Example 10 — MIMIC model

Description

To demonstrate a MIMIC model, we use the following summary statistics data:

```
. use https://www.stata-press.com/data/r16/sem_mimic1
(Multiple indicators and multiple causes)
. ssd describe
```

Summary statistics data from https://www.stata-press.com/data/r16/sem_mimic1.dta

<table>
<thead>
<tr>
<th>obs:</th>
<th>432</th>
<th>Multiple indicators and multiple causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vars:</td>
<td>5</td>
<td>31 Oct 2018 08:29 (_dta has notes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>variable name</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>occpres</td>
<td>occupational prestige, two-digit Dunca..</td>
</tr>
<tr>
<td>income</td>
<td>total family income in units of $2000,..</td>
</tr>
<tr>
<td>s_occpres</td>
<td>subjective occupational prestige</td>
</tr>
<tr>
<td>s_income</td>
<td>subjective income</td>
</tr>
<tr>
<td>s_socstat</td>
<td>subjective overall social status</td>
</tr>
</tbody>
</table>

```
. notes
```

_dta:
3. The summary statistics represent 432 white adults included in the sample for the 1969 Gary Area Project for the Institute of Social Research at Indiana University.
4. The three subjective variables are measures of socioeconomic status based on an individuals perception of their own income, occupational prestige, and social status.
5. The income and occpres variables are objective measures of income and occupational prestige, respectively.

See _Structural models 10: MIMIC models_ in [SEM] Intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:

- **Fitting the MIMIC model**
- **Fitting the MIMIC model with the Builder**
- **Evaluating the residuals with estat residuals**
- **Performing likelihood-ratio tests with lrtest**
Fitting the MIMIC model

Based on the data referenced above, Bollen (1989, 397–399) fits a MIMIC model, the path diagram of which is

Bollen includes paths that he constrains and we do not show. Our model is nonetheless equivalent to the one he shows. In his textbook, Bollen illustrates various ways the same model can be written.
Example 10 — MIMIC model

```
.sem (SubjSES -> s_income s_occpres s_socstat) (SubjSES <- income occpres)
```

Endogenous variables

Measurement:
- s_income
- s_occpres
- s_socstat

Latent: SubjSES

Exogenous variables

Observed: income occpres

Fitting target model:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Log likelihood</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4252.1834</td>
<td>not concave</td>
</tr>
<tr>
<td>1</td>
<td>-4022.8854</td>
<td>not concave</td>
</tr>
<tr>
<td>2</td>
<td>-3994.3867</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-3974.6636</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-3978.7751</td>
<td>not concave</td>
</tr>
<tr>
<td>5</td>
<td>-3972.0269</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3971.9238</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-3971.9236</td>
<td></td>
</tr>
</tbody>
</table>

Structural equation model

<table>
<thead>
<tr>
<th></th>
<th>Number of obs = 432</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>= ml</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>= -3971.9236</td>
</tr>
</tbody>
</table>

(1) [s_income]SubjSES = 1

OIM

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------------|--------|-----------|--------|------|---------------------|
| Structural | | | | | |
| SubjSES | | | | | |
| income | .082732| .0138498 | 5.97 | 0.000| .0555869 .1098772 |
| occpres | .0046275| .0012464 | 3.71 | 0.000| .0021847 .0070704 |
| Measurement | | | | | |
| s_income | | | | | |
| SubjSES | .9612091| .0794151 | 12.10 | 0.000| .8055583 1.11686 |
| _cons | | | | | |
| s_occpres | .7301352| .0832915 | 8.77 | 0.000| .5668869 .8933835 |
| SubjSES | 1.114563| .0656195 | 16.99 | 0.000| .9859512 1.243175 |
| _cons | | | | | |
| s_socstat | .9405161| .0934855 | 10.06 | 0.000| .7572878 1.123744 |
| SubjSES | 1.002113| .0706576 | 14.18 | 0.000| .863627 1.1406 |
| _cons | | | | | |
| var(e.s_in-e) | .2087546| .0254098 | | | .1644474 .2649996 |
| var(e.s_oc-s) | .2811852| .0228914 | | | .2397153 .3298291 |
| var(e.s_so-t) | .1807129| .0218405 | | | .1425987 .2290146 |
| var(e.Subj-S) | .1860097| .0270476 | | | .1398822 .2473481 |

LR test of model vs. saturated: chi2(4) = 26.65, Prob > chi2 = 0.0000

Notes:

1. In this model, there are three observed variables that record the respondents’ ideas of their perceived socioeconomic status (SES). One is the respondent’s general idea of his or her SES (s_socstat); another is based on the respondent’s income (s_income); and the last is based on the respondent’s occupational prestige (s_occpres). Those three variables form the latent variable SubjSES.

2. The other two observed variables are the respondent’s income (income) and occupation, the latter measured by the two-digit Duncan SEI scores for occupations (occpres). These two variables are treated as predictors of SubjSES.
3. In the model, item 1 is viewed as subjective and item 2 is viewed as objective.
4. All variables are statistically significant at the 5% level, but the model versus saturated test suggests that we are not modeling the covariances well.

Fitting the MIMIC model with the Builder

Use the diagram above for reference.

1. Open the dataset.
 In the Command window, type

 . use https://www.stata-press.com/data/r16/sem_mimic1

2. Open a new Builder diagram.
 Select menu item Statistics > SEM (structural equation modeling) > Model building and estimation.

3. Create the measurement component for subject socioeconomic status.
 Select the Add measurement component tool, \[\text{\textcopyright} \], and then click near the center of the diagram.
 In the resulting dialog box,
 a. change the Latent variable name to SubjSES;
 b. select s_income, s_occpress, and s_socstat by using the Measurement variables control;
 c. select Right in the Measurement direction control;
 d. click on OK.
 If you wish, move this component by clicking on any variable and dragging it.

4. Create the two variables for the formative indicators of socioeconomic status.
 a. Select the Add observed variable tool, \[\text{\textcopyright} \], and then click in the diagram to add the new variable slightly above and to the left of SubjSES. After adding it, you can click inside the rectangle and move the variable if you wish.
 b. In the Contextual Toolbar, select occpress by using the Variable control.
 c. Continuing with the \[\text{\textcopyright} \] tool, click in the diagram to add another new variable below the occpress variable.
 d. In the Contextual Toolbar, select income by using the Variable control.

5. Create the paths for the formative indicators of socioeconomic status.
 a. Select the Add path tool, \[\text{\textcopyright} \].
 b. Click in the lower-right quadrant of the occpress rectangle (it will highlight when you hover over it), and drag a path to the upper-left quadrant of the SubjSES oval (it will highlight when you can release to connect the path).
 c. Continuing with the \[\text{\textcopyright} \] tool, click in the upper-right quadrant of the income rectangle, and drag a path to the lower-left quadrant of the SubjSES oval.
6. Clean up the direction of the errors.

The error on SubjSES is likely to have been created atop one of the existing paths. Choose the Select tool, ⊲, and then click in the SubjSES oval. Click on one of the Error rotation buttons, ⇐⇒, in the Contextual Toolbar until the error is where you want it.

7. Estimate.

Click on the Estimate button, ☰, in the Standard Toolbar, and then click on OK in the resulting SEM estimation options dialog box.

Tip: See the tips of [SEM] Example 9 to make creating paths somewhat easier than described above.

You can open a completed diagram in the Builder by typing

. webgetsem sem_mimic1

Evaluating the residuals with estat residuals

Remember that SEM fits covariances and means. Residuals in the SEM sense thus refer to covariances and means. If we are not fitting well, we can examine the residuals.

. estat residuals, normalized

Residuals of observed variables

Mean residuals

<table>
<thead>
<tr>
<th></th>
<th>s_income</th>
<th>s_occpres</th>
<th>s_socstat</th>
<th>income</th>
<th>occpres</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>normalized</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Covariance residuals

<table>
<thead>
<tr>
<th></th>
<th>s_income</th>
<th>s_occpres</th>
<th>s_socstat</th>
<th>income</th>
<th>occpres</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_income</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_occpres</td>
<td>-0.009</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_socstat</td>
<td>0.000</td>
<td>0.008</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>income</td>
<td>0.101</td>
<td>-0.079</td>
<td>-0.053</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>occpres</td>
<td>-0.856</td>
<td>1.482</td>
<td>0.049</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Normalized covariance residuals

<table>
<thead>
<tr>
<th></th>
<th>s_income</th>
<th>s_occpres</th>
<th>s_socstat</th>
<th>income</th>
<th>occpres</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_income</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_occpres</td>
<td>-0.425</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_socstat</td>
<td>0.008</td>
<td>0.401</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>income</td>
<td>1.362</td>
<td>-1.137</td>
<td>-0.771</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>occpres</td>
<td>-1.221</td>
<td>2.234</td>
<td>0.074</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes:

1. The residuals can be partitioned into two subsets: mean residuals and covariance residuals.

2. The normalized option caused the normalized residuals to be displayed.

3. Concerning mean residuals, the raw residuals and the normalized residuals are shown on a separate line of the first table.
4. Concerning covariance residuals, the raw residuals and the normalized residuals are shown in separate tables.

5. Distinguish between normalized residuals and standardized residuals. Both are available from estat residuals; if we wanted standardized residuals, we would have specified the standardized option instead of or along with normalized.

6. Both normalized and standardized residuals attempt to adjust the residuals in the same way. The normalized residuals are always valid, but they do not follow a standard normal distribution. The standardized residuals do follow a standard normal distribution if they can be calculated; otherwise, they will equal missing values. When both can be calculated (equivalent to both being appropriate), the normalized residuals will be a little smaller than the standardized residuals.

7. The normalized covariance residuals between income and s_income and between occpres and s_occpres are large.

Performing likelihood-ratio tests with lrtest

Thus Bollen (1989, 397–399) suggests adding a direct path from the objective measures to the corresponding subjective measures. We are about to fit the model

\[
\begin{align*}
\text{SubjSES} & \rightarrow \text{s_income} \text{ s_occpres} \text{ s_socstat} \quad /// \\
\text{SubjSES} & \leftarrow \text{income} \text{ occpres} \quad /// \\
\text{s_income} & \leftarrow \text{income} \quad /// \; \text{<- new} \\
\text{s_occpres} & \leftarrow \text{occpres} \quad /// \; \text{<- new}
\end{align*}
\]

For no other reason than we want to demonstrate the likelihood-ratio test, we will then use lrtest rather than test to test the joint significance of the new paths. lrtest compares the likelihood values of two fitted models. Thus we will use lrtest to compare this new model with the one above. To do that, we must plan ahead and store in memory the currently fit model:

```
. estimates store mimic1
```

Alternatively, we could skip that and calculate the joint significance of the two new paths by using a Wald test and the test command.

In any case, having stored the current estimates under the name mimic1, we can now fit our new model:

```
. sem (SubjSES -> s_income s_occpres s_socstat) ///
   (SubjSES <- income occpres) ///
   (s_income <- income) /// <- new
   (s_occpres <- occpres) // <- new
```

Endogenous variables
Observed: s_income s_occpres
Measurement: s_socstat
Latent: SubjSES
Exogenous variables
Observed: income occpres

Fitting target model:
Iteration 0: log likelihood = -4267.0974 (not concave)
Iteration 1: log likelihood = -4022.6745 (not concave)
Iteration 2: log likelihood = -3977.0648
Iteration 3: log likelihood = -3962.9229
Iteration 4: log likelihood = -3962.1604
Iteration 5: log likelihood = -3960.8404
Iteration 6: log likelihood = -3960.7133
Iteration 7: log likelihood = -3960.7111
Iteration 8: log likelihood = -3960.7111
Example 10 — MIMIC model

Structural equation model

Number of obs = 432
Estimation method = ml
Log likelihood = -3960.7111
(1) [s_income]SubjSES = 1

OIM

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------|-----------|-------|-----|----------------------|
| Structural | | | | | |
| s_income | | | | | |
| SubjSES | 1 (constrained) | | | | |
| income | .0532425 | .0142862 | 3.73 | 0.000 | .025242 .081243 |
| _cons | .8825314 | .0781685 | 11.29 | 0.000 | .7293239 1.035739 |
| s_occpres | | | | | |
| SubjSES | .783781 | .1011457 | 7.75 | 0.000 | .585539 .982023 |
| occpres | .0045201 | .0013552 | 3.34 | 0.001 | .0018641 .0071762 |
| _cons | 1.06586 | .0696058 | 15.31 | 0.000 | .9294353 1.202285 |
| SubjSES | | | | | |
| income | .0538025 | .0129158 | 4.17 | 0.000 | .028488 .0791171 |
| occpres | .0034324 | .0011217 | 3.06 | 0.002 | .0012339 .0056309 |
| Measurement | | | | | |
| s_socstat | | | | | |
| SubjSES | 1.195539 | .1582735 | 7.55 | 0.000 | .8853282 1.505749 |
| _cons | 1.07922 | .0783232 | 13.78 | 0.000 | .9257097 1.23273 |
| var(e.s_in-e) | .2292697 | .0248905 | | | .1853261 .2836329 |
| var(e.s_oc-s) | .2773786 | .0223972 | | | .2367783 .3249407 |
| var(e.s_so-t) | .1459009 | .028228 | | | .0998556 .2131785 |
| var(e.Subj-S) | .1480275 | .0278381 | | | .1023918 .2140029 |

LR test of model vs. saturated: chi2(2) = 4.22, Prob > chi2 = 0.1211

Now we can perform the likelihood-ratio test:

. lrtest mimic1 .

Likelihood-ratio test

LR chi2(2) = 22.42
Prob > chi2 = 0.0000

Notes:

1. The syntax of lrtest is lrtest modelname1 modelname2. We specified the first model name as mimic1, the model we previously stored. We specified the second model name as period (.), meaning the model most recently fit. The order in which we specify the names is irrelevant.

2. We find the two added paths to be extremely significant.

Reference

Also see

[SEM] Example 36g — MIMIC model (generalized response)
[SEM] sem — Structural equation model estimation command
[SEM] estat residuals — Display mean and covariance residuals
[SEM] lrtest — Likelihood-ratio test of linear hypothesis