zinb postestimation — Postestimation tools for zinb

Postestimation commands predict margins Methods and formulas References Also see

Postestimation commands

The following postestimation commands are available after zinb:

Command	Description
contrast	contrasts and ANOVA-style joint tests of parameters
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian information criteria (AIC, CAIC, AICc, and BIC, respectively)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estat (svy)	postestimation statistics for survey data
estimates	cataloging estimation results
etable	table of estimation results
* forecast	dynamic forecasts and simulations
* hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of parameters
* lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of parameters
predict	number of events, incidence rates, probabilities, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of parameters
suest	seemingly unrelated estimation
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

 $^{^{*}}$ forecast, hausman, and lrtest are not appropriate with svy estimation results.

predict

Description for predict

predict creates a new variable containing predictions such as numbers of events, incidence rates, probabilities, linear predictions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic nooffset]
predict [type] stub* [if] [in], scores
```

statistic	Description
Main	
n	number of events; the default
ir	incidence rate
pr	probability of a degenerate zero
pr(n)	probability $Pr(y_i = n)$
pr(a,b)	probability $Pr(a \le y_i \le b)$
xb	linear prediction
stdp	standard error of the linear prediction

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

- n, the default, calculates the predicted number of events, which is $(1-F_i)\exp(\mathbf{x}_i\boldsymbol{\beta})$ if neither offset () nor exposure () was specified when the model was fit, where F_j is the predicted probability of a zero outcome; $(1-F_j) \exp(\mathbf{x}_j \boldsymbol{\beta} + \text{offset}_j^{\boldsymbol{\beta}})$ if offset () was specified; or $(1-F_j) \{ \exp(\mathbf{x}_j \boldsymbol{\beta}) \times \text{exposure}_j \}$ if exposure() was specified.
- ir calculates the incidence rate, which is the predicted number of events when exposure is 1. This is equivalent to specifying both the n and the nooffset options.
- pr calculates the probability of a degenerate zero, predicted from the fitted degenerate distribution F_i $F(\mathbf{z}_j \gamma)$. If offset() was specified within the inflate() option, then $F_j = F(\mathbf{z}_j \gamma + \text{offset}_i^{\gamma})$ is calculated.
- pr(n) calculates the probability $Pr(y_i = n)$, where n is a nonnegative integer that may be specified as a number or a variable. Note that pr is not equivalent to pr(0).

pr(a,b) calculates the probability $Pr(a \le y_j \le b)$, where a and b are nonnegative integers that may be specified as numbers or variables;

b missing (b > .) means $+\infty$;

pr(20,.) calculates $Pr(y_i \ge 20)$;

pr(20,b) calculates $Pr(y_i \ge 20)$ in observations for which $b \ge 1$, and calculates

 $Pr(20 \le y_i \le b)$ elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is $x_i\beta$ if neither offset() nor exposure() was specified; $\mathbf{x}_{j}\boldsymbol{\beta} + \text{offset}_{j}^{\beta}$ if offset() was specified; or $\mathbf{x}_{j}\boldsymbol{\beta} + \ln(\text{exposure}_{j})$ if exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It modifies the calculations made by predict so that they ignore the offset or exposure variable; the linear prediction is treated as $\mathbf{x}_{j}\boldsymbol{\beta}$ rather than as $\mathbf{x}_{j}\boldsymbol{\beta}$ + offset $\mathbf{x}_{j}\boldsymbol{\beta}$ or $\mathbf{x}_{j}\boldsymbol{\beta}$ + ln(exposure \mathbf{x}_{j}). Specifying predict ..., nooffset is equivalent to specifying predict ..., ir.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L/\partial(\mathbf{x}_i\beta)$.

The second new variable will contain $\partial \ln L/\partial(\mathbf{z}_i \boldsymbol{\gamma})$.

The third new variable will contain $\partial \ln L/\partial \ln \alpha$.

Description for margins

margins estimates margins of response for number of events, incidence rates, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

```
margins [marginlist] [, options]
margins [marginlist], predict(statistic ...) [predict(statistic ...) [ options ]
```

statistic	Description
n	number of events; the default
ir	incidence rate
pr	probability of a degenerate zero
pr(n)	probability $Pr(y_i = n)$
pr(a,b)	probability $Pr(a \le y_i \le b)$
xb	linear prediction
stdp	not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Methods and formulas

See Methods and formulas in [R] zinb for the model definition and notation.

The probabilities calculated using the pr(n) option are the probability $Pr(y_j = n)$. These are calculated using

$$\begin{split} &\Pr(y_j = 0 | \mathbf{x}_j, \mathbf{z}_j) = F_j + (1 - F_j) \, p_2(0 | \mathbf{x}_j) \\ &\Pr(y_i = n | \mathbf{x}_i, \mathbf{z}_j) = (1 - F_i) \, p_2(n | \mathbf{x}_j) \end{split} \qquad \text{for } n = 1, 2, \dots \end{split}$$

where F_j is the probability of obtaining an observation from the degenerate distribution whose mass is concentrated at zero, and $p_2(n|\mathbf{x}_j)$ is the probability of $y_j=n$ from the nondegenerate, negative binomial distribution. F_j can be obtained by using the pr option.

See Cameron and Trivedi (2013, sec. 4.6) for further details.

References

Cameron, A. C., and P. K. Trivedi. 2013. Regression Analysis of Count Data. 2nd ed. New York: Cambridge University

Manjón, M., and O. Martínez. 2014. The chi-squared goodness-of-fit test for count-data models. Stata Journal 14: 798-816.

Also see

[R] **zinb** — Zero-inflated negative binomial regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.