estat lcmean — Latent class marginal means

Description

estat lcmean is for use after gsem but not sem.
estat lcmean reports a table of the marginal predicted means of each outcome within each latent class.
marginsplot can be used after estat lcmean to plot the marginal predicted means for each class.

Menu

Statistics > LCA (latent class analysis) > Class marginal means

Syntax

estat lcmean [, options]

options Description

 nose do not estimate SEs
 post post margins and their VCE as estimation results
 display_options control column formats, row spacing, and line width

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

 nose suppresses calculation of the VCE and standard errors.
 post causes estat lcmean to behave like a Stata estimation (e-class) command. estat lcmean posts the vector of estimated margins along with the estimated variance–covariance matrix to \(\text{e}(\cdot) \), so you can treat the estimated margins just as you would results from any other estimation command.

 display_options: vsquish, fvwrap(#), fvwrapon(style), cformat(\%fmt), pformat(\%fmt), sformat(\%fmt), and nolstretch.

Remarks and examples

See [SEM] Example 50g, [SEM] Example 53g, and [SEM] Example 54g.
Stored results

`estat lcmean` stores the following in `r()`:

Scalars
- `r(N)` number of observations

Macros
- `r(title)` title in output

Matrices
- `r(b)` estimates
- `r(V)` variance–covariance matrix of the estimates
- `r(table)` matrix containing the margins with their standard errors, test statistics, *p*-values, and confidence intervals

`estat lcmean` with the `post` option also stores the following in `e()`:

Scalars
- `e(N)` number of observations

Macros
- `e(title)` title in output
- `e(properties) b V`

Matrices
- `e(b)` estimates
- `e(V)` variance–covariance matrix of the estimates

Also see

[SEM] `gsem` — Generalized structural equation model estimation command
[SEM] `gsem postestimation` — Postestimation tools for gsem
[SEM] `Example 50g` — Latent class model
[SEM] `Example 53g` — Finite mixture Poisson regression
[SEM] `Example 54g` — Finite mixture Poisson regression, multiple responses