estat lcmean — Latent class marginal means

Description

`estat lcmean` is for use after `gsem` but not `sem`.

`estat lcmean` reports a table of the marginal predicted means of each outcome within each latent class.

Menu

Statistics > LCA (latent class analysis) > Class marginal means

Syntax

```
estat lcmean [, options]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nose</code></td>
<td>do not estimate SEs</td>
</tr>
<tr>
<td><code>post</code></td>
<td>post margins and their VCE as estimation results</td>
</tr>
<tr>
<td><code>display_options</code></td>
<td>control column formats, row spacing, and line width</td>
</tr>
</tbody>
</table>

Options

- `nose` suppresses calculation of the VCE and standard errors.
- `post` causes `estat lcmean` to behave like a Stata estimation (e-class) command. `estat lcmean` posts the vector of estimated margins along with the estimated variance–covariance matrix to `e()`, so you can treat the estimated margins just as you would results from any other estimation command.

 `display_options`: `vsquish`, `fvwrap(#)`, `fvwrapon(style)`, `cformat(\%fmt)`, `pformat(\%fmt)`, `sformat(\%fmt)`, and `nolstretch`.

Remarks and examples

See [SEM] Example 50g, [SEM] Example 53g, and [SEM] Example 54g.
Stored results

`estat lcmean` stores the following in `r()`:

Scalars
- `r(N)` number of observations

Macros
- `r(title)` title in output

Matrices
- `r(b)` estimates
- `r(V)` variance–covariance matrix of the estimates
- `r(table)` matrix containing the margins with their standard errors, test statistics, p-values, and confidence intervals

`estat lcmean` with the `post` option also stores the following in `e()`:

Scalars
- `e(N)` number of observations

Macros
- `e(title)` title in output
- `e(properties) b V`

Matrices
- `e(b)` estimates
- `e(V)` variance–covariance matrix of the estimates

Also see

[SEM] `gsem` — Generalized structural equation model estimation command
[SEM] `gsem postestimation` — Postestimation tools for `gsem`
[SEM] `Example 50g` — Latent class model
[SEM] `Example 53g` — Finite mixture Poisson regression
[SEM] `Example 54g` — Finite mixture Poisson regression, multiple responses