swilk — Shapiro–Wilk and Shapiro–Francia tests for normality

Description

swilk performs the Shapiro–Wilk \(W \) test for normality for each variable in the specified varlist. Likewise, sfrancia performs the Shapiro–Francia \(W' \) test for normality. See \[MV\] mvtest normality for multivariate tests of normality.

Quick start

Shapiro–Wilk test of normality

Shapiro–Wilk test for v1

swilk v1

Separate tests of normality for v1 and v2

swilk v1 v2

Generate new variable \(w \) containing \(W \) test coefficients

swilk v1, generate(w)

Specify that average ranks should not be used for tied values

swilk v1 v2, noties

Test that \(v3 \) is distributed lognormally

generate lnv3 = ln(v3)

swilk lnv3

Shapiro–Francia test of normality

Shapiro–Francia test for v1

sfrancia v1

Separate tests of normality for v1 and v2

sfrancia v1 v2

As above, but use the Box–Cox transformation

sfrancia v1 v2, boxcox

Specify that average ranks should not be used for tied values

sfrancia v1 v2, noties
Menu

swilk
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia
Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Syntax

Shapiro–Wilk normality test

swilk varlist [if] [in] [, swilk_options]

Shapiro–Francia normality test

sfrancia varlist [if] [in] [, sfrancia_options]

swilk_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generate(newvar)</td>
</tr>
<tr>
<td>lnnormal</td>
</tr>
<tr>
<td>noties</td>
</tr>
</tbody>
</table>

sfrancia_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boxcox</td>
</tr>
<tr>
<td>noties</td>
</tr>
</tbody>
</table>

by is allowed with swilk and sfrancia; see [D] by.

Options for swilk

generate(newvar) creates new variable newvar containing the W test coefficients.

lnnormal specifies that the test be for three-parameter lognormality, meaning that ln(X - k) is tested for normality, where k is calculated from the data as the value that makes the skewness coefficient zero. When simply testing ln(X) for normality, do not specify this option. See [R] lnskew0 for estimation of k.

noties suppresses use of averaged ranks for tied values when calculating the W test coefficients.
Options for sfrancia

boxcox specifies that the Box–Cox transformation of Royston (1983) for calculating \(W' \) test coefficients be used instead of the default log transformation (Royston 1993a). Under the Box–Cox transformation, the normal approximation to the sampling distribution of \(W' \), used by sfrancia, is valid for \(5 \leq n \leq 1000 \). Under the log transformation, it is valid for \(10 \leq n \leq 5000 \).

ties suppresses use of averaged ranks for tied values when calculating the \(W' \) test coefficients.

Remarks and examples

swilk can be used with \(4 \leq n \leq 2000 \) observations. sfrancia can be used with \(10 \leq n \leq 5000 \) observations; however, if the boxcox option is specified, it can be used with \(5 \leq n \leq 1000 \) observations.

Also see [R] sktest for the skewness and kurtosis test described by D’Agostino, Belanger, and D’Agostino (1990) with the empirical correction developed by Royston (1991b). While the Shapiro–Wilk and Shapiro–Francia tests for normality are, in general, preferred for nonaggregated data (Gould and Rogers 1991; Gould 1992b; Royston 1991b), the skewness and kurtosis test will permit more observations. Moreover, a normal quantile plot should be used with any test for normality; see [R] Diagnostic plots for more information.

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally distributed:

```
use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
swilk mpg trunk
```

```
Shapiro-Wilk W test for normal data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>W</th>
<th>V</th>
<th>z</th>
<th>Prob&gt;z</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>74</td>
<td>0.94821</td>
<td>3.335</td>
<td>2.627</td>
<td>0.00430</td>
</tr>
<tr>
<td>trunk</td>
<td>74</td>
<td>0.97921</td>
<td>1.339</td>
<td>0.637</td>
<td>0.26215</td>
</tr>
</tbody>
</table>
```

```
.sfrancia mpg trunk
```

```
Shapiro-Francia W' test for normal data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>W'</th>
<th>V'</th>
<th>z</th>
<th>Prob&gt;z</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>74</td>
<td>0.94872</td>
<td>3.650</td>
<td>2.510</td>
<td>0.00604</td>
</tr>
<tr>
<td>trunk</td>
<td>74</td>
<td>0.98446</td>
<td>1.106</td>
<td>0.195</td>
<td>0.42271</td>
</tr>
</tbody>
</table>
```

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is normally distributed.

The values reported under \(W \) and \(W' \) are the Shapiro–Wilk and Shapiro–Francia test statistics. The tests also report \(V \) and \(V' \), which are more appealing indexes for departure from normality. The median values of \(V \) and \(V' \) are 1 for samples from normal populations. Large values indicate nonnormality. The 95% critical values of \(V \) (\(V' \)), which depend on the sample size, are between 1.2 and 2.4 (2.0 and 2.8); see Royston (1991d). There is no more information in \(V \) (\(V' \)) than in \(W \) (\(W' \))—one is just the transform of the other.
Example 2

We have data on a variable called studytime, which we suspect is distributed lognormally:

```
use https://www.stata-press.com/data/r16/cancer
(Patient Survival in Drug Trial)
generate lnstudytime = ln(studytime)
swilk lnstudytime
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>W</th>
<th>V</th>
<th>z</th>
<th>Prob>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnstudytime</td>
<td>48</td>
<td>0.92731</td>
<td>3.311</td>
<td>2.547</td>
<td>0.00543</td>
</tr>
</tbody>
</table>

We can reject the lognormal assumption. We do not specify the lnnormal option when testing for lognormality. The lnnormal option is for three-parameter lognormality.

Example 3

Having discovered that ln(studytime) is not distributed normally, we now test that ln(studytime – k) is normally distributed, where k is chosen so that the resulting skewness is zero. We obtain the estimate for k from lnskew0; see [R] lnskew0:

```
lnskew0 lnstudytimek = studytime, level(95)
```

<table>
<thead>
<tr>
<th>Transform</th>
<th>k</th>
<th>[95% Conf. Interval]</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(studytime-k)</td>
<td>-11.01181</td>
<td>-infinity</td>
<td>-.9477328</td>
</tr>
</tbody>
</table>

```
swilk lnstudytimek, lnnormal
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>W</th>
<th>V</th>
<th>z</th>
<th>Prob>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnstudytimek</td>
<td>48</td>
<td>0.97064</td>
<td>1.337</td>
<td>1.261</td>
<td>0.10363</td>
</tr>
</tbody>
</table>

We cannot reject the hypothesis that ln(studytime + 11.01181) is distributed normally. We do specify the lnnormal option when using an estimated value of k.

Stored results

swilk and sfrancia store the following in r():

 Scalars

- r(N) number of observations
- r(p) p-value
- r(z) z statistic
- r(W) W or W'
- r(V) V or V'

Methods and formulas

The Shapiro–Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an approximate test that is similar to the Shapiro–Wilk test for very large samples.

The relative merits of the Shapiro–Wilk and Shapiro–Francia tests versus skewness and kurtosis test have been a subject of debate. The interested reader is directed to the articles in the Stata Technical Bulletin. Our recommendation is to use the Shapiro–Francia test whenever possible, that is, whenever dealing with nonaggregated or ungrouped data (Gould and Rogers 1991; Gould 1992b); see [R] swilk. If normality is rejected, use sktest to determine the source of the problem. As both D’Agostino, Belanger, and D’Agostino (1990) and Royston (1991c) mention, researchers should also examine the normal quantile plot to determine normality rather than blindly relying on a few test statistics. See the qnorm command documented in [R] Diagnostic plots for more information on normal quantile plots.

Samuel Sanford Shapiro (1930–) earned degrees in statistics and engineering from City College of New York, Columbia, and Rutgers. After employment in the U.S. Army and industry, he joined the faculty at Florida International University in 1972. Shapiro has coauthored various texts in statistics and published several papers on distributional testing and other statistical topics.

Acknowledgment

swilk and sfrancia were written by Patrick Royston of the MRC Clinical Trials Unit, London and coauthor of the Stata Press book Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.

References

Also see

[R] **Inskew0** — Find zero-skewness log or Box–Cox transform

[R] **Iv** — Letter-value displays

[R] **sktest** — Skewness and kurtosis test for normality

[R] **Diagnostic plots** — Distributional diagnostic plots

[MV] **mvtest normality** — Multivariate normality tests