Postestimation commands

The following postestimation commands are available after `slogit`:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contrast</code></td>
<td>contrasts and ANOVA-style joint tests of estimates</td>
</tr>
<tr>
<td><code>estat ic</code></td>
<td>Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)</td>
</tr>
<tr>
<td><code>estat summarize</code></td>
<td>summary statistics for the estimation sample</td>
</tr>
<tr>
<td><code>estat vce</code></td>
<td>variance–covariance matrix of the estimators (VCE)</td>
</tr>
<tr>
<td><code>estat (svy)</code></td>
<td>postestimation statistics for survey data</td>
</tr>
<tr>
<td><code>estimates</code></td>
<td>cataloging estimation results</td>
</tr>
<tr>
<td>*<code>hausman</code></td>
<td>Hausman’s specification test</td>
</tr>
<tr>
<td><code>lincom</code></td>
<td>point estimates, standard errors, testing, and inference for linear combinations of coefficients</td>
</tr>
<tr>
<td>*<code>lrtest</code></td>
<td>likelihood-ratio test</td>
</tr>
<tr>
<td><code>margins</code></td>
<td>marginal means, predictive margins, marginal effects, and average marginal effects</td>
</tr>
<tr>
<td><code>marginsplot</code></td>
<td>graph the results from margins (profile plots, interaction plots, etc.)</td>
</tr>
<tr>
<td><code>nlcom</code></td>
<td>point estimates, standard errors, testing, and inference for nonlinear combinations of coefficients</td>
</tr>
<tr>
<td><code>predict</code></td>
<td>predicted probabilities, estimated index and its approximate standard error</td>
</tr>
<tr>
<td><code>predictnl</code></td>
<td>point estimates, standard errors, testing, and inference for generalized predictions</td>
</tr>
<tr>
<td><code>pwcompare</code></td>
<td>pairwise comparisons of estimates</td>
</tr>
<tr>
<td><code>suest</code></td>
<td>seemingly unrelated estimation</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Wald tests of simple and composite linear hypotheses</td>
</tr>
<tr>
<td><code>testnl</code></td>
<td>Wald tests of nonlinear hypotheses</td>
</tr>
</tbody>
</table>

* `hausman` and `lrtest` are not appropriate with `svy` estimation results.
predict

Description for predict

predict creates a new variable containing predictions such as probabilities, indexes for the \(k \)th outcome, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

```plaintext
predict [type] {stub* | newvar | newvarlist} [if] [in] [, statistic outcome(outcome)]
```

statistic	**Description**
Main
pr | probability of one of or all the dependent variable outcomes; the default
xb | index for the \(k \)th outcome
stdp | standard error of the index for the \(k \)th outcome
scores | equation-level scores

You specify one or \(k \) new variables with pr, where \(k \) is the number of outcomes. If you specify one new variable and you do not specify outcome(), then outcome(#1) is assumed.

You specify one new variable with xb and stdp. If you do not specify outcome(), then outcome(#1) is assumed.

These statistics are available both in and out of sample; type `predict ... if e(sample) ...` if wanted only for the estimation sample.

Options for predict

<table>
<thead>
<tr>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>pr, the default, computes the predicted probabilities for all outcomes or for a specific outcome. To compute probabilities for all outcomes, you specify (k) new variables, where (k) is the number of categories of the dependent variable. Alternatively, you can specify stub*; in which case, pr will store predicted probabilities in variables stub1, stub2, ..., stubk. To compute the probability for a specific outcome, you specify one new variable and, optionally, the outcome value in option outcome(); if you omit outcome(), the first outcome value, outcome(#1), is assumed.</td>
</tr>
</tbody>
</table>

Say that you fit a model by typing `estimation_cmd y x1 x2`, and \(y \) takes on four values. Then, you could type `predict p1 p2 p3 p4` to obtain all four predicted probabilities; alternatively, you could type `predict p*` to generate the four predicted probabilities. To compute specific probabilities one at a time, you can type `predict p1, outcome(#1)` (or simply `predict p1`), `predict p2, outcome(#2)`, and so on. See option outcome() for other ways to refer to outcome values.

xb calculates the index, \(\theta_k = \sum_{j=1}^{d} \phi_{jk} x_i \beta_j \), for outcome level \(k \neq e(i_base) \) and dimension \(d = e(k_dim) \). It returns a vector of zeros if \(k = e(i_base) \). A synonym for xb is index. If outcome() is not specified, outcome(#1) is assumed.

stdp calculates the standard error of the index. A synonym for stdp is seindex. If outcome() is not specified, outcome(#1) is assumed.
outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, ..., with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.
outcome() is not allowed with scores.

scores calculates the equation-level score variables. For models with d dimensions and m levels,
d + (d + 1)(m − 1) new variables are created. Assume j = 1, ..., d and k = 1, ..., m in the following.
The first d new variables will contain ∂ ln L/∂(xβ_j).
The next d(m − 1) new variables will contain ∂ ln L/∂φ_jk.
The last m − 1 new variables will contain ∂ ln L/∂θ_k.

margins

Description for margins
margins estimates margins of response for probabilities and indexes for the kth outcome.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist] [, options]
margins [marginlist] , predict(statistic ...) [predict(statistic ...) ...] [options]

<table>
<thead>
<tr>
<th>statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>probabilities for each outcome</td>
</tr>
<tr>
<td>pr</td>
<td>probability of one of or all the dependent variable outcomes</td>
</tr>
<tr>
<td>xb</td>
<td>index for the kth outcome</td>
</tr>
<tr>
<td>stdp</td>
<td>not allowed with margins</td>
</tr>
</tbody>
</table>

pr and xb default to the first outcome.
Statistics not allowed with margins are functions of stochastic quantities other than e(b).
For the full syntax, see [R] margins.

Remarks and examples

Once you have fit a stereotype logistic model, you can obtain the predicted probabilities by using
the predict command for both the estimation sample and other samples; see [U] 20 Estimation and
postestimation commands and [R] predict.
predict without arguments (or with the pr option) calculates the predicted probability of each outcome of the dependent variable. You must therefore give a new variable name for each of the outcomes. To compute the estimated probability of one outcome, you use the outcome(outcome) option where outcome is the level encoding the outcome. If the dependent variable’s levels are labeled, the outcomes can also be identified by the label values (see [D] label).

The xb option in conjunction with outcome(outcome) specifies that the index be computed for the outcome encoded by level outcome. Its approximate standard error is computed if the stdp option is specified. Only one of the pr, xb, or stdp options can be specified with a call to predict.

Example 1

In example 2 of [R] slogit, we fit the one-dimensional stereotype model, where the depvar is insure with levels \(k = 1 \) for outcome Indemnity, \(k = 2 \) for Prepaid, and \(k = 3 \) for Uninsure. The base outcome for the model is Indemnity, so for \(k \neq 1 \) the vector of indices for the \(k \)th level is

\[
\eta_k = \theta_k - \phi_k (\beta_1 \text{age} + \beta_2 \text{male} + \beta_3 \text{nonwhite} + \beta_4 2.\text{site} + \beta_5 3.\text{site})
\]

We estimate the group probabilities by calling predict after slogit.

```
. use https://www.stata-press.com/data/r16/sysdsn1
(Health insurance data)
. slogit insure age male nonwhite i.site, dim(1) base(1) nolog
(output omitted)
. predict pIndemnity pPrepaid pUninsure, p
. list pIndemnity pPrepaid pUninsure insure in 1/10
     +-----------------+-----------------+-----------------+-----------------+
    | pIndemnity   | pPrepaid   | pUninsure   |        insure   |
    +-----------------+-----------------+-----------------+-----------------+
      1.       | .5419344    | .3754875    | .0825782    | Indemnity     |
      2.       | .4359638    | .496328     | .0677081    | Prepaid       |
      3.       | .5111583    | .4105107    | .0783309    | Indemnity     |
      4.       | .3941132    | .5442234    | .0616633    | Prepaid       |
      5.       | .4655651    | .4625064    | .0719285    |               |
      6.       | .4401779    | .4915102    | .0683118    | Prepaid       |
      7.       | .4632122    | .4651931    | .0715948    | Prepaid       |
      8.       | .3772302    | .5635696    | .0592002    |               |
      9.       | .4867758    | .4383018    | .0749225    | Uninsure      |
     10.       | .5823668    | .3295802    | .0880531    | Prepaid       |
    +-----------------+-----------------+-----------------+-----------------+
```

Observations 5 and 8 are not used to fit the model because insure is missing at these points, but predict estimates the probabilities for these observations since none of the independent variables is missing. You can use if e(sample) in the call to predict to use only those observations that are used to fit the model.

Methods and formulas

predict

Let level \(b \) be the base outcome that is used to fit the stereotype logistic regression model of dimension \(d \). The index for observation \(i \) and level \(k \neq b \) is \(\eta_{ik} = \theta_k - \sum_{j=1}^{d} \phi_{jk} x_i \beta_j \). This is the log odds of outcome encoded as level \(k \) relative to that of \(b \) so that we define \(\eta_{ib} \equiv 0 \). The outcome probabilities for this model are defined as\(\Pr(Y_i = k) = e^{\eta_{ik}} / \sum_{j=1}^{m} e^{\eta_{ij}} \). Unlike in mlogit, ologit, and oprobit, the index is no longer a linear function of the parameters. The standard error of index \(\eta_{ik} \) is thus computed using the delta method (see also [R] predictnl).
The equation-level score for regression coefficients is

$$\frac{\partial \ln L_{ik}}{\partial x_i \beta_j} = \left(\sum_{l=1}^{m-1} \phi_{jl} p_{il} - \phi_{jk} \right)$$

the equation-level score for the scale parameters is

$$\frac{\partial \ln L_{ik}}{\partial \phi_{jl}} = \begin{cases} x_i \beta_j (p_{ik} - 1), & \text{if } l = k \\ x_i \beta_j p_{il}, & \text{if } l \neq k \end{cases}$$

for $l = 1, \ldots, m - 1$; and the equation-level score for the intercepts is

$$\frac{\partial \ln L_{ik}}{\partial \theta_l} = \begin{cases} 1 - p_{ik}, & \text{if } l = k \\ - p_{il}, & \text{if } l \neq k \end{cases}$$

Also see

[R] slogit — Stereotype logistic regression

[U] 20 Estimation and postestimation commands