Description

In this entry, we discuss how to use `table` to create a one-way tabulation, including frequencies, percentages, and proportions.

Quick start

One-way table of frequencies, with rows corresponding to the levels of `a1`
```
table a1
```

As above, but with columns corresponding to the levels of `a1`
```
table () a1
```

As above, but treat missing values like other values of `a1`
```
table () a1, missing
```

One-way table of frequencies, using the collection style `mystyle`
```
table a1, style(mystyle)
```

One-way table of frequencies and percentages
```
table a1, statistic(frequency) statistic(percent)
```

Menu

Statistics > Summaries, tables, and tests > Tables of frequencies, summaries, and command results
Syntax

Basic one-way tabulation

```
table varname [ if ] [ in ] [ weight ] [ , options ]
```

Customized one-way tabulation

```
(table (rowspec) [ (colspec) ] [ if ] [ in ] [ weight ] [ , options ])
```

`rowspec` and `colspec` may be empty or may include `varname`, `result`, or `varname` and `result`, where `result` refers to the requested statistics.

```
options                Description

Main
nototals              suppress the marginal totals

Statistics
statistic(stat)       statistic to be reported; default is statistic(frequency) when no weights are specified and statistic(sumw) otherwise

Formats
nformat(%%fmt [ results ])    specify numeric format
sformat(sfmt [ results ])    specify string format

Options
missing               treat missing values of `varname` like other values
name(cname)           collect results into a collection named `cname`
append                append results to an existing collection
replace               replace results of an existing collection
label(filename)       specify the collection labels
style(filename [, override])    specify the collection style
markvar(newvar)       create `newvar` that identifies observations used in the tabulation
```

`fweights`, `aweights`, `iweights`, and `pweights` are allowed; see [U] 11.1.6 weight.

`markvar()` does not appear in the dialog box.

Options

```
Main
nototals prevents table from displaying the row or column totals.
```

```
Statistics
statistic(stat) specifies the statistic to be displayed. statistic() may be repeated to request multiple statistics.
```
Available statistics are

<table>
<thead>
<tr>
<th>stat</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>frequency</td>
</tr>
<tr>
<td>sumw</td>
<td>sum of weights</td>
</tr>
<tr>
<td>proportion</td>
<td>proportion</td>
</tr>
<tr>
<td>percent</td>
<td>percentage</td>
</tr>
<tr>
<td>rawproportion</td>
<td>proportion ignoring optionally specified weights</td>
</tr>
<tr>
<td>rawpercent</td>
<td>percentage ignoring optionally specified weights</td>
</tr>
</tbody>
</table>

Formats

`nformat(\%fmt [results])` changes the numeric format, such as the number of decimal places, for specified results. If `results` are not specified, the numeric format is changed for all results.

This option is repeatable, and when multiple formats apply to one result, the rightmost specification is applied.

This option does not affect the format of numeric layout variables (`rowspec` and `colspec`). The default format of these variables is taken from the dataset.

`sformat(\sfmt [results])` changes the string format for specified results. You can, for instance, add symbols or text to the values reported in the table by modifying the string format.

`\sfmt` may contain a mix of text and `\%s`. Here `\%s` refers to the numeric value that is formatted as specified using `nformat()`. The text will be placed around the numeric values in your table as it is placed around `\%s` in this option. For instance, to place parentheses around the percent statistics, you can specify `sformat("(\%s)" percent)`.

Two text characters must be specified using a special character sequence if you want them to be displayed in your table. To include `\`, type `\\`. For instance, to place a percent sign following percent statistics, you can specify `sformat("%s\%" percent)`.

This option is repeatable, and when multiple formats apply to one result, the rightmost specification is applied.

Options

`missing` specifies that missing values of `varname` be treated as valid categories. By default, observations with a missing value in `varname` are omitted.

`name(cname)` specifies that a collection named `cname` be associated with the collected statistics and results. The default is `name(Table)`.

`append` specifies that `table` append its collection information into the collection named in `name()`.

`replace` permits `table` to overwrite an existing collection. This option is implied for `name(Table)` when `append` is not specified.

`label(filename)` specifies the `filename` containing the collection labels to use for your table. Labels in `filename` will be loaded for the table, and any labels not specified in `filename` will be taken from the labels defined in `c(collect_label)`. The default is to use only the collection labels set in `c(collect_label)`; see `TABLES set collect_label`.

`style(filename [, override])` specifies the `filename` containing the collection styles to use for your table. The default collection styles will be discarded, and only the collection styles in `filename` will be applied.
If you prefer the default collection styles but also want to apply any styles in `filename`, specify `override`. If there are conflicts between the default collection styles and those in `filename`, the ones in `filename` will take precedence.

The default is to use only the collection styles set in `c(table_style)`; see `[TABLES] set table_style`.

The following option is available with `table` but is not shown in the dialog box:

`markvar(newvar)` generates an indicator variable that identifies the observations used in the tabulation.

Remarks and examples

Remarks are presented under the following headings:

- Tabulation of one variable
- Tabulation, including percentages
- Customizing results
- Advanced customization

Tabulation of one variable

To obtain a one-way tabulation that reports the number of observations for each level of a categorical variable, we need specify only the name of the categorical variable following `table`.

To demonstrate, we use data from the Second National Health and Nutrition Examination Survey (NHANES II) (McDowell et al. 1981). We tabulate the `hlthstat` variable, which contains individuals’ self-reported health status categories.

```
. use https://www.stata-press.com/data/r17/nhanes2l
(Second National Health and Nutrition Examination Survey)
. table hlthstat
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
</tr>
</tbody>
</table>

We see that more people self-reported having excellent, very good, or good health status than reported having fair or poor health status.

Above, we see frequencies for those who reported a health status. This information is not available for some individuals in the dataset. We can determine how many missing values we have for this variable by adding the `missing` option.
. table hlthstat, missing

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
</tr>
<tr>
<td>Blank but applicable</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>10,351</td>
</tr>
</tbody>
</table>

We find that there is missing health status data for 16 individuals—2 with a generic missing value and 14 whose responses were labeled “Blank but applicable”.

Tabulation, including percentages

In addition to frequencies, we can report the proportion or percentage of observations in each health status category. By default, `table` reports frequencies, which is equivalent to including the `statistic(frequency)` option. Here we include that option along with the `statistic(percent)` option to report both frequencies and percentages.

```
. table hlthstat, statistic(frequency) statistic(percent)
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
<td>23.29</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
<td>25.07</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
<td>28.43</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
<td>16.16</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
<td>7.05</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Now, it is clear that 28.43% of respondents reported having good health.

Customizing results

There are a number of ways that you can customize the results in your table.

In some cases, you may prefer to place frequencies and percentages on the rows and the levels of the variable being tabulated on the columns. To do this, you can include both the row and column specifications in parentheses following `table`. Here we use `result` in the first set of parentheses to request that the statistics be placed on rows and the variable `hlthstat` in the second set of parentheses to request that the levels of this variable be placed on the columns.

```
. table (result) (hlthstat), statistic(frequency) statistic(percent)
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
<td>23.29</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
<td>25.07</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
<td>28.43</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
<td>16.16</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
<td>7.05</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Alternatively, we could have omitted result and typed

```
   . table () (hlthstat), statistic(freq) statistic(percent)
```

Because we requested that hlthstat be moved to the columns by specifying it in the second set of parentheses, `table` automatically moves the requested statistics to the rows.

If instead of a short and wide table, you prefer a tall and narrow table, you can specify that both the levels of hlthstat and the statistics be used to define the rows by including the variable name and result in the first set of parentheses.

```
   . table (hlthstat result), statistic(frequency) statistic(percent)
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
<td>23.29</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
<td>25.07</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
<td>28.43</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
<td>16.16</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
<td>7.05</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
<td>100.00</td>
</tr>
</tbody>
</table>

In addition to modifying the layout of the table, we may want to customize the results reported within the cells of the table. For instance, we can specify that the percentages be reported using only one decimal place by using the `nformat()` option. Here we return to the two-column table layout.

```
   . table hlthstat, statistic(frequency) statistic(percent)
   > nformat(%5.1f percent)
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
<td>23.3</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
<td>25.1</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
<td>28.4</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
<td>16.2</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
<td>7.1</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The `table` command produces its output using a default set of styles, typically those defined in the `table` style but could be any other style that you have set as the default by using `set table_style`. When customizing our tables, we can take advantage of one of the styles described in `[TABLES] Predefined styles`. For instance, for tables with only one or two row variables, row labels that are right aligned may be preferred. Here we use the `table-right` style.
Advanced customization

Customization can go beyond the predefined styles and options available to you in the `table` command. `table` creates a collection of results that can be used in combination with the `collect` suite of commands to produce highly customized tables and to export those tables to presentation-ready formats such as HTML, Word, LaTeX, PDF, Excel, and more.

Continuing with our example above, if we want to shorten the labels on the column headings, we could use the `collect label levels` command to define our new labels. After a change using `collect`, we can use `collect preview` to see the results.

```
. collect label levels result frequency "Freq" percent ", modify
. collect preview
```

<table>
<thead>
<tr>
<th>Health status</th>
<th>Freq</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>2,407</td>
<td>23.3</td>
</tr>
<tr>
<td>Very good</td>
<td>2,591</td>
<td>25.1</td>
</tr>
<tr>
<td>Good</td>
<td>2,938</td>
<td>28.4</td>
</tr>
<tr>
<td>Fair</td>
<td>1,670</td>
<td>16.2</td>
</tr>
<tr>
<td>Poor</td>
<td>729</td>
<td>7.1</td>
</tr>
<tr>
<td>Total</td>
<td>10,335</td>
<td>100.0</td>
</tr>
</tbody>
</table>

We could continue making style edits to this table. When we are happy with the result, we can then export it to the format of our choice using `collect export`.

See [TABLES] `collect label` for details on the `collect label levels` command we used here, and for an overview of the `collect` suite, see [TABLES] Intro.

Stored results

`table` stores the following in `r()`:

Scalars

- `r(N)` number of observations
Reference

Also see

[R] table — Table of frequencies, summaries, and command results
[R] table intro — Introduction to tables of frequencies, summaries, and command results
[R] table multiway — Multiway tables
[R] table twoway — Two-way tabulation
[R] tabulate oneway — One-way table of frequencies
[TABLES] Intro — Introduction