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Description
wildbootstrap performs wild cluster bootstrap (WCB) inference for linear hypotheses about

parameters in linear regression models. These hypotheses can be simple or composite. When the
assumptions required for the consistency of the cluster–robust variance estimator (CRVE) do not hold,
the WCB is a good alternative.

Quick start
Estimate the WCB p-value and confidence interval (CI) for the coefficient on x1 in a linear regression

of y on x1 with clusters identified in cvar

wildbootstrap regress y x1, cluster(cvar)

Same as above, but test whether the coefficients on x1 and x2 are equal in a regression of y on x1
and x2

wildbootstrap regress y x1 x2, cluster(cvar) test(x1 = x2)

Menu
Statistics > Resampling > Wild cluster bootstrap
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Syntax
wildbootstrap estimator depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

estimator Description

regress linear regression
areg linear regression with a large indicator-variable set
xtreg fixed-effects linear models

options Description

Main

noconstant suppress constant term; available only with estimator regress
hascons has user-supplied constant; available only with estimator regress
absorb(varname) categorical variable to be absorbed; required by and available only

with estimator areg

Statistics

coefficients(coeflist) perform inference for a subset of coefficients
test(testspec) specify linear test parameters

Bootstrap

cluster(clustvar) specify variable identifying clusters; required for estimators
regress and areg

ptype(ptype) specify the p-value type; may be equal (the default) or symmetric
errorweight(wcbwtype) specify WCB weight; default is errorweight(rademacher)

reps(#) set number of bootstrap repetitions; default is reps(1000)

rseed(# | statecode) set random-number seed to # or statecode
blocksize(#) set bootstrap repetition block size; default is min(reps(#),1000)
cistop(largest | first) specify stopping rule for CI computation

Reporting

level(#) set confidence level; default is level(95)

display options control column formats and display of CIs

indepvars and coeflist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and coeflist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
collect is allowed; see [U] 11.1.10 Prefix commands.
Any weight that is allowed by the estimator is allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

noconstant and hascons; see [R] regress. These options may be specified only when estimator
regress is specified.

absorb(varname); see [R] areg. This option must be specified when estimator areg is specified.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rareg.pdf#rareg
https://www.stata.com/manuals/xtxtreg.pdf#xtxtreg
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rareg.pdf#rareg
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� � �
Statistics �

coefficients(coeflist) performs an inference for a subset of coefficients. It reports the bootstrap
p-value for a test of the subset of coefficients, coeflist, equal to 0 and the bootstrap CI. The default
is to perform inference for all variables specified in indepvars. coefficients() may not be
specified with test().

test(testspec) specifies a linear test. You may also specify multiple linear tests by using
test((testspec1) (testspec2) . . .). The test specification must be consistent with specifying
a linear constraint. See [R] test and [R] constraint.

� � �
Bootstrap �

cluster(clustvar) specifies the variable identifying the cluster groups. cluster() is required with
estimators regress and areg. With estimator xtreg, clustvar defaults to the xtset panelvar.

ptype(ptype) specifies the p-value criterion: symmetric (symmetric) or equal tailed (equal). The
default is ptype(equal). See Methods and formulas for more details.

errorweight(wcbwtype) specifies the type of wild weight. wcbwtype may be one of the following:

wcbwtype Description

rademacher two-point distribution assigns values 1 and −1 with equal
probability; the default

mammen two-point distribution assigns value 1− φ with probability
φ/
√

5 and value φ otherwise, where φ = (1 +
√

5)/2
webb six-point distribution assigns probability of 1/6 to the points

±
√

1/2, ±1, and ±
√

3/2
normal standard normal distribution
gamma gamma distribution with shape parameter 4 and scale parameter 1/2

centered on its mean of 2

reps(#) sets the number of repetitions for the bootstrap. The default is reps(1000). For the
ptype(equal) option, the values of level() and reps() should be chosen so that α/2×reps(#)
is an integer, where α = (100− level(#))/100. For the ptype(symmetric) option, such values
should be chosen so that α × reps(#) is an integer. When the product is not an integer, the
number of repetitions is increased so that it is. Integer values improve the search efficiency of the
wildbootstrap algorithm.

rseed(# | statecode) sets the random-number seed to # or statecode. See [R] set seed.

blocksize(#) sets the bootstrap block size. This is an integer less than or equal to reps(#) and
is used to reduce the amount of memory the bootstrap computation will consume. The default is
min(reps(#),1000).

cistop(largest | first) specifies the stopping rule for the CI computation. The bootstrap distri-
bution is a step function, so for each bound, there is an interval of values that meet the CI level
criterion. cistop(largest), the default, specifies that the largest value within the interval be
selected. cistop(first) specifies that the first value the algorithm finds within the interval be
selected; therefore, specifying cistop(first) will result in faster CI computation. The cistop()
option may not be combined with the noci option.

� � �
Reporting �

level(#); see [R] Estimation options. The level() option will not work on replay because CIs
are based on estimator-specific enumerations. To change the confidence level, you must refit the
model.

https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rconstraint.pdf#rconstraint
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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display options: noci, cformat(% fmt), pformat(% fmt), and sformat(% fmt); see [R] Estimation
options. The noci option may not be combined with the cistop() option.

Remarks and examples stata.com

wildbootstrap implements the WCB, which was proposed by Cameron, Gelbach, and
Miller (2008). It is an extension of the original wild bootstrap procedure proposed by Wu (1986), which
was designed to work well for models with heteroskedasticity, to the case of cluster-level correlation.
The wild bootstrap has proven to work well in cases where cluster–robust standard errors do not
perform well. A good discussion of the methodology can be found in Cameron and Miller (2015),
MacKinnon (2019), MacKinnon and Webb (2018), and MacKinnon, Nielsen, and Webb (2023), and
the references therein. Specifically, the WCB is a good inference tool when one or more of the CRVE
t-statistic consistency assumptions are violated. MacKinnon and Webb list the assumptions as follows:

1. The number of clusters goes to infinity.

2. The within-cluster error correlations are the same for all clusters.

3. Each cluster contains an equal number of observations.

Below, we illustrate how to use wildbootstrap; however, note that alternatives exist in the
literature to address the inference problems noted above. For example, the Bell and McCaffrey (2002)
t-statistic degrees-of-freedom correction is an alternative to wildbootstrap when at least one of the
above assumptions is violated. The degrees-of-freedom correction is computed with option vce(hc2
clustvar, dfadjust) for regress, areg, and xtreg, fe.

Example 1: Simple regression

Say we are interested in the effect of tenure on wages for a panel of individuals sampled from 2013
to 2016. We would like to use wild bootstrap CIs clustering at the personid level. For reproducibility,
we set the seed by using option rseed().

. use https://www.stata-press.com/data/r18/wagework
(Wages for 20 to 77 year olds, 2013--2016)

. wildbootstrap regress wage tenure, cluster(personid) rseed(12345)

Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure

Lower bound: .........10.........20. done (21)
Upper bound: .........10....... done (17)

Wild cluster bootstrap Number of obs = 1,928
Linear regression Number of clusters = 589

Cluster size:
Cluster variable: personid min = 1
Error weight: Rademacher avg = 3.3

max = 4

wage Estimate t p-value [95% conf. interval]

constraint
tenure = 0 .7807403 27.19 0.000 .7209754 .8368386

The iteration log indicates the number of iterations used to compute the lower and upper bound
for the CIs. In Methods and formulas below, we discuss how these bounds are computed. Notably,
there is a separate optimization procedure used to compute each one of these bounds.

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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The table header also tells us the error weights used for the sampling algorithm of the wild
bootstrap, which, by default, are Rademacher weights. See the errorweight() option for more
details about error weights.

The column header labeled p-value indicates that the t-statistic equal-tailed p-value has been
computed. The ptype(equal) option is the default. Alternatively, the symmetric p-value is computed
when the ptype(symmetric) option is specified and is identified with the column header of P>|t|.

. wildbootstrap regress wage tenure, cluster(personid) rseed(12345)
> ptype(symmetric)

Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure

Lower bound: .........10.........20.. done (22)
Upper bound: .........10..... done (15)

Wild cluster bootstrap Number of obs = 1,928
Linear regression Number of clusters = 589

Cluster size:
Cluster variable: personid min = 1
Error weight: Rademacher avg = 3.3

max = 4

wage Estimate t P>|t| [95% conf. interval]

constraint
tenure = 0 .7807403 27.19 0.000 .7240502 .8399896

We can always compare the CIs from the wild bootstrap with what we would have obtained using
the underlying command, in this case, regress.

. regress

Linear regression Number of obs = 1,928
F(1, 588) = 739.36
Prob > F = 0.0000
R-squared = 0.4212
Root MSE = 3.5097

(Std. err. adjusted for 589 clusters in personid)

Robust
wage Coefficient std. err. t P>|t| [95% conf. interval]

tenure .7807403 .028713 27.19 0.000 .7243477 .8371328
_cons 20.89884 .2135686 97.86 0.000 20.47939 21.31829

Note that typing this command will replace the return matrix r(table). Observe that the t statistics
are the same in both tables because regress and wildbootstrap use the same CRVE, but the
p-values and CIs may vary between tables.

Similarly, you can redisplay the wildbootstrap table by typing wildbootstrap, which may be
abbreviated as wildboot.

Example 2: Small number of clusters with wildly varying cluster sizes

As in example 1, we would like to see the effect of tenure on wages; in this case, however, we
would like to cluster at the industry level. Here, for year 1988, we use a wage dataset with only 12
clusters, for which cluster sizes vary wildly from 4 to 817, violating the CRVE t-statistic consistency
assumptions 1 and 3 outlined previously.
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. use https://www.stata-press.com/data/r18/nlsw88
(NLSW, 1988 extract)

. wildbootstrap regress wage tenure, cluster(industry) rseed(12345)

Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure

Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20.... done (24)

Wild cluster bootstrap Number of obs = 2,217
Linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 4
Error weight: Rademacher avg = 184.8

max = 817

wage Estimate t p-value [95% conf. interval]

constraint
tenure = 0 .1830716 6.95 0.000 .1274023 .3258156

Example 3: Small number of clusters with more regressors

Continuing with example 2, we look at a more complex and perhaps more realistic example.
We add to the model explanatory variables for total work experience, ttl exp; a college graduate
indicator, collgrad; and an indicator for union membership, union.

. wildbootstrap regress wage c.tenure##c.ttl_exp ib0.collgrad ib0.union,
> cluster(industry) rseed(12345)

Performing 1,000 replications for p-value for tenure = 0 ...
Computing confidence interval for tenure

Lower bound: .........10.........20.........30.... done (34)
Upper bound: .........10.........20.... done (24)

Performing 1,000 replications for p-value for ttl_exp = 0 ...
Computing confidence interval for ttl_exp

Lower bound: .........10.........20..... done (25)
Upper bound: .........10......... done (19)

Performing 1,000 replications for p-value for c.tenure#c.ttl_exp = 0 ...
Computing confidence interval for c.tenure#c.ttl_exp

Lower bound: .........10.........20... done (23)
Upper bound: .........10.........20....... done (27)

note: upper-bound CI achieved 1-F(-3.65e-04) = 0.0240, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Performing 1,000 replications for p-value for 1.collgrad = 0 ...
Computing confidence interval for 1.collgrad

Lower bound: .........10.........20.........30.. done (32)
note: lower-bound CI achieved F(1.66) = 0.0240, but target is F(x) = .025.
note: at least one bootstrap t statistic matches the t statistic under the

null; this prevents the CI bound from converging to the target.
Upper bound: .........10.........20...... done (26)

Performing 1,000 replications for p-value for 1.union = 0 ...
Computing confidence interval for 1.union

Lower bound: .........10.........20.........30 done (30)
Upper bound: .........10.........20..... done (25)
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Wild cluster bootstrap Number of obs = 1,855
Linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Rademacher avg = 154.6

max = 717

wage Estimate t p-value [95% conf. interval]

constraints
tenure = 0 .204166 2.81 0.026 .0729495 .4699121

ttl_exp = 0 .3025249 11.72 0.004 .2566267 .4110114
c.tenure#c.ttl_exp = 0 -.0097942 -2.76 0.046 -.022061 -.0003651

1.collgrad = 0 3.077377 7.59 0.034 1.662277 5.218396
1.union = 0 .9114564 2.31 0.040 .1060322 2.470924

We did not specify the coefficients() option, so wildbootstrap computes p-values and CIs for
all coefficients in the model, with the exception of the constant term, using the default ptype(equal)
option to compute the equal-tailed p-values.

The iteration log states that the CI-target tail values were not achieved for two of the reported
constraints. This is because the sorted vector of bootstrap t statistics can have ties due to computer
finite numeric precision and the finite number of draws for the Rademacher, Mammen, and Webb
distributions. When ties occur with the t statistic under the null, or those adjacent to it, and the
desired CI tail area cannot be achieved, wildbootstrap will choose a bound that results in a smaller
tail area. This is the case when wildbootstrap searches for the c.tenure#c.ttl exp CI upper
bound and the 1.collgrad CI lower bound.

Numerical computations will contain a roundoff error; wildbootstrap retains 13 digits on the
mantissa of the t statistics before making comparisons.

Example 4: Linear regression with an indicator-variable set

We would like to include an individual’s occupation code (occupation) as an additional control
in the regression to avoid potential omitted-variable bias. We keep the other control variables we
introduced in example 3. For this analysis, we use the estimator areg with the absorb(occupation)
option. We use the test() option to test linear combinations of regression estimates.

. wildbootstrap areg wage c.tenure##c.ttl_exp ib0.collgrad ib0.union,
> absorb(occupation) cluster(industry) rseed(12345)
> test((tenure=ttl_exp) (1.collgrad-1.union=1)) reps(1250)
note: for equal-tailed 95% CI, better performance is obtained when

.025*reps() is an integer.
note: setting repetitions to 1,280.

Performing 1,280 replications for p-value for constraint
tenure - ttl_exp = 0 ...

Computing confidence interval for tenure - ttl_exp
Lower bound: .........10.........20... done (23)
Upper bound: .........10.........20..... done (25)

note: upper-bound CI achieved 1-F(0.15) = 0.0242, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Performing 1,280 replications for p-value for constraint
1.collgrad - 1.union = 1 ...
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Computing confidence interval for 1.collgrad - 1.union
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20....... done (27)

note: upper-bound CI achieved 1-F(3.91) = 0.0242, but target is 1-F(x) =
.025.

note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Wild cluster bootstrap Number of obs = 1,851
Linear regression, absorbing indicators Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Rademacher avg = 154.2

max = 717

wage Estimate t p-value [95% conf. interval]

constraints
tenure - ttl_exp = 0 -.0391243 -0.71 0.517 -.1915527 .1495055

1.collgrad - 1.union = 1 1.356332 0.77 0.395 -.1882941 3.913359

The test() option allows us to specify a linear combination of the regression coefficients that
we would like to test. The syntax is the same as specifying linear constraints, constraint, or
linear hypothesis tests, test. In this example, we are inquiring how probable it would be for
tenure = ttl exp and 1.collgrad− 1.union = 1.

The reps() option allows us to set the number of bootstrap repetitions. The default is 1,000.
Because the Rademacher and Mammen distributions have two possible realizations, the maximum
number of possible bootstrap samples is 2G, where G is the number of clusters. The Webb distribution,
on the other hand, has six outcomes and therefore 6G possible combinations.

In this example, we intentionally specify a number of bootstrap repetitions that results in a
noninteger product, reps() × α/2: reps() × (100 − level())/200 = 1250 × 0.025 = 31.25. In
this case, we lose efficiency in searching for the CI bounds, so wildbootstrap adjusts the number
of repetitions to 1,280; when we specify reps(1250) with level(95), wildbootstrap chooses
reps() = ceil(1250 × α/2)/(α/2) = 32/0.025 = 1280. If an integer alternative cannot be found,
the original reps() specification will be used. For details, see Methods and formulas below.

Because the WCB distribution is a step function, there is a range of values for each CI bound.
For example, the lower-bound interval of values for the linear combination tenure − ttl exp is
−0.191586 < alb ≤ −0.191553. The reported bounds are the largest value of each interval. We obtain
−0.191586 by running wildbootstrap specifying level(#) with # = (0.95 + 2/1280) × 100.
We would likely report the CIs using three digits of precision, for instance, [−0.192, 0.150], so this
interval is negligible but significant in a numerical root search where a convergence tolerance for rl
might be 10−8.

The estimate of tenure− ttl exp is reported to be −0.0391 with a 95% CI of [−0.192, 0.150].
We therefore fail to reject the hypothesis that tenure = ttl exp. Similarly, the estimate of
1.collgrad− 1.union is 1.36 with a CI of [−0.188, 3.91], and we conclude the difference of 1 is
feasible.

https://www.stata.com/manuals/rconstraint.pdf#rconstraint
https://www.stata.com/manuals/rtest.pdf#rtest
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Example 5: Fixed-effects linear regression with panels

Our final example demonstrates the use of wildbootstrap with estimator xtreg. Continuing
with the data in the previous example, we use industry as the variable defining the panels.

We specify normal error weights, errorweight(normal), thereby reducing the chance of identical
draws for the error weights. Draws from the Rademacher distribution for 12 clusters have 212 = 4096
combinations.

We compute p-values and CIs on a subset of the model estimates: work tenure, work experience,
and their interaction. If we replay the xtreg coefficient table, we will see that the fitted model
includes tenure, ttl exp, c.tenure#c.ttl exp, 1.collgrad, and 1.union.

Finally, we use the symmetric p-value, option ptype(symmetric), instead of the default equal-
tailed, ptype(equal). The table identifies the symmetric p-value with the header P>|t|.

The command and the results are as follows:

. xtset industry

Panel variable: industry (unbalanced)

. wildbootstrap xtreg wage c.tenure##c.ttl_exp i.collgrad i.union,
> rseed(12345) coef(ten ttl ten#ttl) errorweight(normal)
> ptype(symmetric)

Panel variable: industry (unbalanced)

Performing 1,000 replications for p-value for constraint
tenure = 0 ...

Computing confidence interval for tenure
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20. done (21)

Performing 1,000 replications for p-value for constraint
ttl_exp = 0 ...

Computing confidence interval for ttl_exp
Lower bound: .........10.........20...... done (26)
Upper bound: .........10........ done (18)

Performing 1,000 replications for p-value for constraint
c.tenure#c.ttl_exp = 0 ...

Computing confidence interval for c.tenure#c.ttl_exp
Lower bound: .........10.........20...... done (26)
Upper bound: .........10.........20... done (23)

Wild cluster bootstrap Number of obs = 1,855
Fixed-effects linear regression Number of clusters = 12

Cluster size:
Cluster variable: industry min = 2
Error weight: Normal avg = 154.6

max = 717

wage Estimate t P>|t| [95% conf. interval]

constraints
tenure = 0 .2026682 2.95 0.024 .0555676 .3753468

ttl_exp = 0 .2716375 11.59 0.000 .2227054 .3372929
c.tenure#c.ttl_exp = 0 -.0104125 -2.55 0.046 -.0201336 -.0003384

The fixed-effects model is the only xtreg model allowed with wildbootstrap, so specifying
the fe option is not required.

Also note that the cluster() option is not specified. When the estimator xtreg is specified, the
default cluster variable is the panel variable that is xtset. If the specified cluster variable is different
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from the panel variable, then the levels of the panel variable must be nested within the cluster variable
levels.

Stored results
wildbootstrap stores the following in e():

Scalars
e(N clust) number of clusters
e(N wbreps) number of bootstrap repetitions
e(wb block) bootstrap block size
e(n wbcns) number of bootstrap constraint restrictions
e(min c) smallest cluster size
e(max c) largest cluster size
e(avg c) average cluster size

Macros
e(cmdline) command as typed
e(cmd0) wildbootstrap
e(wb stat) WCB statistic, t
e(wb weight) WCB weights
e(wb ptype) WCB p-value criterion
e(wb level) WCB CI level
e(wb cistop) WCB CI interval type
e(wb rseed) random-number state
e(wb cnsi) WCB constraint i, where i=1,...,e(n wbcns)
e(clustvar) name of cluster variable

Matrices
e(wboot) WCB table
e(wb pci) WCB CI coverage
e(wb Cns) WCB constraint matrix

wildbootstrap will also carry forward most of the results already in e() from command.

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
CIs for linear combinations of coefficients
Constructing a CI inverting the hypothesis test
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Introduction
We will focus our discussion of the WCB on linear regression, which easily extends to the other

fixed-effects estimators. A linear regression model with clustered errors and G clusters can be written
as

y =


y1

y2
...

yG

 = Xβ + ε =


X1

X2
...

XG



β1
β2
...
βk

+


ε1
ε2
...
εG

 (1)

where for each cluster g, Ng is the number of observations, yg is an Ng × 1 vector of outcomes, Xg

is an Ng × k matrix of covariates, and εg is an Ng × 1 vector of errors. The parameter of interest
is the k × 1 vector of coefficients β. Error terms are assumed uncorrelated between observations of
different clusters but possibly correlated between observations within the same cluster.

Without loss of generality, we will first focus on testing the null hypothesis H0:βk = 0 using the
WCB algorithm. Let β̂ denote the ordinary least-squares estimator for β. We compute the t statistic
for the kth coefficient as

tk =
β̂k√
V̂k,k

where V̂k,k is the CRVE for β̂k. This is the kth diagonal element of the matrix

V̂ =
G(N − 1)

(G− 1)(N − k)
(XX′)

−1
(

G∑
g=1

X′g ε̂g ε̂
′
gXg

)
(XX′)

−1
(2)

where ε̂g is the Ng × 1 vector of ordinary least-squares residuals for cluster g and N =
∑G

g=1Ng

is the total number of observations.

The WCB algorithm proceeds as follows:

1. Refit model (1) subject to the restriction βk = 0. Let β̃ denote the restricted estimates and
ε̃ denote the restricted residuals.

2. For each individual bootstrap replication b (out of a total of B replications):

2a. Generate random variable νbg for each cluster g according to the distribution specified
in the errorweight() option.

2b. For each cluster g and each observation in the cluster i = 1, 2, . . . , Ng , generate
a new bootstrap-dependent variable ybig using the data-generating process:

ybig = Xigβ̃ + ε̃igν
b
g

2c. Fit model (1) using the bootstrap variable ybig as regressand. Calculate the t statistic
for βk = 0,

tbk =
β̂b
k√

V̂b
k,k

where β̂b
k and V̂b

k,k are the ordinary least-squares coefficient and the CRVE for
that coefficient in the bootstrap replication, respectively. In this case, the CRVE is
the kth diagonal element of matrix (2) obtained when using the residuals from
bootstrap replication b.
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3. The p-values for the one-sided alternative hypotheses H1:βk > 0 and H2:βk < 0 are given
by

p1 =
1

B

B∑
b=1

I
(
tbk > tk

)

p2 =
1

B

B∑
b=1

I
(
tbk < tk

)
For the alternative hypothesis H3:βk 6= 0, the p-value assuming that the distribution of the
t statistic is symmetric around 0 is given by

pS =
1

B

B∑
b=1

I
(∣∣tbk∣∣ > |tk|)

If the assumption of symmetry is not appropriate, then the p-value is given by the equal-tailed
p-value pe = 2 min(p1, p2). See Djogbenou, MacKinnon, and Nielsen (2019).

To increase computational speed, at the expense of computer memory usage, the wildbootstrap
command uses the matrix algebra of Roodman et al. (2019). By doing this, the computational
complexity (run time) of the WCB algorithm is reduced from the order O(NB) to the order O(GB).
The WCB uses a G×B matrix of random variables. By organizing these variables in column-major
order, wildbootstrap reduces overall memory usage with minimal extra computation by breaking
up the number of bootstrap replicates into blocks (the blocksize(#) option).

CIs for linear combinations of coefficients

By inverting hypotheses tests, we can apply the WCB algorithm to find CIs for any linear combination
of coefficients. Suppose we wanted to compute a CI for the linear combination of parameters Rβ,
where R is a 1× k vector. In this case, the associated null hypothesis is H0:Rβ = r, where r is an
arbitrary scalar. We can test this null hypothesis with the WCB algorithm described in the previous
section by using the bootstrap t statistics

tb(r) =
Rβ̂b − r√
RV̂bR′

for b = 1, . . . , B. For more on restricted regression with linear constraints on multiple coefficients,
see [P] makecns.

The associated one-sided alternative hypotheses are now H1:Rβ > r and H2:Rβ < r. As before,
their respective bootstrap p-values are given by

p1(r) =
1

B

B∑
b=1

I
{
tb(r) > t(r)

}

p2(r) =
1

B

B∑
b=1

I
{
tb(r) < t(r)

}

https://www.stata.com/manuals/pmakecns.pdf#pmakecns
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where t(r) is the t statistic from the original sample:

t(r) =
Rβ̂ − r√
RV̂R′

The associated two-sided alternative hypothesis is H3:Rβ 6= r, and its bootstrap p-value under
the assumption of symmetry is given by

pS(r) =
1

B

B∑
b=1

I
{∣∣tb(r)∣∣ > |t(r)|}

When using the equal-tailed criterion (the ptype(equal) option), the 100(1−α)% CI for Rβ is
given by [rl, ru], where rl and ru satisfy p1(rl) = p2(ru) = α/2. On the other hand, when using
the symmetric criterion (the ptype(symmetric) option), rl and ru satisfy pS(rl) = pS(ru) = α.
The parameter α can be specified with the level() option, that is, α = (100− level())/100.

The bootstrap p-values are step functions on r, and therefore a range of values for rl and for
ru will solve the p-value conditions above. Because distribution functions are right continuous,
wildbootstrap chooses the rightmost point in each range of solutions.

For the equal-tailed CIs, the starting values for the search of solutions to the p-value conditions are
chosen as follows. First, the bootstrap t statistics are sorted t(1) ≤ t(2) ≤ . . . < t(B). Second, we
define bl = ceil{B(1− α/2)} so that t(bl) is smaller than B(α/2) of the t statistics. Similarly, we
define bu = floor{B(α/2)} so that t(bu) is larger than B(α/2) of the t statistics. Third and finally,
the initial lower and upper bounds of the CI are given by

rl = Rβ̂ − t(bl)
√

RV̂R′

ru = Rβ̂ − t(bu)
√

RV̂R′

where β̂ and V̂ are the unrestricted estimator for β and the unrestricted CRVE in the original sample.

Constructing a CI inverting the hypothesis test

For a linear combination of coefficients
∑
Rjβj , we can construct a CI by inverting the hypothesis

test H0:Rβ = r, where R is a row vector that includes the coefficients Rj and r is an arbitrary
scalar. To do this, wildbootstrap searches for the CI lower bound rl such that Pr(Rβ ≤ rl) = α/2
(equal-tailed criterion, the ptype(equal) option). The WCB distribution of Rβ is a step function
with a step size of 1/reps(#). When reps(#)×α/2 is an integer, call it S, then we search for the
rl that produces the ordered bootstrapped t statistics

t(b) =
Rβ̂

(b)
− rl√

R′V(b)R

with the property
∑reps()

b=1 I(t(b) > t) = S and therefore Pr(Rβ ≤ rl) = S/reps(#) = α/2.
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