Example 14 — Predicted values

Description

We demonstrate the use of `predict`. See [SEM] Intro 7 and [SEM] predict after sem.

This example picks up where the first part of [SEM] Example 1 left off:

```
. use https://www.stata-press.com/data/r16/sem_1fmm
. sem (x1 x2 x3 x4 <- X)
```

Remarks and examples

`predict` can create new variables containing predicted values of 1) observed endogenous variables, 2) latent variables, whether endogenous or exogenous, and 3) latent endogenous variables. In the case of latent variables, item 2 corresponds to the factor score and item 3 is the linear prediction.

Below we demonstrate 1 and 2:

```
. predict x1hat x2hat, xb(x1 x2)
. predict Xhat, latent(X)
```

You specify options on `predict` to specify what you want predicted and how. Because of the differing options, the two commands could not have been combined into one command.

Our dataset now contains three new variables. Below we compare the three variables with the original `x1` and `x2` by using first `summarize` and then `correlate`:

```
. summarize x1 x1hat x2 x2hat Xhat
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>500</td>
<td>99.518</td>
<td>14.35402</td>
<td>60</td>
<td>137</td>
</tr>
<tr>
<td>x1hat</td>
<td>500</td>
<td>99.518</td>
<td>9.363112</td>
<td>71.45533</td>
<td>126.7325</td>
</tr>
<tr>
<td>x2</td>
<td>500</td>
<td>99.954</td>
<td>14.1939</td>
<td>52</td>
<td>140</td>
</tr>
<tr>
<td>x2hat</td>
<td>500</td>
<td>99.954</td>
<td>9.674426</td>
<td>70.95827</td>
<td>128.0733</td>
</tr>
<tr>
<td>Xhat</td>
<td>500</td>
<td>1.03e-08</td>
<td>9.363112</td>
<td>-28.06267</td>
<td>27.21449</td>
</tr>
</tbody>
</table>

Notes:

1. Means of `x1hat` and `x1` are identical; means of `x2hat` and `x2` are identical.
2. The standard deviation of `x1hat` is less than that of `x1`; the standard deviation of `x2hat` is less than that of `x2`. Some of the variation in `x1` and `x2` is not explained by the model.
3. Standard deviations of `x1hat` and `Xhat` are equal. This is because in

 \[x_1 = b_0 + b_1 X + e_1 \]

 coefficient \(b_1 \) was constrained to be equal to 1 because of the anchoring normalization constraint; see Identification 2: Normalization constraints (anchoring) in [SEM] Intro 4.
The mean of \hat{X} in the model above is 1.03×10^{-8} rather than 0. Had we typed

```
.predict double Xhat, latent(X)
```

the mean would have been -1.17×10^{-16}.

```
.correlate x1 x1hat x2 x2hat Xhat
(obs=500)
```

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x1hat</th>
<th>x2</th>
<th>x2hat</th>
<th>Xhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1hat</td>
<td>0.6705</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>0.4537</td>
<td>0.7007</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2hat</td>
<td>0.6705</td>
<td>1.0000</td>
<td>0.7007</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>Xhat</td>
<td>0.6705</td>
<td>1.0000</td>
<td>0.7007</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Notes:

1. Both x_1hat and x_2hat correlate 1 with $Xhat$. That is because both are linear functions of $Xhat$ alone.
2. That x_1hat and x_2hat correlate 1 is implied by item 1, directly above.
3. That $Xhat$, x_1hat, and x_2hat all have the same correlation with x_1 and with x_2 is also implied by item 1, directly above.

Also see

[SEM] Example 1 — Single-factor measurement model
[SEM] Intro 7 — Postestimation tests and predictions
[SEM] predict after sem — Factor scores, linear predictions, etc.