test — Test linear hypotheses after estimation

Description

test performs Wald tests of simple and composite linear hypotheses about the parameters of the most recently fit model.

test supports svy estimators (see [SVY] svy estimation), carrying out an adjusted Wald test by default in such cases. test can be used with svy estimation results, see [SVY] svy postestimation.

testparm provides a useful alternative to test that permits varlist rather than a list of coefficients (which is often nothing more than a list of variables), allowing the use of standard Stata notation, including ‘-’ and ‘*’, which are given the expression interpretation by test.

test and testparm perform Wald tests. For likelihood-ratio tests, see [R] lrtest. For Wald-type tests of nonlinear hypotheses, see [R] testnl. To display estimates for one-dimensional linear or nonlinear expressions of coefficients, see [R] lincom and [R] nlcom.

See [R] anova postestimation for additional test syntax allowed after anova.

See [MV] manova postestimation for additional test syntax allowed after manova.

Quick start

Linear tests after single-equation models

Joint test that the coefficients on x1 and x2 are equal to 0

```
test x1 x2
```

Joint test that coefficients on factor indicators 2.a and 3.a are equal to 0

```
test 2.a 3.a
```

Test that coefficients on indicators 2.a and 3.a are equal

```
test 2.a = 3.a
```

Joint test that coefficients on indicators 1.a, 2.a, and 3.a are all equal

```
test (1.a=2.a) (1.a=3.a)
```

Same as above

```
test 1.a=2.a=3.a
```

As above, but add separate tests for each pairing

```
test 1.a=2.a=3.a, mtest
```

As above, but with p-values adjusted for multiple comparisons using Šidák’s method

```
test (1.a=2.a) (1.a=3.a), mtest(sidak)
```
Test that the sum of the coefficients for \(x_1 \) and \(x_2 \) is equal to 4
\[
\text{test } x_1 + x_2 = 4
\]

Test the equality of two linear expressions involving coefficients on \(x_1 \) and \(x_2 \)
\[
\text{test } 2x_1 = 3x_2
\]

Shorthand varlist notation

Joint test that all coefficients on the indicators for \(a \) are equal to 0
\[
\text{testparm } i.a
\]

Joint test that all coefficients on the indicators for \(a \) and \(b \) are equal to 0
\[
\text{testparm } i.a \ i.b
\]

Joint test that all coefficients associated with the interaction of factor variables \(a \) and \(b \) are equal to 0
\[
\text{testparm } i.a#i.b
\]

Joint test that the coefficients on all variables \(x^* \) are equal to 0
\[
\text{testparm } x^*
\]

Linear tests after multiple-equation models

Joint test that the coefficient on \(x_1 \) is equal to 0 in all equations
\[
\text{test } x_1
\]

Joint test that the coefficients for \(x_1 \) and \(x_2 \) are equal to 0 in equation \(y_3 \)
\[
\text{test } [y_3]x_1 \ [y_3]x_2
\]

Test that the coefficients for \(x_1 \) are equal in equations \(y_1 \) and \(y_3 \)
\[
\text{test } [y_1]x_1=[y_3]x_1
\]

Same as above
\[
\text{test } [y_1=y_3]: \ x_1
\]

Joint test of the equality of coefficients for \(x_1 \) and \(x_2 \) across equations \(y_1 \) and \(y_3 \)
\[
\text{test } [y_1=y_3]: \ x_1 \ x_2
\]

Add coefficients for \(x_1 \) and \(x_2 \) from equation \(y_4 \) to test
\[
\text{test } [y_1=y_3=y_4]: \ x_1 \ x_2
\]

Test that all coefficients in the equation for \(y_1 \) are equal to those in the equation for \(y_2 \)
\[
\text{test } [y_1=y_2]
\]

As above, but only for coefficients on variables common to both equations
\[
\text{test } [y_1=y_2], \ \text{common}
\]
Shorthand varlist notation

Joint test that all coefficients on the indicators for a are 0 in all equations
 testparm i.a

Joint test that all coefficients on the indicators for a are equal to each other in the first equation
 testparm i.a, equal

As above, but for the equation for y4
 testparm i.a, equal equation(y4)

Joint test that the coefficients on the indicators for a and b are equal to 0 in all equations
 testparm i.a i.b

Joint test that all coefficients associated with the interaction of factors a and b are 0
 testparm i.a#i.b

Menu

Statistics > Postestimation
test — Test linear hypotheses after estimation

Syntax

Basic syntax

\texttt{test \ coeflist} \hspace{1cm} (Syntax 1)
\texttt{test exp=exp[=...]} \hspace{1cm} (Syntax 2)
\texttt{test [eqno] \[: \ coeflist\]} \hspace{1cm} (Syntax 3)
\texttt{test [eqno=eqno[=...]] \[: \ coeflist\]} \hspace{1cm} (Syntax 4)
\texttt{testparm \ varlist \[, \ testparm_options\]}

Full syntax

\texttt{test (spec) [(spec) \ldots] \[, \ test_options\]}

\texttt{testparm_options} \hspace{1cm} Description

\begin{tabular}{ll}
\texttt{equal} & hypothesize that the coefficients are equal to each other \\
\texttt{equation(eqno)} & specify equation name or number for which the hypothesis is tested \\
\texttt{nosvyadjust} & compute unadjusted Wald tests for survey results \\
\texttt{df(#)\hspace{1cm}} & use F distribution with # denominator degrees of freedom for the reference distribution of the test statistic; for survey data, # specifies the design degrees of freedom unless \texttt{nosvyadjust} is specified \\
\end{tabular}

\texttt{df(#)\hspace{1cm}} does not appear in the dialog box.

\texttt{test_options} \hspace{1cm} Description

Options

\begin{tabular}{ll}
\texttt{mtest[\opt]} & test each condition separately \\
\texttt{coef} & report estimated constrained coefficients \\
\texttt{accumulate} & test hypothesis jointly with previously tested hypotheses \\
\texttt{notest} & suppress the output \\
\texttt{common} & test only variables common to all the equations \\
\texttt{constant} & include the constant in coefficients to be tested \\
\texttt{nosvyadjust} & compute unadjusted Wald tests for survey results \\
\texttt{minimum} & perform test with the constant, drop terms until the test becomes nonsingular, and test without the constant on the remaining terms; highly technical \\
\texttt{matvlc(matname)} & save the variance–covariance matrix; programmer’s option \\
\texttt{df(#)\hspace{1cm}} & use F distribution with # denominator degrees of freedom for the reference distribution of the test statistic; for survey data, # specifies the design degrees of freedom unless \texttt{nosvyadjust} is specified \\
\end{tabular}

\texttt{coeflist} and \texttt{varlist} may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series varlists.

\texttt{matvlc(matname)} and \texttt{df(#)\hspace{1cm}} do not appear in the dialog box.
Syntax 1 tests that coefficients are 0.
Syntax 2 tests that linear expressions are equal.
Syntax 3 tests that coefficients in \textit{eqno} are 0.
Syntax 4 tests equality of coefficients between equations.

\textit{spec} is one of

\[
\begin{align*}
\text{\textit{spec}} \quad & \text{is one of} \\
\text{\textit{coeflist}} \\
\quad & \text{\textit{exp}}=\text{\textit{exp}}[=\text{\textit{exp}}] \\
\quad & \text{\textit{[eqno]} [': \text{\textit{coeflist}}]} \\
\quad & \text{\textit{[eqno1}=\text{\textit{eqno2}}[=\ldots]] [': \text{\textit{coeflist}}]}
\end{align*}
\]

\textit{coeflist} is

\[
\begin{align*}
\text{\textit{coef}} \quad & \text{\textit{[coef} \ldots \text{]}]} \\
\quad & \text{\textit{[eqno]}\text{\textit{coef}} \quad [\text{\textit{[eqno]}\text{\textit{coef}}\ldots \text{]}]} \\
\quad & \text{\textit{[eqno]} _b[\text{\textit{coef}}] \quad [\text{\textit{[eqno]} _b[\text{\textit{coef}}]}\ldots \text{]}]
\end{align*}
\]

\textit{exp} is a linear expression containing

\[
\begin{align*}
\text{\textit{coef}} \\
_b[\text{\textit{coef}}] \\
_b[\text{\textit{eqno:coef}}] \\
\text{\textit{[eqno]}\text{\textit{coef}}] \\
\text{\textit{[eqno]} _b[\text{\textit{coef}}]}
\end{align*}
\]

\textit{eqno} is

\[
\begin{align*}
\# \# \\
\text{\textit{name}}
\end{align*}
\]

\textit{coef} identifies a coefficient in the model. \textit{coef} is typically a variable name, a level indicator, an interaction indicator, or an interaction involving continuous variables. Level indicators identify one level of a factor variable and interaction indicators identify one combination of levels of an interaction; see [U] \ref{factor-variables}. \textit{coef} may contain time-series operators; see [U] \ref{time-series-variables}.

Distinguish between [], which are to be typed, and [], which indicate optional arguments.

Although not shown in the syntax diagram, parentheses around \textit{spec} are required only with multiple specifications. Also, the diagram does not show that \texttt{test} may be called without arguments to redisplay the results from the last test.

\texttt{anova} and \texttt{manova} (see [R] \texttt{anova} and [MV] \texttt{manova}) allow the test syntax above plus more (see [R] \texttt{anova postestimation} for test after \texttt{anova}; see [MV] \texttt{manova postestimation} for test after \texttt{manova}).

\section*{Options for testparm}

\texttt{equal} tests that the variables appearing in \textit{varlist}, which also appear in the previously fit model, are equal to each other rather than jointly equal to zero.
equation(eqno) is relevant only for multiple-equation models, such as `mvreg`, `mlogit`, and `heckman`. It specifies the equation for which the all-zero or all-equal hypothesis is tested. `equation(#1)` specifies that the test be conducted regarding the first equation #1. `equation(price)` specifies that the test concern the equation named price.

`nosvyadjust` is for use with `svy` estimation commands; see [SVY] `svy estimation`. It specifies that the Wald test be carried out without the default adjustment for the design degrees of freedom. That is, the test is carried out as $W/k \sim F(k, d)$ rather than as $(d - k + 1)W/(kd) \sim F(k, d - k + 1)$, where $k =$ the dimension of the test and $d =$ the total number of sampled PSUs minus the total number of strata. When the `df()` option is used, it will override the default design degrees of freedom.

The following option is available with `testparm` but is not shown in the dialog box:

`df(#)` specifies that the F distribution with # denominator degrees of freedom be used for the reference distribution of the test statistic. The default is to use `e(df_r)` degrees of freedom or the chi-squared distribution if `e(df_r)` is missing. With survey data, # is the design degrees of freedom unless `nosvyadjust` is specified.

Options for test

- `mtest[(opt)]` specifies that tests be performed for each condition separately. `opt` specifies the method for adjusting p-values for multiple testing. Valid values for `opt` are:

 - `bonferroni` Bonferroni’s method
 - `holm` Holm’s method
 - `sidak` Šidák’s method
 - `noadjust` no adjustment is to be made

 Specifying `mtest` without an argument is equivalent to `mtest(noadjust)`.

- `coef` specifies that the constrained coefficients be displayed.
- `accumulate` allows a hypothesis to be tested jointly with the previously tested hypotheses.
- `notest` suppresses the output. This option is useful when you are interested only in the joint test of several hypotheses, specified in a subsequent call of `test`, `accumulate`.
- `common` specifies that when you use the `[eqno1=eqno2[=...]]` form of `spec`, the variables common to the equations `eqno1`, `eqno2`, etc., be tested. The default action is to complain if the equations have variables not in common.
- `constant` specifies that `_cons` be included in the list of coefficients to be tested when using the `[eqno1=eqno2[=...]]` or `[eqno]` forms of `spec`. The default is not to include `_cons`.

`nosvyadjust` is for use with `svy` estimation commands; see [SVY] `svy estimation`. It specifies that the Wald test be carried out without the default adjustment for the design degrees of freedom. That is, the test is carried out as $W/k \sim F(k, d)$ rather than as $(d - k + 1)W/(kd) \sim F(k, d - k + 1)$, where $k =$ the dimension of the test and $d =$ the total number of sampled PSUs minus the total number of strata. When the `df()` option is used, it will override the default design degrees of freedom.
minimum is a highly technical option. It first performs the test with the constant added. If this test is singular, coefficients are dropped until the test becomes nonsingular. Then the test without the constant is performed with the remaining terms.

The following options are available with test but are not shown in the dialog box:

matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear combinations involved in the suite of tests. For the test of the linear constraints \(Lb = c \), matname contains \(LVL' \), where \(V \) is the estimated variance–covariance matrix of \(b \).

df(#) specifies that the \(F \) distribution with # denominator degrees of freedom be used for the reference distribution of the test statistic. The default is to use \(e(df_{r}) \) degrees of freedom or the chi-squared distribution if \(e(df_{r}) \) is missing. With survey data, # is the design degrees of freedom unless nosvyadjust is specified.

Remarks and examples

Remarks are presented under the following headings:

- Introductory examples
- Special syntaxes after multiple-equation estimation
- Constrained coefficients
- Multiple testing

Introductory examples

test performs \(F \) or \(\chi^2 \) tests of linear restrictions applied to the most recently fit model (for example, regress or svy: regress in the linear regression case; logit, stcox, svy: logit, ... in the single-equation maximum-likelihood case; and mlogit, mvreg, streg, ... in the multiple-equation maximum-likelihood case). test may be used after any estimation command, although for maximum likelihood techniques, test produces a Wald test that depends only on the estimate of the covariance matrix—you may prefer to use the more computationally expensive likelihood-ratio test; see [U] 20 Estimation and postestimation commands and [R] lrtest.

There are several variations on the syntax for test. The second syntax,

\[
\text{test exp}=\text{exp}[=\ldots]
\]

is allowed after any form of estimation. After fitting a model of \(depvar \) on \(x_1 \), \(x_2 \), and \(x_3 \), typing test \(x_1+x_2=x_3 \) tests the restriction that the coefficients on \(x_1 \) and \(x_2 \) sum to the coefficient on \(x_3 \). The expressions can be arbitrarily complicated; for instance, typing test \(x_1+2*(x_2+x_3)=x_2+3*x_3 \) is the same as typing test \(x_1+x_2=x_3 \).

As a convenient shorthand, test also allows you to specify equality for multiple expressions; for example, test \(x_1+x_2 = x_3+x_4 = x_5+x_6 \) tests that the three specified pairwise sums of coefficients are equal.

test understands that when you type \(x_1 \), you are referring to the coefficient on \(x_1 \). You could also more explicitly type test \(_b[x_1]+_b[x_2]=_b[x_3] \); or you could test \(_coef[x_1]+_coef[x_2]=_coef[x_3] \), or test \(_1[x_1]+_1[x_2]=_1[x_3] \), or many other things because there is more than one way to refer to an estimated coefficient; see [U] 13.5 Accessing coefficients and standard errors. The shorthand involves less typing. On the other hand, you must be more explicit after estimation of multiple-equation models because there may be more than one coefficient associated
with an independent variable. You might type, for instance, \texttt{test \[2\]x1+[2]x2=[2]x3} to test the constraint in equation 2 or, more readably, \texttt{test \[ford\]x1+[ford]x2=[ford]x3}, meaning that Stata will test the constraint on the equation corresponding to \texttt{ford}, which might be equation 2. \texttt{ford} would be an equation name after, say, \texttt{sureg}, or, after \texttt{mlogit}, \texttt{ford} would be one of the outcomes. For \texttt{mlogit}, you could also type \texttt{test \[2\]x1+[2]x2=[2]x3}—note the lack of the \texttt{#}—meaning not equation 2, but the equation corresponding to the numeric outcome 2. You can even test constraints across equations: \texttt{test \[ford\]x1+[ford]x2=[buick]x3}.

The syntax
\begin{verbatim}
 test coeflist
\end{verbatim}
is available after all estimation commands and is a convenient way to test that multiple coefficients are zero following estimation. A \texttt{coeflist} can simply be a list of variable names,
\begin{verbatim}
 test varname [varname ...]
\end{verbatim}
and it is most often specified that way. After you have fit a model of \texttt{depvar} on \texttt{x1}, \texttt{x2}, and \texttt{x3}, typing \texttt{test x1 x3} tests that the coefficients on \texttt{x1} and \texttt{x3} are jointly zero. After multiple-equation estimation, this would test that the coefficients on \texttt{x1} and \texttt{x3} are zero in all equations that contain them. You can also be more explicit and type, for instance, \texttt{test \[ford\]x1 \[ford\]x3} to test that the coefficients on \texttt{x1} and \texttt{x3} are zero in the equation for \texttt{ford}.

In the multiple-equation case, there are more alternatives. You could also test that the coefficients on \texttt{x1} and \texttt{x3} are zero in the equation for \texttt{ford} by typing \texttt{test \[ford\]: x1 x3}. You could test that all coefficients except the coefficient on the constant are zero in the equation for \texttt{ford} by typing \texttt{test \[ford\]}. You could test that the coefficients on \texttt{x1} and \texttt{x3} in the equation for \texttt{ford} are equal to the corresponding coefficients in the equation corresponding to \texttt{buick} by typing \texttt{test\[ford=buick\]: x1 x3}. You could test that all the corresponding coefficients except the constant in three equations are equal by typing \texttt{test \[ford=buick=volvo\]}.

\texttt{testparm} is much like the first syntax of \texttt{test}. Its usefulness will be demonstrated below.

The examples below use \texttt{regress}, but what is said applies equally after any single-equation estimation command (such as \texttt{logistic}). It also applies after multiple-equation estimation commands as long as references to coefficients are qualified with an equation name or number in square brackets placed before them. The convenient syntaxes for dealing with tests of many coefficients in multiple-equation models are demonstrated in \texttt{Special syntaxes after multiple-equation estimation} below.

\section*{Example 1: Testing for a single coefficient against zero}

We have 1980 census data on the 50 states recording the birth rate in each state (\texttt{brate}), the median age (\texttt{medage}), and the region of the country in which each state is located.

The \texttt{region} variable is 1 if the state is in the Northeast, 2 if the state is in the North Central, 3 if the state is in the South, and 4 if the state is in the West. We estimate the following regression:
. use https://www.stata-press.com/data/r16/census3
(1980 Census data by state)
. regress brate medage c.medage#c.medage i.region

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>38803.4208</td>
<td>5</td>
<td>7760.68416</td>
<td>F(5, 44) = 100.63</td>
</tr>
<tr>
<td>Residual</td>
<td>3393.39921</td>
<td>44</td>
<td>77.1227094</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>42196.82</td>
<td>49</td>
<td>861.159592</td>
<td>R-squared = 0.9196</td>
</tr>
</tbody>
</table>

Adj R-squared = 0.9104
Root MSE = 8.782

| brate | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|----------------------|
| medage | -109.0958 | 13.52452 | -8.07 | 0.000 | -136.3527 to -81.83892 |
| c.medage#c.medage | 1.635209 | .2290536 | 7.14 | 0.000 | 1.173582 to 2.096836 |
| region | | | | | |
| NCentral | 15.00283 | 4.252067 | 3.53 | 0.001 | 6.433353 to 23.57231 |
| South | 7.366445 | 3.953335 | 1.86 | 0.069 | -6.009775 to 15.33387 |
| West | 21.39679 | 4.650601 | 4.60 | 0.000 | 12.02412 to 30.76946 |
| _cons | 1947.611 | 199.8405 | 9.75 | 0.000 | 1544.859 to 2350.363 |

\textit{test} can now be used to perform a variety of statistical tests. Specify the \texttt{coeflegend} option with your estimation command to see a legend of the coefficients and how to specify them; see \texttt{[R] Estimation options}. We can test the hypothesis that the coefficient on \texttt{3.region} is zero by typing

. test 3.region=0

(1) 3.region = 0

F(1, 44) = 3.47
Prob > F = 0.0691

The \(F \) statistic with 1 numerator and 44 denominator degrees of freedom is 3.47. The significance level of the test is 6.91\%—we can reject the hypothesis at the 10\% level but not at the 5\% level.

This result from \texttt{test} is identical to one presented in the output from \texttt{regress}, which indicates that the \(t \) statistic on the 3.\texttt{region} coefficient is 1.863 and that its significance level is 0.069. The \(t \) statistic presented in the output can be used to test the hypothesis that the corresponding coefficient is zero, although it states the test in slightly different terms. The \(F \) distribution with 1 numerator degree of freedom is, however, identical to the \(t^2 \) distribution. We note that 1.863\(^2 \approx 3.47 \) and that the significance levels in each test agree, although one extra digit is presented by the \texttt{test} command.

\section*{Technical note}

After all estimation commands, including those that use the maximum likelihood method, the test that one variable is zero is identical to that reported by the command’s output. The tests are performed in the same way—using the estimated covariance matrix—and are known as Wald tests. If the estimation command reports significance levels and confidence intervals using \(z \) rather than \(t \) statistics, \texttt{test} reports results using the \(\chi^2 \) rather than the \(F \) statistic.
Example 2: Testing the value of a single coefficient

If that were all test could do, it would be useless. We can use test, however, to perform other tests. For instance, we can test the hypothesis that the coefficient on 2.region is 21 by typing

```
. test 2.region=21
    ( 1) 2.region = 21
    F(  1,  44) = 1.99
    Prob > F = 0.1654
```

We find that we cannot reject that hypothesis, or at least we cannot reject it at any significance level below 16.5%.

Example 3: Testing the equality of two coefficients

The previous test is useful, but we could almost as easily perform it by hand using the results presented in the regression output if we were well read on our statistics. We could type

```
. display Ftail(1,44,((_coef[2.region]-21)/4.252068)^2)
           1.6544873
```

So, now let’s test something a bit more difficult: whether the coefficient on 2.region is the same as the coefficient on 4.region:

```
. test 2.region=4.region
    ( 1) 2.region - 4.region = 0
    F(  1,  44) = 2.84
    Prob > F = 0.0989
```

We find that we cannot reject the equality hypothesis at the 5% level, but we can at the 10% level.

Example 4

When we tested the equality of the 2.region and 4.region coefficients, Stata rearranged our algebra. When Stata displayed its interpretation of the specified test, it indicated that we were testing whether 2.region minus 4.region is zero. The rearrangement is innocuous and, in fact, allows Stata to perform much more complicated algebra, for instance,

```
    ( 1) 2.region - 3.region = 0
    F(  1,  44) = 5.06
    Prob > F = 0.0295
```

Although we requested what appeared to be a lengthy hypothesis, once Stata simplified the algebra, it realized that all we wanted to do was test whether the coefficient on 2.region is the same as the coefficient on 3.region.

Technical note

Stata’s ability to simplify and test complex hypotheses is limited to linear hypotheses. If you attempt to test a nonlinear hypothesis, you will be told that it is not possible:

```
. test 2.region/3.region=2.region+3.region
    not possible with test
    r(131);
```

To test a nonlinear hypothesis, see [R] testnl.
Example 5: Testing joint hypotheses

The real power of test is demonstrated when we test joint hypotheses. Perhaps we wish to test whether the region variables, taken as a whole, are significant by testing whether the coefficients on 2.region, 3.region, and 4.region are simultaneously zero. test allows us to specify multiple conditions to be tested, each embedded within parentheses.

```
. test (2.region=0) (3.region=0) (4.region=0)
   ( 1) 2.region = 0
   ( 2) 3.region = 0
   ( 3) 4.region = 0
   F( 3, 44) = 8.85
    Prob > F = 0.0001
```

test displays the set of conditions and reports an F statistic of 8.85. test also reports the degrees of freedom of the test to be 3, the “dimension” of the hypothesis, and the residual degrees of freedom, 44. The significance level of the test is close to 0, so we can strongly reject the hypothesis of no difference between the regions.

An alternative method to specify simultaneous hypotheses uses the convenient shorthand of conditions with multiple equality operators.

```
. test 2.region=3.region=4.region=0
   ( 1) 2.region - 3.region = 0
   ( 2) 2.region - 4.region = 0
   ( 3) 2.region = 0
   F( 3, 44) = 8.85
    Prob > F = 0.0001
```

Technical note

Another method to test simultaneous hypotheses is to specify a test for each constraint and accumulate it with the previous constraints:

```
. test 2.region=0
   ( 1) 2.region = 0
   F( 1, 44) = 12.45
    Prob > F = 0.0010
.
. test 3.region=0, accumulate
   ( 1) 2.region = 0
   ( 2) 3.region = 0
   F( 2, 44) = 6.42
    Prob > F = 0.0036
.
. test 4.region=0, accumulate
   ( 1) 2.region = 0
   ( 2) 3.region = 0
   ( 3) 4.region = 0
   F( 3, 44) = 8.85
    Prob > F = 0.0001
```

We tested the hypothesis that the coefficient on 2.region was zero by typing test 2.region=0. We then tested whether the coefficient on 3.region was also zero by typing test 3.region=0, accumulate. The accumulate option told Stata that this was not the start of a new test but a continuation of a previous one. Stata responded by showing us the two equations and reporting an F statistic of 6.42. The significance level associated with those two coefficients being zero is 0.36%.
When we added the last constraint `test 4.region=0, accumulate`, we discovered that the three region variables are significant. If all we wanted was the overall significance and we did not want to bother seeing the interim results, we could have used the `notest` option:

```stata
.test 2.region=0, notest
( 1) 2.region = 0
.test 3.region=0, accumulate notest
( 1) 2.region = 0
( 2) 3.region = 0
.test 4.region=0, accumulate
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0
F( 3, 44) = 8.85
Prob > F = 0.0001
```

> Example 6: Quickly testing coefficients against zero

Because tests that coefficients are zero are so common in applied statistics, the `test` command has a more convenient syntax to accommodate this case:

```stata
.test 2.region 3.region 4.region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0
F( 3, 44) = 8.85
Prob > F = 0.0001
```

> Example 7: Specifying varlists

We will now show how to use `testparm`. In its first syntax, `test` accepts a list of variable names but not a `varlist`.

```stata
.test i(2/4).region
i not found
r(111);
```

In the varlist, `i(2/4).region` means all the level variables from `2.region` through `4.region`, yet we received an error. `test` does not actually understand varlists, but `testparm` does. In fact, it understands only varlists.

```stata
.testparm i(2/4).region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0
F( 3, 44) = 8.85
Prob > F = 0.0001
```

Another way to test all the `region` variables is to type `testparm i.region`.

That `testparm` accepts varlists has other advantages that do not involve factor variables. Suppose that we have a dataset that has dummy variables `reg2`, `reg3`, and `reg4`, rather than the categorical variable `region`.
In a varlist, `reg2-reg4` means variables `reg2` and `reg4` and all the variables between, yet we received an error. `test` is confused because the `-` has two meanings: it means subtraction in an expression and “through” in a varlist. Similarly, `*` means “any set of characters” in a varlist and multiplication in an expression. testparm avoids this confusion—it allows only a varlist.

```
. testparm reg2-reg4
   ( 1)  reg2 = 0
   ( 2)  reg3 = 0
   ( 3)  reg4 = 0
        F(   3,   44) =  8.85
        Prob > F =  0.0001
```

testparm has another advantage. We have five variables in our dataset that start with the characters `reg`: `region`, `reg1`, `reg2`, `reg3`, and `reg4`. `reg*` thus means those five variables:

```
. describe reg*
    storage  display  value
  variable name  type format label      variable label
       region  int    %8.0g region      Census Region
      reg1    byte   %9.0g region==NE region==NE
      reg2    byte   %9.0g region==N Cntrl region==N Cntrl
      reg3    byte   %9.0g region==South region==South
      reg4    byte   %9.0g region==West region==West
```

We cannot type `test reg*` because, in an expression, `*` means multiplication, but here is what would happen if we attempted to test all the variables that begin with `reg`:

```
. test region reg1 reg2 reg3 reg4
      region not found
      r(111);
```

The variable `region` was not included in our model, so it was not found. However, with testparm,

```
. testparm reg*
   ( 1)  reg2 = 0
   ( 2)  reg3 = 0
   ( 3)  reg4 = 0
        F(   3,   44) =  8.85
        Prob > F =  0.0001
```

That is, testparm took `reg*` to mean all variables that start with `reg` that were in our model.

Technical note

Actually, `reg*` means what it always does—all variables in our dataset that begin with `reg`—in this case, `region reg1 reg2 reg3 reg4`. testparm just ignores any variables you specify that are not in the model.
Example 8: Replaying the previous test

We just used `test` (`testparm`, actually, but it does not matter) to test the hypothesis that `reg2`, `reg3`, and `reg4` are jointly zero. We can review the results of our last test by typing `test` without arguments:

```
. test
   ( 1) reg2 = 0
   ( 2) reg3 = 0
   ( 3) reg4 = 0
   F( 3, 44) = 8.85
   Prob > F = 0.0001
```

Technical note

`test` does not care how we build joint hypotheses; we may freely mix different forms of syntax. (We can even start with `testparm`, but we cannot use it thereafter because it does not have an `accumulate` option.)

Say that we type `test reg2 reg3 reg4` to test that the coefficients on our region dummies are jointly zero. We could then add a fourth constraint, say, that `medage = 100`, by typing `test medage=100, accumulate`. Or, if we had introduced the `medage` constraint first (our first `test` command had been `test medage=100`), we could then add the region dummy test by typing `test reg2 reg3 reg4, accumulate` or `test (reg2=0) (reg3=0) (reg4=0), accumulate`.

Remember that all previous tests are cleared when we do not specify the `accumulate` option. No matter what tests we performed in the past, if we type `test medage c.medage#c.medage`, omitting the `accumulate` option, we would test that `medage` and `c.medage#c.medage` are jointly zero.

Example 9: Testing the equality of multiple coefficients

Let's return to our `census3.dta` dataset and test the hypothesis that all the included regions have the same coefficient—that the Northeast is significantly different from the rest of the nation:

```
. use https://www.stata-press.com/data/r16/census3
   (1980 Census data by state)
. regress brate medage c.medage#c.medage i.region
   (output omitted)
. test 2.region=3.region=4.region
   ( 1) 2.region - 3.region = 0
   ( 2) 2.region - 4.region = 0
   F( 2, 44) = 8.23
   Prob > F = 0.0009
```

We find that they are not all the same. The syntax `2.region=3.region=4.region` with multiple `=` operators is just a convenient shorthand for typing that the first expression equals the second expression and that the first expression equals the third expression.

```
. test (2.region=3.region) (2.region=4.region)
```

We performed the test for equality of the three regions by imposing two constraints: region 2 has the same coefficient as region 3, and region 2 has the same coefficient as region 4. Alternatively, we could have tested that the coefficients on regions 2 and 3 are the same and that the coefficients on regions 3 and 4 are the same. We would obtain the same results in either case.

To test for equality of the three regions, we might, likely by mistake, type equality constraints for all pairs of regions:
. test (2.region=3.region) (2.region=4.region) (3.region=4.region)
 (1) 2.region - 3.region = 0
 (2) 2.region - 4.region = 0
 (3) 3.region - 4.region = 0
Constraint 3 dropped
 F(2, 44) = 8.23
 Prob > F = 0.0009

Equality of regions 2 and 3 and of regions 2 and 4, however, implies equality of regions 3 and 4. test recognized that the last constraint is implied by the other constraints and hence dropped it.

Technical note

Generally, Stata uses = for assignment, as in gen newvar = exp, and == as the operator for testing equality in expressions. For your convenience, test allows both = and == to be used.

Example 10

The test for the equality of the regions is also possible with the testparm command. When we include the equal option, testparm tests that the coefficients of all the variables specified are equal:

 . testparm i(2/4).region, equal
 (1) - 2.region + 3.region = 0
 (2) - 2.region + 4.region = 0
 F(2, 44) = 8.23
 Prob > F = 0.0009

We can also obtain the equality test by accumulating single equality tests.

 . test 2.region=3.region, notest
 (1) 2.region - 3.region = 0
 . test 2.region=4.region, accum
 (1) 2.region - 3.region = 0
 (2) 2.region - 4.region = 0
 F(2, 44) = 8.23
 Prob > F = 0.0009

Technical note

If we specify a set of inconsistent constraints, test will tell us by dropping the constraint or constraints that led to the inconsistency. For instance, let's test that the coefficients on region 2 and region 4 are the same, add the test that the coefficient on region 2 is 20, and finally add the test that the coefficient on region 4 is 21:

 . test (2.region=4.region) (2.region=20) (4.region=21)
 (1) 2.region - 4.region = 0
 (2) 2.region = 20
 (3) 4.region = 21
 Constraint 2 dropped
 F(2, 44) = 1.82
 Prob > F = 0.1737

test informed us that it was dropping constraint 2. All three equations cannot be simultaneously true, so test drops whatever it takes to get back to something that makes sense.
Special syntaxes after multiple-equation estimation

Everything said above about tests after single-equation estimation applies to tests after multiple-equation estimation, as long as you remember to specify the equation name. To demonstrate, let’s estimate a seemingly unrelated regression by using \texttt{sureg}; see [R] \texttt{sureg}.

\begin{verbatim}
. use https://www.stata-press.com/data/r16/auto
 (1978 Automobile Data)
. sureg (price foreign mpg displ) (weight foreign length)
Seemingly unrelated regression

<table>
<thead>
<tr>
<th>Equation</th>
<th>Obs</th>
<th>Parms</th>
<th>RMSE</th>
<th>"R-sq"</th>
<th>chi2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>74</td>
<td>3</td>
<td>2165.321</td>
<td>0.4537</td>
<td>49.64</td>
<td>0.0000</td>
</tr>
<tr>
<td>weight</td>
<td>74</td>
<td>2</td>
<td>245.2916</td>
<td>0.8990</td>
<td>661.84</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

| price | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|-------|-----------|------|------|---------------------|
| foreign | 3058.25 | 685.7357 | 4.46 | 0.000 | 1714.233 4402.267 |
| mpg | -104.9591 | 58.47209 | -1.80 | 0.073 | -219.5623 .517755 |
| displacement | 18.18098 | 4.286372 | 4.24 | 0.000 | 9.779842 26.58211 |
| _cons | 3904.336 | 1966.521 | 1.99 | 0.047 | 50.0263 | 7758.645 |

| weight | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|-------|-----------|------|------|---------------------|
| foreign | -147.3481 | 75.44314 | -1.95 | 0.051 | -295.2139 .517755 |
| length | 30.94905 | 1.539895 | 20.10 | 0.000 | 27.93091 33.96718 |
| _cons | -2753.064 | 303.9336 | -9.06 | 0.000 | -3348.763 -2157.365 |
\end{verbatim}

To test the significance of \texttt{foreign} in the \texttt{price} equation, we could type

\begin{verbatim}
. test [price]foreign
(1) [price]foreign = 0
 chi2(1) = 19.89
 Prob > chi2 = 0.0000
\end{verbatim}

which is the same result reported by \texttt{sureg}: 4.460^2 \approx 19.89. To test \texttt{foreign} in both equations, we could type

\begin{verbatim}
. test [price]foreign [weight]foreign
(1) [price]foreign = 0
(2) [weight]foreign = 0
 chi2(2) = 31.61
 Prob > chi2 = 0.0000
\end{verbatim}
or

\begin{verbatim}
. test foreign
(1) [price]foreign = 0
(2) [weight]foreign = 0
 chi2(2) = 31.61
 Prob > chi2 = 0.0000
\end{verbatim}

This last syntax—typing the variable name by itself—tests the coefficients in all equations in which they appear. The variable \texttt{length} appears in only the \texttt{weight} equation, so typing
test length
 (1) [weight]length = 0
 chi2(1) = 403.94
 Prob > chi2 = 0.0000

yields the same result as typing test [weight]length. We may also specify a linear expression rather than a list of coefficients:

dest mpg=displ
 (1) [price]mpg - [price]displacement = 0
 chi2(1) = 4.85
 Prob > chi2 = 0.0277

or

dest [price]mpg = [price]displ
 (1) [price]mpg - [price]displacement = 0
 chi2(1) = 4.85
 Prob > chi2 = 0.0277

A variation on this syntax can be used to test cross-equation constraints:

dest [price]foreign = [weight]foreign
 (1) [price]foreign - [weight]foreign = 0
 chi2(1) = 23.07
 Prob > chi2 = 0.0000

Typing an equation name in square brackets by itself tests all the coefficients except the intercept in that equation:

dest [price]
 (1) [price]foreign = 0
 (2) [price]mpg = 0
 (3) [price]displacement = 0
 chi2(3) = 49.64
 Prob > chi2 = 0.0000

Typing an equation name in square brackets, a colon, and a list of variable names tests those variables in the specified equation:

dest [price]: foreign displ
 (1) [price]foreign = 0
 (2) [price]displacement = 0
 chi2(2) = 25.19
 Prob > chi2 = 0.0000

test [eqname1=eqname2] tests that all the coefficients in the two equations are equal. We cannot use that syntax here because there are different variables in the model:

dest [price=weight]
 variables differ between equations
 (to test equality of coefficients in common, specify option common)
 r(111);

The common option specifies a test of the equality coefficients common to the equations price and weight,
. test [price=weight], common
(1) [price]foreign - [weight]foreign = 0
 chi2(1) = 23.07
 Prob > chi2 = 0.0000

By default, test does not include the constant, the coefficient of the constant variable _cons, in
the test. The cons option specifies that the constant be included.

. test [price=weight], common cons
(1) [price]foreign - [weight]foreign = 0
(2) [price]_cons - [weight]_cons = 0
 chi2(2) = 51.23
 Prob > chi2 = 0.0000

We can also use a modification of this syntax with the model if we also type a colon and the names
of the variables we want to test:

. test [price=weight]: foreign
(1) [price]foreign - [weight]foreign = 0
 chi2(1) = 23.07
 Prob > chi2 = 0.0000

We have only one variable in common between the two equations, but if there had been more, we
could have listed them.

Finally, a simultaneous test of multiple constraints may be specified just as after single-equation
estimation.

. test ([price]: foreign) ([weight]: foreign)
(1) [price]foreign = 0
(2) [weight]foreign = 0
 chi2(2) = 31.61
 Prob > chi2 = 0.0000

test can also test for equality of coefficients across more than two equations. For instance, test
[eq1=eq2=eq3] specifies a test that the coefficients in the three equations eq1, eq2, and eq3 are
equal. This requires that the same variables be included in the three equations. If some variables are
entered only in some of the equations, you can type test [eq1=eq2=eq3], common to test that the
coefficients of the variables common to all three equations are equal. Alternatively, you can explicitly
list the variables for which equality of coefficients across the equations is to be tested. For instance,
test [eq1=eq2=eq3]: time money tests that the coefficients of the variables time and money do
not differ between the equations.

Technical note

test [eq1=eq2=eq3], common tests the equality of the coefficients common to all equations,
but it does not test the equality of all common coefficients. Consider the case where

eq1 contains the variables var1 var2 var3
eq2 contains the variables var1 var2 var4
eq3 contains the variables var1 var3 var4

Obviously, only var1 is common to all three equations. Thus test [eq1=eq2=eq3], common
tests that the coefficients of var1 do not vary across the equations, so it is equivalent to test
[eq1=eq2=eq3]: var1. To perform a test of the coefficients of variables common to two equations,
you could explicitly list the constraints to be tested,

. test ([eq1=eq2=eq3]:var1) ([eq1=eq2]:var2) ([eq1=eq3]:var3) ([eq2=eq3]:var4)
or use `test` with the `accumulate` option, and maybe also with the `notest` option, to form the appropriate joint hypothesis:

```plaintext
. test [eq1=eq2], common notest
. test [eq1=eq3], common accumulate notest
. test [eq2=eq3], common accumulate
```

Constrained coefficients

If the test indicates that the data do not allow you to conclude that the constraints are not satisfied, you may want to inspect the constrained coefficients. The `coef` option specified that the constrained results, estimated by GLS, are shown.

```plaintext
. test [price=weight], common coef
```

```
( 1) [price]foreign - [weight]foreign = 0
    chi2(  1) =    23.07
    Prob > chi2 =    0.0000
```

Constrained coefficients

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|--------|-----------|--------|--------|----------------------|
| price | | | | | |
| foreign | -216.4015 | 74.06083 | -2.92 | 0.003 | -361.558 | -71.2449 |
| mpg | -121.5717 | 58.36972 | -2.08 | 0.037 | -235.9742 | -7.169116 |
| displacement | 7.632566 | 3.681114 | 2.07 | 0.038 | 0.4177148 | 14.84742 |
| _cons | 7312.856 | 1834.034 | 3.99 | 0.000 | 3718.215 | 10907.5 |
| weight | | | | | |
| foreign | -216.4015 | 74.06083 | -2.92 | 0.003 | -361.558 | -71.2449 |
| length | 30.34875 | 1.534815 | 19.77 | 0.000 | 27.34057 | 33.35693 |
| _cons | -2619.719 | 302.6632 | -8.66 | 0.000 | -3212.928 | -2026.51 |

The constrained coefficient of `foreign` is -216.40 with standard error 74.06 in equations `price` and `weight`. The other coefficients and their standard errors are affected by imposing the equality constraint of the two coefficients of `foreign` because the unconstrained estimates of these two coefficients were correlated with the estimates of the other coefficients.

Technical note

The two-step constrained coefficients b_c displayed by `test, coef` are asymptotically equivalent to the one-stage constrained estimates that are computed by specifying the constraints during estimation using the `constraint()` option of estimation commands (Gourieroux and Monfort 1995, chap. 10). Generally, one-step constrained estimates have better small-sample properties. For inspection and interpretation, however, two-step constrained estimates are a convenient alternative. Moreover, some estimation commands (for example, `stcox`, many `xt` estimators) do not have a `constraint()` option.
Multiple testing

When performing the test of a joint hypothesis, you might want to inspect the underlying 1-degree-of-freedom hypotheses. Which constraint “is to blame”? test displays the univariate as well as the simultaneous test if the mtest option is specified. For example,

```
. test [price=weight], common cons mtest
   ( 1) [price]foreign - [weight]foreign = 0
   ( 2) [price]_cons - [weight]_cons = 0

<table>
<thead>
<tr>
<th></th>
<th>chi2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>23.07</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>(2)</td>
<td>11.17</td>
<td>1</td>
<td>0.0008</td>
</tr>
<tr>
<td>all</td>
<td>51.23</td>
<td>2</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
```

Both coefficients seem to contribute to the highly significant result. The 1-degree-of-freedom test shown here is identical to those if test had been invoked to test just this simple hypotheses. There is, of course, a real risk in inspecting these simple hypotheses. Especially in high-dimensional hypotheses, you may easily find one hypothesis that happens to be significant. Multiple testing procedures are designed to provide some safeguard against this risk. p-values of the univariate hypotheses are modified so that the probability of falsely rejecting one of the null hypotheses is bounded. test provides the methods based on Bonferroni, Šidák, and Holm.

```
. test [price=weight], common cons mtest(b)
   ( 1) [price]foreign - [weight]foreign = 0
   ( 2) [price]_cons - [weight]_cons = 0

<table>
<thead>
<tr>
<th></th>
<th>chi2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>23.07</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>(2)</td>
<td>11.17</td>
<td>1</td>
<td>0.0017</td>
</tr>
<tr>
<td>all</td>
<td>51.23</td>
<td>2</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
```

Bonferroni-adjusted p-values

Stored results

test and testparm store the following in r():

Scalars

- r(p): two-sided p-value
- r(F): F statistic
- r(df): test constraints degrees of freedom
- r(df_r): residual degrees of freedom
- r(dropped_i): index of i-th constraint dropped
- r(chi2): χ^2
- r(ss): sum of squares (test)
- r(rss): residual sum of squares
- r(drop): 1 if constraints were dropped, 0 otherwise

Macros

- r(mtmeth): method of adjustment for multiple testing
- r(mtest): multiple test results

r(ss) and r(rss) are defined only when test is used for testing effects after anova.
Methods and formulas

test and testparm perform Wald tests. Let the estimated coefficient vector be \(\mathbf{b} \) and the estimated variance–covariance matrix be \(\mathbf{V} \). Let \(\mathbf{Rb} = \mathbf{r} \) denote the set of \(q \) linear hypotheses to be tested jointly.

The Wald test statistic is (Judge et al. 1985, 20–28)

\[
W = (\mathbf{Rb} - \mathbf{r})'(\mathbf{RVR}')^{-1}(\mathbf{Rb} - \mathbf{r})
\]

If the estimation command reports its significance levels using \(Z \) statistics, a chi-squared distribution with \(q \) degrees of freedom, \(W \sim \chi^2_q \) is used for computation of the significance level of the hypothesis test.

If the estimation command reports its significance levels using \(t \) statistics with \(d \) degrees of freedom, an \(F \) statistic, \(F = \frac{1}{q} W \) is computed, and an \(F \) distribution with \(q \) numerator degrees of freedom and \(d \) denominator degrees of freedom computes the significance level of the hypothesis test.

The two-step constrained estimates \(\mathbf{b}_c \) displayed by test with the coef option are the GLS estimates of the unconstrained estimates \(\mathbf{b} \) subject to the specified constraints \(\mathbf{Rb} = \mathbf{c} \) (Gourieroux and Monfort 1995, chap. 10),

\[
\mathbf{b}_c = \mathbf{b} - \mathbf{VR}'(\mathbf{RVR}')^{-1}(\mathbf{Rb} - \mathbf{r})
\]

with variance–covariance matrix

\[
\mathbf{V}_c = \mathbf{V} - \mathbf{VR}'(\mathbf{RVR}')^{-1}\mathbf{RV}
\]

If test displays a Wald test for joint (simultaneous) hypotheses, it can also display all 1-degree-of-freedom tests, with \(p \)-values adjusted for multiple testing. Let \(p_1, p_2, \ldots, p_k \) be the unadjusted \(p \)-values of these 1-degree-of-freedom tests. The Bonferroni-adjusted \(p \)-values are defined as \(p_i^b = \min(1, kp_i) \). The Šidák-adjusted \(p \)-values are \(p_i^s = 1 - (1 - p_i)^k \). Holm’s method for adjusting \(p \)-values is defined as \(p_i^h = \min(1, k_ip_i) \), where \(k_i \) is the number of \(p \)-values at least as large as \(p_i \). Note that \(p_i^h < p_i^b \), reflecting that Holm’s method is strictly less conservative than the widely used Bonferroni method.

If test is used after a svy command, it carries out an adjusted Wald test—this adjustment should not be confused with the adjustment for multiple testing. Both adjustments may actually be combined. Specifically, the survey adjustment uses an approximate \(F \) statistic \((d-k+1)W/(kd) \), where \(W \) is the Wald test statistic, \(k \) is the dimension of the hypothesis test, and \(d = \) the total number of sampled PSUs minus the total number of strata. Under the null hypothesis, \((d-k+1)F/(kd) \sim F(k, d-k+1) \), where \(F(k, d-k+1) \) is an \(F \) distribution with \(k \) numerator degrees of freedom and \(d-k+1 \) denominator degrees of freedom. If nosvyadjust is specified, the \(p \)-value is computed using \(W/k \sim F(k, d) \).

See Korn and Graubard (1990) for a detailed description of the Bonferroni adjustment technique and for a discussion of the relative merits of it and of the adjusted and unadjusted Wald tests.
Acknowledgment

The svy adjustment code was adopted from another command developed in collaboration with John L. Eltinge of the United States Census Bureau.

References

Also see

[R] anova — Analysis of variance and covariance

[R] anova postestimation — Postestimation tools for anova

[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] lincom — Linear combinations of parameters

[R] lrtest — Likelihood-ratio test after estimation

[R] nestreg — Nested model statistics

[R] nlcom — Nonlinear combinations of estimators

[R] testnl — Test nonlinear hypotheses after estimation

[U] 13.5 Accessing coefficients and standard errors

[U] 20 Estimation and postestimation commands