Description

tetrachoric computes estimates of the tetrachoric correlation coefficients of the binary variables in varlist. All of these variables should be 0, 1, or missing values.

Tetrachoric correlations assume a latent bivariate normal distribution \((X_1,X_2)\) for each pair of variables \((v_1,v_2)\), with a threshold model for the manifest variables, \(v_i = 1\) if and only if \(X_i > 0\). The means and variances of the latent variables are not identified, but the correlation, \(r\), of \(X_1\) and \(X_2\) can be estimated from the joint distribution of \(v_1\) and \(v_2\) and is called the tetrachoric correlation coefficient.

tetrachoric computes pairwise estimates of the tetrachoric correlations by the (iterative) maximum likelihood estimator obtained from bivariate probit without explanatory variables (see \([R] \text{biprobit}\)) by using the Edwards and Edwards (1984) noniterative estimator as the initial value.

The pairwise correlation matrix is returned as \(r(Rho)\) and can be used to perform a factor analysis or a principal component analysis of binary variables by using the \text{factormat} or \text{pcamat} commands; see \([MV] \text{factor}\) and \([MV] \text{pca}\).

Quick start

Tetrachoric correlation of \(v1\) and \(v2\) with standard error and test of independence

\[
tetrachoric \ v1 \ v2
\]

Matrix of pairwise tetrachoric correlations for \(v1\), \(v2\), and \(v3\)

\[
tetrachoric \ v1 \ v2 \ v3
\]

Add standard errors and \(p\)-values

\[
tetrachoric \ v1 \ v2 \ v3, \ \text{stats(rho se p)}
\]

As above, but adjust \(p\)-values for multiple comparisons using Bonferroni’s method

\[
tetrachoric \ v1 \ v2 \ v3, \ \text{stats(rho se p) bonferroni}
\]

Add star to correlations significant at the 5% level

\[
tetrachoric \ v1 \ v2 \ v3, \ \text{star(.05)}
\]

Use all available data for each pair of variables and report number of observations used

\[
tetrachoric \ v1 \ v2 \ v3, \ \text{pw \ stats(rho obs)}
\]

Adjust correlation matrix to be positive semidefinite

\[
tetrachoric \ v1 \ v2 \ v3, \ \text{posdef}
\]
Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Tetrachoric correlations

Syntax

tetrachoric varlist [if] [in] [weight] [, options]

options Description

Main
stats(statlist) list of statistics; select up to 4 statistics; default is stats(rho)
edwards use the noniterative Edwards and Edwards estimator; default is the maximum likelihood estimator
print(#) significance level for displaying coefficients
star(#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Šidák-adjusted significance level
pw calculate all the pairwise correlation coefficients by using all available data (pairwise deletion)
zeroadjust adjust frequencies when one cell has a zero count
matrix display output in matrix form
notable suppress display of correlations
posdef modify correlation matrix to be positive semidefinite

statlist Description

rho tetrachoric correlation coefficient
se standard error of rho
obs number of observations
p exact two-sided significance level

by is allowed; see [D] by.
fweights are allowed; see [U] 11.1.6 weight.

Options

stats(statlist) specifies the statistics to be displayed in the matrix of output. stats(rho) is the default. Up to four statistics may be specified. stats(rho se p obs) would display the tetrachoric correlation coefficient, its standard error, the significance level, and the number of observations. If varlist contains only two variables, all statistics are shown in tabular form. stats(), print(), and star() have no effect unless the matrix option is also specified.

edwards specifies that the noniterative Edwards and Edwards estimator be used. The default is the maximum likelihood estimator. If you analyze many binary variables, you may want to use the fast noniterative estimator proposed by Edwards and Edwards (1984). However, if you have skewed variables, the approximation does not perform well.
print(#) specifies the maximum significance level of correlation coefficients to be printed. Correlation coefficients with larger significance levels are left blank in the matrix. Typing tetrachoric..., print(.10) would list only those correlation coefficients that are significant at the 10% level or lower.

star(#) specifies the maximum significance level of correlation coefficients to be marked with a star. Typing tetrachoric..., star(.05) would “star” all correlation coefficients significant at the 5% level or lower.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option affects printed significance levels and the print() and star() options. Thus, tetrachoric..., print(.05) bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.

sidak makes the Šidák adjustment to calculated significance levels. This option affects printed significance levels and the print() and star() options. Thus, tetrachoric..., print(.05) sidak prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

pw specifies that the tetrachoric correlation be calculated by using all available data. By default, tetrachoric uses casewise deletion, where observations are ignored if any of the specified variables in varlist are missing.

zeroadjust specifies that when one of the cells has a zero count, a frequency adjustment be applied in such a way as to increase the zero to one-half and maintain row and column totals.

matrix forces tetrachoric to display the statistics as a matrix, even if varlist contains only two variables. matrix is implied if more than two variables are specified.

notable suppresses the output.

posdef modifies the correlation matrix so that it is positive semidefinite, that is, a proper correlation matrix. The modified result is the correlation matrix associated with the least-squares approximation of the tetrachoric correlation matrix by a positive-semidefinite matrix. If the correlation matrix is modified, the standard errors and significance levels are not displayed and are returned in r().

Remarks and examples

Association in 2-by-2 tables

Although a wide variety of measures of association in cross tabulations have been proposed, such measures are essentially equivalent (monotonically related) in the special case of 2 × 2 tables—there is only 1 degree of freedom for nonindependence. Still, some measures have more desirable properties than others. Here we compare two measures: the standard Pearson correlation coefficient and the tetrachoric correlation coefficient. Given asymmetric row or column margins, Pearson correlations are limited to a range smaller than −1 to 1, although tetrachoric correlations can still span the range from −1 to 1. To illustrate, consider the following set of tables for two binary variables, X and Z:
For a equal to 0, 1, 2, 5, 8, 9, and 10, the Pearson and tetrachoric correlations for the above table are

<table>
<thead>
<tr>
<th>a</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>0.577</td>
<td>0.462</td>
<td>0.346</td>
<td>0</td>
<td>-0.346</td>
<td>-0.462</td>
<td>-0.577</td>
</tr>
<tr>
<td>Tetrachoric</td>
<td>1.000</td>
<td>0.792</td>
<td>0.607</td>
<td>0</td>
<td>-0.607</td>
<td>-0.792</td>
<td>-1.000</td>
</tr>
</tbody>
</table>

The restricted range for the Pearson correlation is especially unfortunate when you try to analyze the association between binary variables by using models developed for continuous data, such as factor analysis and principal component analysis.

The tetrachoric correlation of two variables (Y_1, Y_2) can be thought of as the Pearson correlation of two latent bivariate normal distributed variables (Y_1^*, Y_2^*) with threshold measurement models $Y_i = (Y_i^* > c_i)$ for unknown cutpoints c_i. Or equivalently, $Y_i = (Y_i^{**} > 0)$ where the latent bivariate normal (Y_1^{**}, Y_2^{**}) are shifted versions of (Y_1^*, Y_2^*) so that the cutpoints are zero. Obviously, you must judge whether assuming underlying latent variables is meaningful for the data. If this assumption is justified, tetrachoric correlations have two advantages. First, you have an intuitive understanding of the size of correlations that are substantively interesting in your field of research, and this intuition is based on correlations that range from -1 to 1. Second, because the tetrachoric correlation for binary variables estimates the Pearson correlation of the latent continuous variables (assumed multivariate normal distributed), you can use the tetrachoric correlations to analyze multivariate relationships between the dichotomous variables. When doing so, remember that you must interpret the model in terms of the underlying continuous variables.

Example 1

To illustrate tetrachoric correlations, we examine three binary variables from the familyvalues dataset (described in example 2).

```
use https://www.stata-press.com/data/r16/familyvalues (Attitudes on gender, relationships and family)
tabulate RS075 RS076
```

```
<table>
<thead>
<tr>
<th></th>
<th>RS075</th>
<th>RS076</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,564</td>
<td>979</td>
</tr>
<tr>
<td>1</td>
<td>119</td>
<td>632</td>
</tr>
<tr>
<td>Total</td>
<td>1,683</td>
<td>1,611</td>
</tr>
</tbody>
</table>
```

```
correlate RS074 RS075 RS076 (obs=3,291)
```

```
<table>
<thead>
<tr>
<th></th>
<th>RS074</th>
<th>RS075</th>
<th>RS076</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS074</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS075</td>
<td>0.0396</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>RS076</td>
<td>0.1595</td>
<td>0.3830</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```
As usual, the tetrachoric correlation coefficients are larger (in absolute value) and more dispersed than the Pearson correlations.

Factor analysis of dichotomous variables

Example 2

Factor analysis is a popular model for measuring latent continuous traits. The standard estimators are appropriate only for continuous unimodal data. Because of the skewness implied by Bernoulli-distributed variables (especially when the probability is distributed unevenly), a factor analysis of a Pearson correlation matrix can be rather misleading when used in this context. A factor analysis of a matrix of tetrachoric correlations is more appropriate under these conditions (Uebersax 2000). We illustrate this with data on gender, relationship, and family attitudes of spouses using the Households in The Netherlands survey 1995 (Weesie et al. 1995). For attitude variables, it seems reasonable to assume that agreement or disagreement is just a coarse measurement of more nuanced underlying attitudes.
To demonstrate, we examine a few of the variables from the `familyvalues` dataset.

```stata
use https://www.stata-press.com/data/r16/familyvalues  
(Attitudes on gender, relationships and family)
describe RS056-RS063
```

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage</th>
<th>display</th>
<th>value</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: should be together</td>
</tr>
<tr>
<td>RS057</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: should fight for relat</td>
</tr>
<tr>
<td>RS058</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: should avoid conflict</td>
</tr>
<tr>
<td>RS059</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: woman better nurturer</td>
</tr>
<tr>
<td>RS060</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: both spouses money goo</td>
</tr>
<tr>
<td>RS061</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: woman techn school goo</td>
</tr>
<tr>
<td>RS062</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: man natural breadwinne</td>
</tr>
<tr>
<td>RS063</td>
<td>byte</td>
<td>%9.0g</td>
<td>label</td>
<td>fam att: common leisure good</td>
</tr>
</tbody>
</table>

```stata
summarize RS056-RS063
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>3,298</td>
<td>.5630685</td>
<td>.4960816</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS057</td>
<td>3,296</td>
<td>.5400485</td>
<td>.4984692</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS058</td>
<td>3,283</td>
<td>.638751</td>
<td>.4804374</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS059</td>
<td>3,308</td>
<td>.654474</td>
<td>.4756114</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS060</td>
<td>3,302</td>
<td>.3906723</td>
<td>.487975</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS061</td>
<td>3,293</td>
<td>.7102946</td>
<td>.4536945</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS062</td>
<td>3,307</td>
<td>.5857272</td>
<td>.4926705</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS063</td>
<td>3,298</td>
<td>.5379018</td>
<td>.498637</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

```stata
correlate RS056-RS063
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>RS056</th>
<th>RS057</th>
<th>RS058</th>
<th>RS059</th>
<th>RS060</th>
<th>RS061</th>
<th>RS062</th>
<th>RS063</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>1.0000</td>
<td>0.1350</td>
<td>0.2377</td>
<td>0.1816</td>
<td>-0.1020</td>
<td>-0.1137</td>
<td>0.2014</td>
<td>0.2057</td>
</tr>
<tr>
<td>RS057</td>
<td>0.1350</td>
<td>1.0000</td>
<td>0.2377</td>
<td>0.1816</td>
<td>-0.0538</td>
<td>0.0610</td>
<td>0.0285</td>
<td>0.1460</td>
</tr>
<tr>
<td>RS058</td>
<td>0.2377</td>
<td>0.2377</td>
<td>1.0000</td>
<td>0.1816</td>
<td>-0.0424</td>
<td>-0.1375</td>
<td>0.2273</td>
<td>0.1049</td>
</tr>
<tr>
<td>RS059</td>
<td>0.1816</td>
<td>0.1816</td>
<td>0.1816</td>
<td>1.0000</td>
<td>0.0126</td>
<td>0.2076</td>
<td>0.4098</td>
<td>0.0911</td>
</tr>
<tr>
<td>RS060</td>
<td>-0.1020</td>
<td>-0.0538</td>
<td>-0.0424</td>
<td>0.0126</td>
<td>1.0000</td>
<td>-0.2076</td>
<td>-0.0793</td>
<td>0.0179</td>
</tr>
<tr>
<td>RS061</td>
<td>-0.1137</td>
<td>0.0610</td>
<td>-0.1375</td>
<td>0.2076</td>
<td>-0.2076</td>
<td>1.0000</td>
<td>-0.2873</td>
<td>-0.0233</td>
</tr>
<tr>
<td>RS062</td>
<td>0.2014</td>
<td>0.0285</td>
<td>0.2273</td>
<td>0.4098</td>
<td>-0.0793</td>
<td>-0.2873</td>
<td>1.0000</td>
<td>0.0975</td>
</tr>
<tr>
<td>RS063</td>
<td>0.2057</td>
<td>0.1460</td>
<td>0.1049</td>
<td>0.0911</td>
<td>0.0179</td>
<td>-0.0233</td>
<td>0.0975</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

| RS063 | 1.0000 |
Skewness in these data is relatively modest. For comparison, here are the tetrachoric correlations:

```
. tetrachoric RS056-RS063
(obs=3,221)
<table>
<thead>
<tr>
<th></th>
<th>RS056</th>
<th>RS057</th>
<th>RS058</th>
<th>RS059</th>
<th>RS060</th>
<th>RS061</th>
<th>RS062</th>
<th>RS063</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS057</td>
<td>0.2114</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS058</td>
<td>0.3716</td>
<td>0.0416</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS059</td>
<td>0.2887</td>
<td>0.0158</td>
<td>0.4007</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS060</td>
<td>-0.1620</td>
<td>-0.0856</td>
<td>-0.0688</td>
<td>0.0208</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS061</td>
<td>-0.1905</td>
<td>0.1011</td>
<td>-0.2382</td>
<td>-0.3664</td>
<td>0.1200</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS062</td>
<td>0.3135</td>
<td>0.0452</td>
<td>0.3563</td>
<td>0.6109</td>
<td>-0.1267</td>
<td>-0.4845</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>RS063</td>
<td>0.3187</td>
<td>0.2278</td>
<td>0.1677</td>
<td>0.1467</td>
<td>0.0286</td>
<td>-0.0388</td>
<td>0.1538</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```

Again, we see that the tetrachoric correlations are generally larger in absolute value than the Pearson correlations. The bivariate probit and Edwards and Edwards estimators (the `edwards` option) implemented in `tetrachoric` may return a correlation matrix that is not positive semidefinite—a mathematical property of any real correlation matrix. Positive definiteness is required by commands for analyses of correlation matrices, such as `factormat` and `pcamat`; see `[MV] factor` and `[MV] pca`. The `posdef` option of `tetrachoric` tests for positive definiteness and projects the estimated correlation matrix to a positive-semidefinite matrix if needed.

```
. tetrachoric RS056-RS063, notable posdef
. matrix C = r(corr)
```

This time, we suppressed the display of the correlations with the `notable` option and requested that the correlation matrix be positive semidefinite with the `posdef` option. Had the correlation matrix not been positive definite, `tetrachoric` would have displayed a warning message and then adjusted the matrix to be positive semidefinite. We placed the resulting tetrachoric correlation matrix into a matrix, C, so that we can perform a factor analysis upon it.

`tetrachoric` with the `posdef` option asserted that C was positive definite because no warning message was displayed. We can verify this by using a familiar characterization of symmetric positive-definite matrices: all eigenvalues are real and positive.

```
. matrix symeigen eigenvectors eigenvalues = C
. matrix list eigenvalues
eigenvalues[1,8]
e1   e2   e3   e4   e5   e6   e7
r1  2.5974789 1.3544664 1.0532476 .77980391 .73462018 .57984565 .54754512
    e8
r1  .35299228
```

We can proceed with a factor analysis on the matrix C. We use `factormat` and select iterated principal factors as the estimation method; see `[MV] factor`.

Factor analysis/correlation

Method: iterated principal factors
Retained factors = 2
Rotation: (unrotated)
Number of params = 15

<table>
<thead>
<tr>
<th>Factor</th>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor1</td>
<td>2.06855</td>
<td>1.40178</td>
<td>0.7562</td>
<td>0.7562</td>
</tr>
<tr>
<td>Factor2</td>
<td>0.66677</td>
<td>0.47180</td>
<td>0.2438</td>
<td>1.0000</td>
</tr>
<tr>
<td>Factor3</td>
<td>0.19497</td>
<td>0.06432</td>
<td>0.0713</td>
<td>1.0713</td>
</tr>
<tr>
<td>Factor4</td>
<td>0.13065</td>
<td>0.10967</td>
<td>0.0478</td>
<td>1.1191</td>
</tr>
<tr>
<td>Factor5</td>
<td>0.02098</td>
<td>0.00858</td>
<td>0.0077</td>
<td>1.1267</td>
</tr>
<tr>
<td>Factor6</td>
<td>-0.07987</td>
<td>0.01037</td>
<td>-0.0092</td>
<td>1.0975</td>
</tr>
<tr>
<td>Factor7</td>
<td>-0.09024</td>
<td>0.08262</td>
<td>-0.0030</td>
<td>1.0645</td>
</tr>
<tr>
<td>Factor8</td>
<td>-0.17650</td>
<td>.</td>
<td>-0.0645</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

LR test: independent vs. saturated: chi2(28) = 4620.01 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor1</th>
<th>Factor2</th>
<th>Uniqueness</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>0.5528</td>
<td>0.4120</td>
<td>0.5247</td>
</tr>
<tr>
<td>RS057</td>
<td>0.1124</td>
<td>0.4214</td>
<td>0.8098</td>
</tr>
<tr>
<td>RS058</td>
<td>0.5333</td>
<td>0.0718</td>
<td>0.7105</td>
</tr>
<tr>
<td>RS059</td>
<td>0.6961</td>
<td>-0.1704</td>
<td>0.4865</td>
</tr>
<tr>
<td>RS060</td>
<td>-0.1339</td>
<td>-0.0596</td>
<td>0.9785</td>
</tr>
<tr>
<td>RS061</td>
<td>-0.5126</td>
<td>0.2851</td>
<td>0.6560</td>
</tr>
<tr>
<td>RS062</td>
<td>0.7855</td>
<td>-0.2165</td>
<td>0.3361</td>
</tr>
<tr>
<td>RS063</td>
<td>0.2895</td>
<td>0.3919</td>
<td>0.7626</td>
</tr>
</tbody>
</table>

Example 3

We noted in example 2 that the matrix of estimates of the tetrachoric correlation coefficients need not be positive definite. Here is an example:

```
. use https://www.stata-press.com/data/r16/familyvalues
  (Attitudes on gender, relationships and family)
. tetrachoric RS056-RS063 in 1/20, posdef
  (obs=18)
```

Matrix with tetrachoric correlations is not positive semidefinite;
has 2 negative eigenvalues

```
maxdiff(corr,adj-corr) = 0.2346
(adj-corr: tetrachoric correlations adjusted to be positive semidefinite)
```

```
<table>
<thead>
<tr>
<th>adj-corr</th>
<th>RS056</th>
<th>RS057</th>
<th>RS058</th>
<th>RS059</th>
<th>RS060</th>
<th>RS061</th>
<th>RS062</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS056</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS057</td>
<td>0.5284</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS058</td>
<td>0.3012</td>
<td>0.2548</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS059</td>
<td>0.3251</td>
<td>0.2791</td>
<td>0.0550</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS060</td>
<td>-0.5197</td>
<td>-0.4222</td>
<td>-0.7163</td>
<td>0.0552</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS061</td>
<td>0.3448</td>
<td>0.4815</td>
<td>-0.0958</td>
<td>-0.1857</td>
<td>-0.0980</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>RS062</td>
<td>0.1066</td>
<td>-0.0375</td>
<td>0.0072</td>
<td>0.3909</td>
<td>-0.2333</td>
<td>-0.7654</td>
<td>1.0000</td>
</tr>
<tr>
<td>RS063</td>
<td>0.3830</td>
<td>0.4939</td>
<td>0.4336</td>
<td>0.0075</td>
<td>-0.8937</td>
<td>-0.0337</td>
<td>0.4934</td>
</tr>
<tr>
<td>adj-corr</td>
<td>RS063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS063</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The estimated tetrachoric correlation matrix is rank-2 deficient. With this C_2 matrix, we can only use models of correlation that allow for singular cases.

Tetrachoric correlations with simulated data

Example 4

We use `drawnorm` (see [D] drawnorm) to generate a sample of 1,000 observations from a bivariate normal distribution with means -1 and 1, unit variances, and correlation 0.4.

```stata
. clear
. set seed 11000
. matrix m = (1, -1)
. matrix V = (1, 0.4 \ 0.4, 1)
. drawnorm c1 c2, n(1000) means(m) cov(V)
```

Now, consider the measurement model assumed by the tetrachoric correlations. We observe only whether c_1 and c_2 are greater than zero,

```stata
. generate d1 = (c1 > 0)
. generate d2 = (c2 > 0)
. tabulate d1 d2
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>141</td>
<td>6</td>
<td>147</td>
</tr>
<tr>
<td>d2</td>
<td>706</td>
<td>147</td>
<td>853</td>
</tr>
<tr>
<td>Total</td>
<td>847</td>
<td>153</td>
<td>1,000</td>
</tr>
</tbody>
</table>

We want to estimate the correlation of c_1 and c_2 from the binary variables d_1 and d_2. Pearson’s correlation of the binary variables d_1 and d_2 is 0.129—a seriously biased estimate of the underlying correlation $\rho = 0.4$.

Mata Code

```stata
. mata:
: C2 = st_matrix("r(corr)")
: eigenvecs =.
: eigenvals =.
: symeigensystem(C2, eigenvecs, eigenvals)
: eigenvals

1 2 3 4
3.156592567 2.065279398 1.324911199 .7554904485

1 .4845368741 .2131895139 8.60423e-16 -1.38778e-16
: end
```
The tetrachoric correlation coefficient of \(d_1 \) and \(d_2 \) estimates the Pearson correlation of the latent continuous variables, \(c_1 \) and \(c_2 \).

The estimate of the tetrachoric correlation of \(d_1 \) and \(d_2 \), 0.3875, is much closer to the underlying correlation, 0.4, between \(c_1 \) and \(c_2 \).

Stored results

tetrachoric stores the following in \(r() \):

Scalars
- \(r(\text{rho}) \): tetrachoric correlation coefficient between variables 1 and 2
- \(r(N) \): number of observations
- \(r(\text{nneg}) \): number of negative eigenvalues (\text{posdef} only)
- \(r(\text{se}_\text{rho}) \): standard error of \(r(\text{rho}) \)
- \(r(p) \): \(p \)-value for two-sided Fisher’s exact test (for the first two variables)

Macros
- \(r(\text{method}) \): estimator used

Matrices
- \(r(Rho) \): tetrachoric correlation matrix
- \(r(\text{se}_\text{Rho}) \): standard errors of \(r(Rho) \)
- \(r(Nobs) \): number of observations used in computing correlation
- \(r(P) \): matrix of \(p \)-values for two-sided Fisher’s exact test

Methods and formulas

tetrachoric provides two estimators for the tetrachoric correlation \(\rho \) of two binary variables with the frequencies \(n_{ij}, i, j = 0, 1 \). tetrachoric defaults to the slower (iterative) maximum likelihood estimator obtained from bivariate probit without explanatory variables (see \([R]\text{ biprobit}\) by using the Edwards and Edwards noniterative estimator as the initial value. A fast (noniterative) estimator is also available by specifying the \text{edwards} option (Edwards and Edwards 1984; Digby 1983)

\[
\hat{\rho} = \frac{\alpha - 1}{\alpha + 1}
\]
where

\[\alpha = \left(\frac{n_{00}n_{11}}{n_{01}n_{10}} \right) \frac{\pi}{4} \left(\pi = 3.14 \ldots \right) \]

if all \(n_{ij} > 0 \). If \(n_{00} = 0 \) or \(n_{11} = 0 \), \(\hat{\rho} = -1 \); if \(n_{01} = 0 \) or \(n_{10} = 0 \), \(\hat{\rho} = 1 \).

The asymptotic variance of the Edwards and Edwards estimator of the tetrachoric correlation is easily obtained by the delta method,

\[\text{avar}(\hat{\rho}) = \left\{ \frac{\pi \alpha}{2(1 + \alpha)^2} \right\}^2 \left(\frac{1}{n_{00}} + \frac{1}{n_{01}} + \frac{1}{n_{10}} + \frac{1}{n_{11}} \right) \]

provided all \(n_{ij} > 0 \), otherwise it is left undefined (missing). The Edwards and Edwards estimator is fast, but may be inaccurate if the margins are very skewed.

tetrachoric reports exact \(p \)-values for statistical independence, computed by the exact option of \([R]\) tabulate twoway.

References

Also see

[R] biprob — Bivariate probit regression
[R] correlate — Correlations of variables
[R] spearman — Spearman’s and Kendall’s correlations
[R] tabulate twoway — Two-way table of frequencies
[MV] factor — Factor analysis
[MV] pca — Principal component analysis