reliability

. sem (x1 x2<-X) (y<-X), reliability(x1 .5 x2 .5) Endogenous variables
•
Measurement: x1 x2 y
Exogenous variables Latent: X
Fitting target model:
Iteration 0: Log likelihood = -16258.636
Iteration 1: Log likelihood = -16258.401 Iteration 2: Log likelihood = -16258.4
Structural equation model Number of obs = 1,234 Estimation method: ml
Log likelihood = -16258.4
<pre>(1) [x1]X = 1 (2) [/]var(e.x1) = 100.1036 (3) [/]var(e.x2) = 105.1719</pre>
OIM
Coefficient std. err. z P> z [95% conf. interval]
Measurement x1
X 1 (constrained)
cons 100.278 .4037851 248.34 0.000 99.48655 101.0694
x2
X 1.030101 .0417346 24.68 0.000 .9483029 1.1119
_cons 100.2066 .4149165 241.51 0.000 99.39342 101.0199
y X 7.031299 .2484176 28.30 0.000 6.544409 7.518188
_cons 701.081 2.042928 343.17 0.000 697.077 705.0851
var(e.x1) 100.1036 (constrained)
var(e.x2) 105.1719 (constrained)
var(e.y) 152.329 105.26 39.31868 590.1553
var(X) 101.0907 7.343656 87.67509 116.5591
LR test of model vs. saturated: chi2(2) = 0.59 Prob > chi2 = 0.7430

Notes:

- 1. We wish to estimate the effect of y<-X. We have two measures of X—x1 and x2—both measured with error (0.50 reliability).
- 2. In the previous section, we used just x1. We obtained path coefficient 7.1 with standard error 0.4. Using both x1 and x2, we obtain path coefficient 7.0 and standard error 0.2.
- 3. We at StataCorp created these fictional data. The true coefficient is 7.

Also see

[SEM] sem and gsem option reliability() - Fraction of variance not due to measurement error

[SEM] **Example 1** — Single-factor measurement model

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.