Example 1 — Single-factor measurement model

Description

The single-factor measurement model is demonstrated using the following data:

```
. use https://www.stata-press.com/data/r16/sem_1fmm
(single-factor measurement model)
. summarize
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>500</td>
<td>99.518</td>
<td>14.35402</td>
<td>60</td>
<td>137</td>
</tr>
<tr>
<td>x2</td>
<td>500</td>
<td>99.954</td>
<td>14.1939</td>
<td>52</td>
<td>140</td>
</tr>
<tr>
<td>x3</td>
<td>500</td>
<td>99.052</td>
<td>14.26395</td>
<td>59</td>
<td>150</td>
</tr>
<tr>
<td>x4</td>
<td>500</td>
<td>94.474</td>
<td>70.11603</td>
<td>-113</td>
<td>295</td>
</tr>
</tbody>
</table>

```
. notes
_dta:
1. fictional data
2. Variables x1, x2, x3, and x4 each contain a test score designed to measure X. The test is scored to have mean 100.
```

See *Single-factor measurement models* in [SEM] Intro 5 for background.

Remarks and examples

Remarks are presented under the following headings:

- Single-factor measurement model
- Satorra–Bentler scaled χ^2 test
- Fitting the same model with gsem
- Fitting the same model with the Builder
- The measurement-error model interpretation

Single-factor measurement model

Below we fit the following model:

![Diagram of the single-factor measurement model]

X

\[X \leftarrow x1 \quad x2 \quad x3 \quad x4 \]

\[x1 \rightarrow e.x1 \quad x2 \rightarrow e.x2 \quad x3 \rightarrow e.x3 \quad x4 \rightarrow e.x4 \]
Example 1 — Single-factor measurement model

Endogenous variables
Measurement: x1 x2 x3 x4
Exogenous variables
Latent: X

Fitting target model:
Iteration 0: log likelihood = -8487.5905
Iteration 1: log likelihood = -8487.2358
Iteration 2: log likelihood = -8487.2337
Iteration 3: log likelihood = -8487.2337

Structural equation model

Coef.	Std. Err.	z	P>	z		[95% Conf. Interval]	
Measurement							
x1	X	1		(constrained)			
_cons		99.518	.6412888	155.18	0.000	98.2611	100.7749
x2	X	1.033249	.0723898	14.27	0.000	.8913676	1.17513
_cons		99.954	.6341354	157.62	0.000	98.71112	101.1969
x3	X	1.063876	.0729725	14.58	0.000	.9208526	1.2069
_cons		99.052	.6372649	155.43	0.000	97.80298	100.301
x4	X	7.276754	.4277638	17.01	0.000	6.438353	8.115156
_cons		94.474	3.132547	30.16	0.000	88.33432	100.6137
var(e.x1)		115.6865	7.790423	101.3823	132.0089		
var(e.x2)		105.0445	7.38755	91.51873	120.5692		
var(e.x3)		101.2572	7.17635	88.12499	116.3463		
var(e.x4)		144.0406	145.2887	19.94838	1040.069		
var(X)		89.93921	11.07933	70.64676	114.5001		

LR test of model vs. saturated: chi2(2) = 1.46, Prob > chi2 = 0.4827

The equations for this model are

\[x_1 = \alpha_1 + X\beta_1 + e.x_1 \]
\[x_2 = \alpha_2 + X\beta_2 + e.x_2 \]
\[x_3 = \alpha_3 + X\beta_3 + e.x_3 \]
\[x_4 = \alpha_4 + X\beta_4 + e.x_4 \]

Notes:

1. Variable X is latent exogenous and thus needs a normalizing constraint. The variable is anchored to the first observed variable, x1, and thus the path coefficient is constrained to be 1. See Identification 2: Normalization constraints (anchoring) in [SEM] Intro 4.
2. The path coefficients for $X \rightarrow x_1$, $X \rightarrow x_2$, and $X \rightarrow x_3$ are 1 (constrained), 1.03, and 1.06. Meanwhile, the path coefficient for $X \rightarrow x_4$ is 7.28. This is not unexpected; we at StataCorp generated these data, and the true coefficients are 1, 1, 1, and 7.

3. A test for “model versus saturated” is reported at the bottom of the output; the $\chi^2(2)$ statistic is 1.46 and its significance level is 0.4827. We cannot reject the null hypothesis of this test.

 This test is a goodness-of-fit test in badness-of-fit units; a significant result implies that the model does not fit well.

 More mathematically, the null hypothesis of the test is that the fitted covariance matrix and mean vector of the observed variables are equal to the matrix and vector observed in the population.

Satorra–Bentler scaled χ^2 test

The model-versus-saturated goodness-of-fit statistic shown above does not follow the χ^2 distribution that it is referred to when the data are nonnormal. Satorra and Bentler (1994) provide a scaled version of this statistic that more closely follows the mean of the reference distribution in the presence of nonnormal data. We can request this statistic and the corresponding robust standard errors by specifying the `vce(sbentler)` option.
Example 1 — Single-factor measurement model

```
. sem (x1 x2 x3 x4 <- X), vce(sbentler)
Endogenous variables
Measurement:  x1 x2 x3 x4
Exogenous variables
Latent:  X
Fitting target model:
Iteration 0:  log pseudolikelihood = -8487.5905
Iteration 1:  log pseudolikelihood = -8487.2358
Iteration 2:  log pseudolikelihood = -8487.2337
Iteration 3:  log pseudolikelihood = -8487.2337
```

```
Structural equation model
Number of obs = 500
Estimation method = ml
Log pseudolikelihood = -8487.2337
( 1)  [x1]X = 1
Satorra-Bentler
Coef.  Std. Err.  z    P>|z|  [95% Conf. Interval]

Measurement
x1
   X     1 (constrained)
     _cons  99.518    0.6419311  155.03  0.000  98.25984  100.7762

x2
   X     1.033249    0.0767608  13.46  0.000   0.8828006   1.183698
     _cons  99.954    0.6347705  157.46  0.000  98.70987  101.1981

x3
   X     1.063876    0.0751028  14.17  0.000   0.9166773   1.211075
     _cons  99.052    0.6379032  155.28  0.000  97.80173  100.3023

x4
   X     7.276754    0.4386592  16.59  0.000   6.416998    8.13651
     _cons  94.474    3.135684   30.13  0.000   88.32817  100.6198

var(e.x1)  115.6865    7.744173  101.4617  131.9055
var(e.x2)  105.0445    6.499187   93.04833  118.5872
var(e.x3)  101.2572    7.00047   88.42551  115.9509
var(e.x4)  144.0406   145.6607   19.84766  1045.347
var(X)    89.93921   11.2763   70.34416  114.9927

LR test of model vs. saturated:  chi2(2) =  1.46,  Prob > chi2 = 0.4827
Satorra-Bentler scaled test:  chi2(2) =  1.59,  Prob > chi2 = 0.4526
```

The rescaled statistic is labeled “Satorra–Bentler scaled test” and has a value of 1.59 with a significance level of 0.4526. As with the unadjusted test, we cannot reject the null hypothesis.
Fitting the same model with gsem

`sem` and `gsem` produce the same results for standard linear SEMs. We are going to demonstrate that just this once.

```
. gsem (x1 x2 x3 x4 <- X)
Fitting fixed-effects model:
Iteration 0:  log likelihood = -8948.2394
Iteration 1:  log likelihood = -8948.2394

Refining starting values:
Grid node 0:  log likelihood = -8487.5916
Fitting full model:
Iteration 0:  log likelihood = -8487.5916
Iteration 1:  log likelihood = -8487.5051
Iteration 2:  log likelihood = -8487.3836
Iteration 3:  log likelihood = -8487.2697
Iteration 4:  log likelihood = -8487.2337
Iteration 5:  log likelihood = -8487.2337

Generalized structural equation model
Number of obs = 500
Response : x1
  Family : Gaussian
  Link : identity
Response : x2
  Family : Gaussian
  Link : identity
Response : x3
  Family : Gaussian
  Link : identity
Response : x4
  Family : Gaussian
  Link : identity
Log likelihood = -8487.2337
  ( 1) [x1]X = 1

|          | Coef.  | Std. Err. | z     | P>|z|    | [95% Conf. Interval] |
|----------|--------|-----------|-------|--------|----------------------|
|x1        |        |           |       |        |                      |
| X        | 1 (constrained) | 99.518 | .6412888 | 155.18 | 0.000 | 98.2611 100.7749  |
| _cons    |        |           |       |        |                      |
|x2        |        |           |       |        |                      |
| X        | 1.033249 | .0723898 | 14.27 | 0.000 | .8913676 1.17513    |
| _cons    | 99.954 | .6341354 | 157.62 | 0.000 | 98.71112 101.1969  |
|x3        |        |           |       |        |                      |
| X        | 1.063876 | .0729725 | 14.58 | 0.000 | .9208526 1.206899  |
| _cons    | 99.052 | .6372649 | 155.43 | 0.000 | 97.80298 100.301   |
|x4        |        |           |       |        |                      |
| X        | 7.276753 | .4277636 | 17.01 | 0.000 | 6.438352 8.115154  |
| _cons    | 94.474 | 3.132547 | 30.16 | 0.000 | 88.33432 100.6137  |
| var(X)   | 89.93923 | 11.07933 |        |       | 70.64678 114.5001  |
| var(e.x1)| 115.6865 | 7.790422 |        |       | 101.3822 132.0089  |
| var(e.x2)| 105.0444 | 7.387549 |        |       | 91.51872 120.5692  |
| var(e.x3)| 101.2572 | 7.176349 |        |       | 88.12498 116.3463  |
| var(e.x4)| 144.0408 | 145.2886 |        |       | 19.94848 1040.067  |
```
Notes:

1. Results are virtually the same. Coefficients, variance estimates, and standard errors may differ in the last digit; for instance, $x_4 \sim x$ was 7.276754 and now it is 7.276753. These are the kind of differences we would expect to see. \texttt{gsem} follows a different approach for obtaining results that involves far more numeric machinery, which correspondingly results in slightly less accuracy.

2. The log-likelihood values reported are the same. This model is one of the few models we could have chosen where \texttt{sem} and \texttt{gsem} would produce the same log-likelihood values. In general, \texttt{gsem} log likelihoods are on different metrics from those of \texttt{sem}. In the case where the model does not include observed exogenous variables, however, they share the same metric.

3. There is no reason to use \texttt{gsem} over \texttt{sem} when both can fit the same model. \texttt{sem} is slightly more accurate, is quicker, and has more postestimation features.

Fitting the same model with the Builder

Use the diagram above for reference.

1. Open the dataset.
 In the Command window, type
   ```
   . use https://www.stata-press.com/data/r16/sem_1fmm
   ```

2. Open a new Builder diagram.
 Select menu item \textit{Statistics > SEM (structural equation modeling) > Model building and estimation}.

3. Create the measurement component for X.
 Select the Add measurement component tool, \mathbb{W}, and then click in the diagram about one-third of the way down from the top and slightly left of the center.
 In the resulting dialog box,
 a. change the \textit{Latent variable name} to X;
 b. select x_1, x_2, x_3, and x_4 by using the \textit{Measurement variables} control;
 c. select \textit{Down} in the \textit{Measurement direction} control;
 d. click on \textit{OK}.
 If you wish, move the component by clicking on any variable and dragging it.
 Notice that the constraints of 1 on the paths from the error terms to the observed measures are implied, so we do not need to add these to our diagram.

4. Estimate.
 Click on the \textit{Estimate} button, \mathbb{E}, in the Standard Toolbar, and then click on \textit{OK} in the resulting \textit{SEM estimation options} dialog box.

You can open a completed diagram in the Builder by typing
```
    . webgetsem sem_1fmm
```
The measurement-error model interpretation

As we pointed out in *Using path diagrams to specify standard linear SEMs* in [SEM] *Intro 2*, if we rename variable x4 to be y, we can reinterpret this measurement model as a measurement-error model. In this interpretation, X is the unobserved true value. x1, x2, and x3 are each measurements of X, but with error. Meanwhile, y (x4) is really something else entirely. Perhaps y is earnings, and we believe

\[y = \alpha_4 + \beta_4 X + e_y \]

We are interested in \(\beta_4 \), the effect of true X on y.

If we were to go back to the data and type `regress y x1`, we would obtain an estimate of \(\beta_4 \), but we would expect that estimate to be biased toward 0 because of the errors-in-variable problem. The same applies for y on x2 and y on x3. If we do that, we obtain

\[
\begin{align*}
\hat{\beta}_4 & \text{ based on } \text{regress } y \times 1 & 3.19 \\
\hat{\beta}_4 & \text{ based on } \text{regress } y \times 2 & 3.36 \\
\hat{\beta}_4 & \text{ based on } \text{regress } y \times 3 & 3.43
\end{align*}
\]

In the `sem` output above, we have an estimate of \(\beta_4 \) with the bias washed away:

\[
\hat{\beta}_4 \text{ based on } \text{sem (y<-X)} & 7.28
\]

The number 7.28 is the value reported for (x4<-X) in the `sem` output.

That \(\beta_4 \) might be 7.28 seems plausible because we expect that the estimate should be larger than the estimates we obtain using the variables measured with error. In fact, we can tell you that the 7.28 estimate is quite good because we at StataCorp know that the true value of \(\beta_4 \) is 7. Here is how we manufactured this fictional dataset:

```stata
set seed 83216
set obs 500
gen X = round(rnormal(0,10))
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(100 + 7*X + rnormal(0, 10))
drop X
```

The data recorded in `sem_1fmm.dta` were obviously generated using normality, the same assumption that is most often used to justify the `SEM` maximum likelihood estimator. In [SEM] *Intro 4*, we explained that the normality assumption can be relaxed and conditional normality can usually be substituted in its place.

So let’s consider nonnormal data. Let’s make X be \(\chi^2(2) \), a violently nonnormal distribution, resulting in the data-manufacturing code

```stata
set seed 83216
set obs 500
gen X = (rchi2(2)-2)*(10/2)
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(100 + 7*X + rnormal(0, 10))
drop X
```
All the \texttt{rnormal()} functions remaining in our code have to do with the assumed normality of the errors. The multiplicative and additive constants in the generation of X simply rescale the $\chi^2(2)$ variable to have mean 100 and standard deviation 10, which would not be important except for the subsequent \texttt{round()} functions, which themselves were unnecessary except that we wanted to produce a pretty dataset when we created the original \texttt{sem_1fmm.dta}.

In any case, if we rerun the commands with these data, we obtain

\begin{verbatim}
β_4 based on \texttt{regress y x1} 3.24 \\
β_4 based on \texttt{regress y x2} 3.14 \\
β_4 based on \texttt{regress y x3} 3.36 \\
β_4 based on \texttt{sem (y<-X)} 7.25
\end{verbatim}

We will not burden you with the details of running simulations to assess coverage; we will just tell you that coverage is excellent: reported test statistics and significance levels can be trusted.

By the way, errors in the variables is something that does not go away with progressively larger sample sizes. Change the code above to produce a 100,000-observation dataset instead of a 500-observation one, and you will obtain

\begin{verbatim}
β_4 based on \texttt{regress y x1} 3.47 \\
β_4 based on \texttt{regress y x2} 3.48 \\
β_4 based on \texttt{regress y x3} 3.50 \\
β_4 based on \texttt{sem (y<-X)} 6.97
\end{verbatim}

References

Acock, A. C. 2013.\textit{ Discovering Structural Equation Modeling Using Stata}. Rev. ed. College Station, TX: Stata Press.

Also see

[\texttt{SEM}] \texttt{sem} — Structural equation model estimation command

[\texttt{SEM}] \texttt{gsem} — Generalized structural equation model estimation command

[\texttt{SEM}] \texttt{Intro 5} — Tour of models

[\texttt{SEM}] \texttt{Example 3} — Two-factor measurement model

[\texttt{SEM}] \texttt{Example 24} — Reliability

[\texttt{SEM}] \texttt{Example 27g} — Single-factor measurement model (generalized response)