tetrachoric — Tetrachoric correlations for binary variables

Description

`tetrachoric` computes estimates of the tetrachoric correlation coefficients of the binary variables in `varlist`. All of these variables should be 0, 1, or missing values.

Tetrachoric correlations assume a latent bivariate normal distribution \((X_1, X_2)\) for each pair of variables \((v_1, v_2)\), with a threshold model for the manifest variables, \(v_i = 1\) if and only if \(X_i > 0\). The means and variances of the latent variables are not identified, but the correlation, \(r\), of \(X_1\) and \(X_2\) can be estimated from the joint distribution of \(v_1\) and \(v_2\) and is called the tetrachoric correlation coefficient.

`tetrachoric` computes pairwise estimates of the tetrachoric correlations by the (iterative) maximum likelihood estimator obtained from bivariate probit without explanatory variables (see [R] biprobit) by using the Edwards and Edwards (1984) noniterative estimator as the initial value.

The pairwise correlation matrix is returned as \(r(Rho)\) and can be used to perform a factor analysis or a principal component analysis of binary variables by using the factormat or pcamat commands; see [MV] factor and [MV] pca.

Quick start

Tetrachoric correlation of \(v1\) and \(v2\) with standard error and test of independence

```
tetrachoric v1 v2
```

Matrix of pairwise tetrachoric correlations for \(v1\), \(v2\), and \(v3\)

```
tetrachoric v1 v2 v3
```

Add standard errors and \(p\)-values

```
tetrachoric v1 v2 v3, stats(rho se p)
```

As above, but adjust \(p\)-values for multiple comparisons using Bonferroni’s method

```
tetrachoric v1 v2 v3, stats(rho se p) bonferroni
```

Add star to correlations significant at the 5% level

```
tetrachoric v1 v2 v3, star(.05)
```

Use all available data for each pair of variables and report number of observations used

```
tetrachoric v1 v2 v3, pw stats(rho obs)
```

Adjust correlation matrix to be positive semidefinite

```
tetrachoric v1 v2 v3, posdef
```
tetrachoric — Tetrachoric correlations for binary variables

Menu

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Tetrachoric correlations

Syntax

```
tetrachoric varlist [if] [in] [weight] [, options]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>stats(statlist)</code></td>
<td>list of statistics; select up to 4 statistics; default is <code>stats(rho)</code></td>
</tr>
<tr>
<td><code>edwards</code></td>
<td>use the noniterative Edwards and Edwards estimator; default is the maximum likelihood estimator</td>
</tr>
<tr>
<td><code>print(#)</code></td>
<td>significance level for displaying coefficients</td>
</tr>
<tr>
<td><code>star(#)</code></td>
<td>significance level for displaying with a star</td>
</tr>
<tr>
<td><code>bonferroni</code></td>
<td>use Bonferroni-adjusted significance level</td>
</tr>
<tr>
<td><code>sidak</code></td>
<td>use Šidák-adjusted significance level</td>
</tr>
<tr>
<td><code>pw</code></td>
<td>calculate all the pairwise correlation coefficients by using all available data (pairwise deletion)</td>
</tr>
<tr>
<td><code>ze</code></td>
<td>adjust frequencies when one cell has a zero count</td>
</tr>
<tr>
<td><code>matrix</code></td>
<td>display output in matrix form</td>
</tr>
<tr>
<td><code>notable</code></td>
<td>suppress display of correlations</td>
</tr>
<tr>
<td><code>posdef</code></td>
<td>modify correlation matrix to be positive semidefinite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>statlist</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rho</code></td>
<td>tetrachoric correlation coefficient</td>
</tr>
<tr>
<td><code>se</code></td>
<td>standard error of rho</td>
</tr>
<tr>
<td><code>obs</code></td>
<td>number of observations</td>
</tr>
<tr>
<td><code>p</code></td>
<td>exact two-sided significance level</td>
</tr>
</tbody>
</table>

by is allowed; see [D] by.

fweights are allowed; see [U] 11.1.6 weight.

Options

`stats(statlist)` specifies the statistics to be displayed in the matrix of output. `stats(rho)` is the default. Up to four statistics may be specified. `stats(rho se p obs)` would display the tetrachoric correlation coefficient, its standard error, the significance level, and the number of observations. If `varlist` contains only two variables, all statistics are shown in tabular form. `stats()`, `print()`, and `star()` have no effect unless the `matrix` option is also specified.

`edwards` specifies that the noniterative Edwards and Edwards estimator be used. The default is the maximum likelihood estimator. If you analyze many binary variables, you may want to use the fast noniterative estimator proposed by Edwards and Edwards (1984). However, if you have skewed variables, the approximation does not perform well.
print(#) specifies the maximum significance level of correlation coefficients to be printed. Correlation coefficients with larger significance levels are left blank in the matrix. Typing `tetrachoric ... print(.10)` would list only those correlation coefficients that are significant at the 10% level or lower.

`star(#)` specifies the maximum significance level of correlation coefficients to be marked with a star. Typing `tetrachoric ... star(.05)` would “star” all correlation coefficients significant at the 5% level or lower.

`bonferroni` makes the Bonferroni adjustment to calculated significance levels. This option affects printed significance levels and the `print()` and `star()` options. Thus, `tetrachoric ... print(.05) bonferroni` prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.

`sidak` makes the Šidák adjustment to calculated significance levels. This option affects printed significance levels and the `print()` and `star()` options. Thus, `tetrachoric ... print(.05) sidak` prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

`pw` specifies that the tetrachoric correlation be calculated by using all available data. By default, `tetrachoric` uses casewise deletion, where observations are ignored if any of the specified variables in `varlist` are missing.

`zeroadjust` specifies that when one of the cells has a zero count, a frequency adjustment be applied in such a way as to increase the zero to one-half and maintain row and column totals.

`matrix` forces `tetrachoric` to display the statistics as a matrix, even if `varlist` contains only two variables. `matrix` is implied if more than two variables are specified.

`notable` suppresses the output.

`posdef` modifies the correlation matrix so that it is positive semidefinite, that is, a proper correlation matrix. The modified result is the correlation matrix associated with the least-squares approximation of the tetrachoric correlation matrix by a positive-semidefinite matrix. If the correlation matrix is modified, the standard errors and significance levels are not displayed and are returned in `r()`.

Remarks and examples

Remarks are presented under the following headings:

- Association in 2-by-2 tables
- Factor analysis of dichotomous variables
- Tetrachoric correlations with simulated data

Association in 2-by-2 tables

Although a wide variety of measures of association in cross tabulations have been proposed, such measures are essentially equivalent (monotonically related) in the special case of 2×2 tables—there is only 1 degree of freedom for nonindependence. Still, some measures have more desirable properties than others. Here we compare two measures: the standard Pearson correlation coefficient and the tetrachoric correlation coefficient. Given asymmetric row or column margins, Pearson correlations are limited to a range smaller than -1 to 1, although tetrachoric correlations can still span the range from -1 to 1. To illustrate, consider the following set of tables for two binary variables, X and Z:
For a equal to 0, 1, 2, 5, 8, 9, and 10, the Pearson and tetrachoric correlations for the above table are

<table>
<thead>
<tr>
<th>a</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>0.577</td>
<td>0.462</td>
<td>0.346</td>
<td>0</td>
<td>−0.346</td>
<td>−0.462</td>
<td>−0.577</td>
</tr>
<tr>
<td>Tetrachoric</td>
<td>1.000</td>
<td>0.792</td>
<td>0.607</td>
<td>0</td>
<td>−0.607</td>
<td>−0.792</td>
<td>−1.000</td>
</tr>
</tbody>
</table>

The restricted range for the Pearson correlation is especially unfortunate when you try to analyze the association between binary variables by using models developed for continuous data, such as factor analysis and principal component analysis.

The tetrachoric correlation of two variables (Y_1, Y_2) can be thought of as the Pearson correlation of two latent bivariate normal distributed variables (Y_{1*}, Y_{2*}) with threshold measurement models $Y_i = (Y_{i*} > c_i)$ for unknown cutpoints c_i. Or equivalently, $Y_i = (Y_{i**} > 0)$ where the latent bivariate normal (Y_{1**}, Y_{2**}) are shifted versions of (Y_{1*}, Y_{2*}) so that the cutpoints are zero. Obviously, you must judge whether assuming underlying latent variables is meaningful for the data. If this assumption is justified, tetrachoric correlations have two advantages. First, you have an intuitive understanding of the size of correlations that are substantively interesting in your field of research, and this intuition is based on correlations that range from −1 to 1. Second, because the tetrachoric correlation for binary variables estimates the Pearson correlation of the latent continuous variables (assumed multivariate normal distributed), you can use the tetrachoric correlations to analyze multivariate relationships between the dichotomous variables. When doing so, remember that you must interpret the model in terms of the underlying continuous variables.

Example 1

To illustrate tetrachoric correlations, we examine three binary variables from the familyvalues dataset (described in example 2).

```
. use https://www.stata-press.com/data/r16/familyvalues
(Attitudes on gender, relationships and family)
. tabulate RS075 RS076
  | fam att: trad
tabulate RS075 RS076
  | fam att: trad
  | women in division of labor
  | charge bad 0 1 Total
  | 0 1,564 979 2,543
  | 1 119 632 751
  Total 1,683 1,611 3,294
. correlate RS074 RS075 RS076
(obs=3,291)
  | RS074 RS075 RS076
  | RS074 1.0000
  | RS075 0.0396 1.0000
  | RS076 0.1595 0.3830 1.0000
```
As usual, the tetrachoric correlation coefficients are larger (in absolute value) and more dispersed than the Pearson correlations.

Factor analysis of dichotomous variables

> **Example 2**

Factor analysis is a popular model for measuring latent continuous traits. The standard estimators are appropriate only for continuous unimodal data. Because of the skewness implied by Bernoulli-distributed variables (especially when the probability is distributed unevenly), a factor analysis of a Pearson correlation matrix can be rather misleading when used in this context. A factor analysis of a matrix of tetrachoric correlations is more appropriate under these conditions (Uebersax 2000). We illustrate this with data on gender, relationship, and family attitudes of spouses using the Households in The Netherlands survey 1995 (Weesie et al. 1995). For attitude variables, it seems reasonable to assume that agreement or disagreement is just a coarse measurement of more nuanced underlying attitudes.
To demonstrate, we examine a few of the variables from the *familyvalues* dataset.

```
. use https://www.stata-press.com/data/r16/familyvalues
(Attitudes on gender, relationships and family)
. describe RS056-RS063

storage  display      value
variable.name  type  format          label          variable.label

 RS056  byte  %9.0g  fam att: should be together
 RS057  byte  %9.0g  fam att: should fight for relat
 RS058  byte  %9.0g  fam att: should avoid conflict
 RS059  byte  %9.0g  fam att: woman better nurturer
 RS060  byte  %9.0g  fam att: both spouses money goo
 RS061  byte  %9.0g  fam att: woman techn school goo
 RS062  byte  %9.0g  fam att: man natural breadwinne
 RS063  byte  %9.0g  fam att: common leisure good
```

```
. summarize RS056-RS063

Variable | Obs | Mean | Std. Dev. | Min | Max
---------|-----|------|-----------|-----|-----
 RS056   | 3,298 | 0.5630685 | 0.4960816 | 0 | 1
 RS057   | 3,296 | 0.5400485 | 0.4984692 | 0 | 1
 RS058   | 3,283 | 0.6387451 | 0.4804374 | 0 | 1
 RS059   | 3,308 | 0.654474  | 0.4756114 | 0 | 1
 RS060   | 3,302 | 0.3906723 | 0.487975  | 0 | 1
 RS061   | 3,293 | 0.7102946 | 0.4536945 | 0 | 1
 RS062   | 3,307 | 0.5857272 | 0.4926705 | 0 | 1
 RS063   | 3,298 | 0.5379018 | 0.498637  | 0 | 1
```

```
. correlate RS056-RS063
(obs=3,221)

                  RS056    RS057    RS058    RS059    RS060    RS061    RS062
RS056          1.0000
RS057         0.1350   1.0000
RS058         0.2377   0.0258   1.0000
RS059         0.1816   0.0097   0.2550   1.0000
RS060       -0.1020  -0.0538  -0.0424   0.0126   1.0000
RS061       -0.1137   0.0610  -0.1375  -0.2076   0.0706   1.0000
RS062         0.2014   0.0285   0.2273   0.4098  -0.0793  -0.2873   1.0000
RS063         0.2057   0.1460   0.1049   0.0911   0.0179  -0.0233   0.0975

                  RS063
RS063          1.0000
```
Skewness in these data is relatively modest. For comparison, here are the tetrachoric correlations:

```
. tetrachoric RS056-RS063
(obs=3,221)
         RS056   RS057   RS058   RS059   RS060   RS061   RS062
RS056           1.0000
RS057  0.2114    1.0000
RS058  0.3716  0.0416   1.0000
RS059  0.2887  0.0158  0.4007   1.0000
RS060 -0.1620 -0.0856 -0.0688  0.0208   1.0000
RS061 -0.1905  0.1011 -0.2382 -0.3664  0.1200   1.0000
RS062  0.3135  0.0452  0.3563  0.6109 -0.1267 -0.4845   1.0000
RS063  0.3187  0.2278  0.1677  0.1467  0.0286 -0.0388  0.1538

RS063           1.0000
```

Again, we see that the tetrachoric correlations are generally larger in absolute value than the Pearson correlations. The bivariate probit and Edwards and Edwards estimators (the edwards option) implemented in tetrachoric may return a correlation matrix that is not positive semidefinite—a mathematical property of any real correlation matrix. Positive definiteness is required by commands for analyses of correlation matrices, such as factormat and pcamat; see [MV] factor and [MV] pca. The posdef option of tetrachoric tests for positive definiteness and projects the estimated correlation matrix to a positive-semidefinite matrix if needed.

```
. tetrachoric RS056-RS063, notable posdef
. matrix C = r(corr)
```

This time, we suppressed the display of the correlations with the notable option and requested that the correlation matrix be positive semidefinite with the posdef option. Had the correlation matrix not been positive definite, tetrachoric would have displayed a warning message and then adjusted the matrix to be positive semidefinite. We placed the resulting tetrachoric correlation matrix into a matrix, C, so that we can perform a factor analysis upon it.

```
. tetrachoric RS056-RS063, notable posdef
. matrix C = r(corr)
```

```
. matrix symeigen eigenvectors eigenvalues = C
. matrix list eigenvalues
eigenvalues[1,8]
e1   e2    e3    e4    e5    e6    e7
  r1  2.5974789 1.3544664 1.0532476 0.77980391 0.73462018 0.57984565 0.54754512
    e8
  r1  .35299228
```

We can proceed with a factor analysis on the matrix C. We use factormat and select iterated principal factors as the estimation method; see [MV] factor.
. factormat C, n(3221) ipf factor(2)
(obs=3,221)

Factor analysis/correlation

Method: iterated principal factors
Retained factors = 2
Rotation: (unrotated)
Number of params = 15

<table>
<thead>
<tr>
<th>Factor</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor1</td>
<td>2.06855</td>
<td>1.40178</td>
<td>0.7562</td>
<td>0.7562</td>
</tr>
<tr>
<td>Factor2</td>
<td>0.66677</td>
<td>0.47180</td>
<td>0.2438</td>
<td>1.0000</td>
</tr>
<tr>
<td>Factor3</td>
<td>0.19497</td>
<td>0.06432</td>
<td>0.0713</td>
<td>1.0713</td>
</tr>
<tr>
<td>Factor4</td>
<td>0.13065</td>
<td>0.10967</td>
<td>0.0478</td>
<td>1.1191</td>
</tr>
<tr>
<td>Factor5</td>
<td>0.02098</td>
<td>0.10085</td>
<td>0.0077</td>
<td>1.1267</td>
</tr>
<tr>
<td>Factor6</td>
<td>-0.07987</td>
<td>0.01037</td>
<td>-0.0292</td>
<td>1.0975</td>
</tr>
<tr>
<td>Factor7</td>
<td>-0.09024</td>
<td>0.08626</td>
<td>-0.0330</td>
<td>1.0645</td>
</tr>
<tr>
<td>Factor8</td>
<td>-0.17650</td>
<td>0.16281</td>
<td>-0.0645</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

LR test: independent vs. saturated: chi2(28) = 4620.01 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor1</th>
<th>Factor2</th>
<th>Uniqueness</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>0.5528</td>
<td>0.4120</td>
<td>0.5247</td>
</tr>
<tr>
<td>RS057</td>
<td>0.1124</td>
<td>0.4214</td>
<td>0.8098</td>
</tr>
<tr>
<td>RS058</td>
<td>0.5333</td>
<td>0.0718</td>
<td>0.7105</td>
</tr>
<tr>
<td>RS059</td>
<td>0.6961</td>
<td>-0.1704</td>
<td>0.4865</td>
</tr>
<tr>
<td>RS060</td>
<td>-0.1339</td>
<td>-0.0596</td>
<td>0.9785</td>
</tr>
<tr>
<td>RS061</td>
<td>-0.5126</td>
<td>0.2851</td>
<td>0.6560</td>
</tr>
<tr>
<td>RS062</td>
<td>0.7855</td>
<td>-0.2165</td>
<td>0.3361</td>
</tr>
<tr>
<td>RS063</td>
<td>0.2895</td>
<td>0.3919</td>
<td>0.7626</td>
</tr>
</tbody>
</table>

Example 3

We noted in example 2 that the matrix of estimates of the tetrachoric correlation coefficients need not be positive definite. Here is an example:

. use https://www.stata-press.com/data/r16/familyvalues
 (Attitudes on gender, relationships and family)
. tetrachoric RS056-RS063 in 1/20, posdef
 (obs=18)

matrix with tetrachoric correlations is not positive semidefinite;
it has 2 negative eigenvalues
maxdiff(corr,adj-corr) = 0.2346
(adj-corr: tetrachoric correlations adjusted to be positive semidefinite)

adj-corr RS056 RS057 RS058 RS059 RS060 RS061 RS062
RS056 1.0000
RS057 0.5284 1.0000
RS058 0.3012 0.2548 1.0000
RS059 0.3251 0.2791 0.0550 1.0000
RS060 -0.5197 -0.4222 -0.7163 0.0552 1.0000
RS061 0.3448 0.4815 -0.0958 -0.1857 -0.0980 1.0000
RS062 0.1066 -0.0375 0.0072 0.3909 -0.2333 -0.7654 1.0000
RS063 0.3830 0.4939 0.4336 0.0075 -0.8937 -0.0337 0.4934
adj-corr RS063
RS063 1.0000
The estimated tetrachoric correlation matrix is rank-2 deficient. With this C_2 matrix, we can only use models of correlation that allow for singular cases.

Tetrachoric correlations with simulated data

Example 4

We use `drawnorm` (see [D] drawnorm) to generate a sample of 1,000 observations from a bivariate normal distribution with means -1 and 1, unit variances, and correlation 0.4.

```
clear
set seed 11000
matrix m = (1, -1)
matrix V = (1, 0.4 \ 0.4, 1)
drawnorm c1 c2, n(1000) means(m) cov(V) (obs 1,000)
```

Now, consider the measurement model assumed by the tetrachoric correlations. We observe only whether c_1 and c_2 are greater than zero,

```
generate d1 = (c1 > 0)
generate d2 = (c2 > 0)
tabulate d1 d2
```

<table>
<thead>
<tr>
<th></th>
<th>d1</th>
<th>d2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>141</td>
<td>6</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>706</td>
<td>147</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>847</td>
<td>153</td>
</tr>
</tbody>
</table>

We want to estimate the correlation of c_1 and c_2 from the binary variables d_1 and d_2. Pearson’s correlation of the binary variables d_1 and d_2 is 0.129—a seriously biased estimate of the underlying correlation $\rho = 0.4$.
The tetrachoric correlation coefficient of \(d_1\) and \(d_2\) estimates the Pearson correlation of the latent continuous variables, \(c_1\) and \(c_2\).

The estimate of the tetrachoric correlation of \(d_1\) and \(d_2\), 0.3875, is much closer to the underlying correlation, 0.4, between \(c_1\) and \(c_2\).

Stored results

`tetrachoric` stores the following in `r()`:

Scalars
- `r(rho)`: tetrachoric correlation coefficient between variables 1 and 2
- `r(N)`: number of observations
- `r(nneg)`: number of negative eigenvalues (`posdef` only)
- `r(se_rho)`: standard error of `r(rho)`
- `r(p)`: \(p\)-value for two-sided Fisher’s exact test (for the first two variables)

Macros
- `r(method)`: estimator used

Matrices
- `r(Rho)`: tetrachoric correlation matrix
- `r(Se_Rho)`: standard errors of `r(Rho)`
- `r(Nobs)`: number of observations used in computing correlation
- `r(P)`: matrix of \(p\)-values for two-sided Fisher’s exact test

Methods and formulas

`tetrachoric` provides two estimators for the tetrachoric correlation \(\rho\) of two binary variables with the frequencies \(n_{ij}, i, j = 0, 1\). `tetrachoric` defaults to the slower (iterative) maximum likelihood estimator obtained from bivariate probit without explanatory variables (see [R] `biprobit`) by using the Edwards and Edwards noniterative estimator as the initial value. A fast (noniterative) estimator is also available by specifying the `edwards` option (Edwards and Edwards 1984; Digby 1983)

\[
\hat{\rho} = \frac{\alpha - 1}{\alpha + 1}
\]
where

\[\alpha = \left(\frac{n_{00}n_{11}}{n_{01}n_{10}} \right)^{\pi/4} (\pi = 3.14\ldots) \]

if all \(n_{ij} > 0 \). If \(n_{00} = 0 \) or \(n_{11} = 0 \), \(\hat{\rho} = -1 \); if \(n_{01} = 0 \) or \(n_{10} = 0 \), \(\hat{\rho} = 1 \).

The asymptotic variance of the Edwards and Edwards estimator of the tetrachoric correlation is easily obtained by the delta method,

\[\text{aVar}(\hat{\rho}) = \left\{ \frac{\pi\alpha}{2(1 + \alpha)^2} \right\}^2 \left(\frac{1}{n_{00}} + \frac{1}{n_{01}} + \frac{1}{n_{10}} + \frac{1}{n_{11}} \right) \]

provided all \(n_{ij} > 0 \), otherwise it is left undefined (missing). The Edwards and Edwards estimator is fast, but may be inaccurate if the margins are very skewed.

tetrachoric reports exact \(p \)-values for statistical independence, computed by the exact option of \([R]\) tabulate twoway.

References

Also see

[R] biprobit — Bivariate probit regression
[R] correlate — Correlations of variables
[R] spearman — Spearman’s and Kendall’s correlations
[R] tabulate twoway — Two-way table of frequencies
[MV] factor — Factor analysis
[MV] pca — Principal component analysis