swilk — Shapiro–Wilk and Shapiro–Francia tests for normality

Description

`swilk` performs the Shapiro–Wilk W test for normality for each variable in the specified varlist. Likewise, `sfrancia` performs the Shapiro–Francia W' test for normality. See `[MV] mvtest normality` for multivariate tests of normality.

Quick start

Shapiro–Wilk test of normality

Shapiro–Wilk test for v1

```
swilk v1
```

Separate tests of normality for v1 and v2

```
swilk v1 v2
```

Generate new variable w containing W test coefficients

```
swilk v1, generate(w)
```

Specify that average ranks should not be used for tied values

```
swilk v1 v2, noties
```

Test that v3 is distributed lognormally

```
generate lnv3 = ln(v3)
swilk lnv3
```

Shapiro–Francia test of normality

Shapiro–Francia test for v1

```
sfrancia v1
```

Separate tests of normality for v1 and v2

```
sfrancia v1 v2
```

Same as above, but use the Box–Cox transformation

```
sfrancia v1 v2, boxcox
```

Specify that average ranks should not be used for tied values

```
sfrancia v1 v2, noties
```
Menu

swilk
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Syntax

Shapiro–Wilk normality test

\[\text{swilk} \ varlist [\text{if}] [\text{in}] [\text{, swilk_options}] \]

Shapiro–Francia normality test

\[\text{sfrancia} \ varlist [\text{if}] [\text{in}] [\text{, sfrancia_options}] \]

swilk_options Description

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generate(\textit{newvar})</td>
<td>create \textit{newvar} containing \textit{W} test coefficients</td>
</tr>
<tr>
<td>lnnormal</td>
<td>test for three-parameter lognormality</td>
</tr>
<tr>
<td>noties</td>
<td>do not use average ranks for tied values</td>
</tr>
</tbody>
</table>

sfrancia_options Description

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boxcox</td>
<td>use the Box–Cox transformation for \textit{W}’; the default is to use the log transformation</td>
</tr>
<tr>
<td>noties</td>
<td>do not use average ranks for tied values</td>
</tr>
</tbody>
</table>

by and collect are allowed with swilk and sfrancia; see [U] 11.1.10 Prefix commands.

Options for swilk

\[\text{generate(\textit{newvar})} \] creates new variable \textit{newvar} containing the \textit{W} test coefficients.

\textit{lnnormal} specifies that the test be for three-parameter lognormality, meaning that \text{ln}(\textit{X} - k) is tested for normality, where \textit{k} is calculated from the data as the value that makes the skewness coefficient zero. When simply testing \text{ln}(\textit{X}) for normality, do not specify this option. See [R] \texttt{linskew0} for estimation of \textit{k}.

\textit{noties} suppresses use of averaged ranks for tied values when calculating the \textit{W} test coefficients.
Options for sfrancia

boxcox specifies that the Box–Cox transformation of Royston (1983) for calculating W' test coefficients be used instead of the default log transformation (Royston 1993a). Under the Box–Cox transformation, the normal approximation to the sampling distribution of W', used by sfrancia, is valid for $5 \leq n \leq 1000$. Under the log transformation, it is valid for $10 \leq n \leq 5000$.

noties suppresses use of averaged ranks for tied values when calculating the W' test coefficients.

Remarks and examples

swilk can be used with $4 \leq n \leq 2000$ observations. sfrancia can be used with $10 \leq n \leq 5000$ observations; however, if the boxcox option is specified, it can be used with $5 \leq n \leq 1000$ observations.

Also see [R] sktest for the skewness and kurtosis test described by D’Agostino, Belanger, and D’Agostino (1990) with the empirical correction developed by Royston (1991b). While the Shapiro–Wilk and Shapiro–Francia tests for normality are, in general, preferred for nonaggregated data (Gould and Rogers 1991; Gould 1992b; Royston 1991b), the skewness and kurtosis test will permit more observations. Moreover, a normal quantile plot should be used with any test for normality; see [R] Diagnostic plots for more information.

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally distributed:

```
. use https://www.stata-press.com/data/r18/auto
    (1978 automobile data)
. swilk mpg trunk
    Shapiro–Wilk $W$ test for normal data
    Variable    Obs  $W$   V    z  Prob>z
    mpg         74  0.94821 3.335 2.627 0.00430
    trunk       74  0.97921 1.339 0.637 0.26215
. sfrancia mpg trunk
    Shapiro–Francia $W'$ test for normal data
    Variable    Obs  $W'$  $V'$  z  Prob>z
    mpg         74  0.94872 3.650 2.510 0.00604
    trunk       74  0.98446 1.106 0.195 0.42271
```

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is normally distributed.

The values reported under W and W' are the Shapiro–Wilk and Shapiro–Francia test statistics. The tests also report V and V' (Royston 1991d), which are more appealing indexes for departure from normality. The median values of V and V' are 1 for samples from normal populations. Large values indicate nonnormality. There is no more information in V (V') than in W (W')—one is just the transform of the other.
Example 2

We have data on a variable called `studytime`, which we suspect is distributed lognormally:

```
. use https://www.stata-press.com/data/r18/cancer
(Patient survival in drug trial)
. generate lnstudytime = ln(studytime)
. swilk lnstudytime
```

| Variable | Obs | W | V | z | Prob>|z |
|----------|-----|-------|-------|--------|------|
| lnstudytime | 48 | 0.92731 | 3.311 | 2.547 | 0.00543 |

We can reject the lognormal assumption. We do not specify the `lnnormal` option when testing for lognormality. The `lnnormal` option is for three-parameter lognormality.

Example 3

Having discovered that \(\ln(\text{studytime}) \) is not distributed normally, we now test that \(\ln(\text{studytime} - k) \) is normally distributed, where \(k \) is chosen so that the resulting skewness is zero. We obtain the estimate for \(k \) from `lnskew0`; see [R] `lnskew0`

```
. lnskew0 lnstudytimek = studytime, level(95)

<table>
<thead>
<tr>
<th>Transform</th>
<th>k</th>
<th>[95% conf. interval]</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \ln(\text{studytim-k}) )</td>
<td>-11.01181</td>
<td>-\text{infinity} -.9477328</td>
<td>-.0000173</td>
</tr>
</tbody>
</table>

. swilk lnstudytimek, lnnormal
```

| Variable | Obs | W | V | z | Prob>|z |
|----------|-----|-------|-------|--------|------|
| lnstudytimek | 48 | 0.97064 | 1.337 | 1.261 | 0.10363 |

We cannot reject the hypothesis that \(\ln(\text{studytime} + 11.01181) \) is distributed normally. We do specify the `lnnormal` option when using an estimated value of \(k \).

Stored results

`swilk` and `sfrancia` store the following in `r()`:

- Scalars:
 - `r(N)` number of observations
 - `r(W)` \(W \) or \(W' \)
 - `r(p)` \(p \)-value
 - `r(V)` \(V \) or \(V' \)
 - `r(z)` \(z \) statistic

Methods and formulas

The Shapiro–Wilk test is based on Shapiro and Wilk (1965) with a new approximation accurate for \(4 \leq n \leq 2000 \) (Royston 1992). The calculations made by `swilk` are based on Royston (1982, 1992, 1993b).
The Shapiro–Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an approximate test that is similar to the Shapiro–Wilk test for very large samples.

The relative merits of the Shapiro–Wilk and Shapiro–Francia tests the versus skewness and kurtosis test have been a subject of debate. The interested reader is directed to the articles in the Stata Technical Bulletin. Our recommendation is to use the Shapiro–Francia test whenever possible, that is, whenever dealing with nonaggregated or ungrouped data (Gould and Rogers 1991; Gould 1992b); see [R] swilk. If normality is rejected, use sktest to determine the source of the problem. As both D’Agostino, Belanger, and D’Agostino (1990) and Royston (1991c) mention, researchers should also examine the normal quantile plot to determine normality rather than blindly relying on a few test statistics. See the qnorm command documented in [R] Diagnostic plots for more information on normal quantile plots.

Samuel Sanford Shapiro (1930–) earned degrees in statistics and engineering from City College of New York, Columbia, and Rutgers. After employment in the U.S. Army and industry, he joined the faculty at Florida International University in 1972. Shapiro has coauthored various texts in statistics and published several papers on distributional testing and other statistical topics.

Acknowledgment

swilk and sfrancia were written by Patrick Royston of the MRC Clinical Trials Unit, London and coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.

References

Also see

[R] `inskew0` — Find zero-skewness log or Box–Cox transform

[R] `lv` — Letter-value displays

[R] `sktest` — Skewness and kurtosis tests for normality

[R] `Diagnostic plots` — Distributional diagnostic plots

[MV] `mvtest normality` — Multivariate normality tests

Also see

[R] `inskew0` — Find zero-skewness log or Box–Cox transform

[R] `lv` — Letter-value displays

[R] `sktest` — Skewness and kurtosis tests for normality

[R] `Diagnostic plots` — Distributional diagnostic plots

[MV] `mvtest normality` — Multivariate normality tests

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights reserved.