
slogit — Stereotype logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
slogit fitsAnderson’s (1984) maximum-likelihood stereotype logistic regression model for categor-

ical dependent variables. Stereotype logistic models can be used when the relevance of the ordering is

unclear. These models do not impose the proportional-odds assumption.

Quick start
One-dimensional model of y as a function of x1 and x2

slogit y x1 x2

Add indicators for categorical variable a and set y = 1 as the base category

slogit y x1 x2 i.a, baseoutcome(1)

Multidimensional model reparameterizing a multinomial logit when y has 4 categories
slogit y x1 x2 i.a, dimensions(3) baseoutcome(1)

Menu
Statistics > Categorical outcomes > Stereotype logistic regression
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https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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Syntax
slogit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

dimension(#) dimension of the model; default is dimension(1)
baseoutcome(# | lbl) set the base outcome to # or lbl; default is the last outcome

constraints(numlist) apply specified linear constraints

nocorner do not generate the corner constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

initialize(initype) method of initializing scale parameters; initype can be constant,
random, or svd; see Options for details

nonormalize do not normalize the numeric variables

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix

commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

dimension(#) specifies the dimension of the model, which is the number of equations required to de-

scribe the relationship between the dependent variable and the independent variables. The maximum

dimension is min(𝑚 − 1, 𝑝), where 𝑚 is the number of categories of the dependent variable and 𝑝 is
the number of independent variables in the model. The stereotype model with maximum dimension

is a reparameterization of the multinomial logistic model.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rslogit.pdf#rslogitSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/rslogit.pdf#rslogitOptionsdisplay_options
https://www.stata.com/manuals/rslogit.pdf#rslogitOptionsmaxopts
https://www.stata.com/manuals/rslogit.pdf#rslogitOptionsinitialize()
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands


slogit — Stereotype logistic regression 3

baseoutcome(# | lbl) specifies the outcome level whose scale parameters and intercept are constrained
to be zero. The base outcome may be specified as a number or a label. By default, slogit assumes

that the outcome levels are ordered and uses the largest level of the dependent variable as the base

outcome.

constraints(numlist); see [R] Estimation options.

By default, the linear equality constraints suggested by Anderson (1984), termed the corner con-

straints, are generated for you. You can add constraints to these as needed, or you can turn off the

corner constraints by specifying nocorner. These constraints are in addition to the constraints placed
on the 𝜙 parameters corresponding to baseoutcome(#).

nocorner specifies that slogit not generate the corner constraints. If you specify nocorner, you must
specify at least dimension() × dimension() constraints for the model to be identified.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

initialize(constant | random | svd) specifies how initial estimates are computed. The default,

initialize(constant), is to set the scale parameters to the constant min(1/2, 1/𝑑), where 𝑑 is

the dimension specified in dimension().

initialize(random) requests that uniformly distributed random numbers between 0 and 1 be used

as initial values for the scale parameters. If you specify this option, you should also use set seed
to ensure that you can replicate your results; see [R] set seed.

initialize(svd) requests that a singular value decomposition (SVD) be performed on the matrix of
regression estimates from mlogit to reduce its rank to the dimension specified in dimension().
slogit uses the reduced-rank components of the SVD as initial estimates for the scale and regres-

sion coefficients. For details, see Methods and formulas.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rslogit.pdf#rslogitMethodsandformulas
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nonormalize specifies that the numeric variables not be normalized. Normalization of the numeric

variables improves numerical stability but consumes more memory in generating temporary double-

precision variables. Variables that are of type byte are not normalized, and if initial estimates are

specified using the from() option, normalization of variables is not performed. See Methods and

formulas for more information.

The following options are available with slogit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-dimensional model
Higher-dimension models

Introduction
Like multinomial logistic and ordered logistic models, stereotype logistic models are used with cate-

gorical dependent variables. They are often used when subjects are requested to assess or judge some-

thing. In a multinomial logistic model, the categories cannot be ranked. By contrast, in an ordered

logistic model, the categories follow a natural ranking scheme and are subject to the proportional-odds

assumption. Stereotype logistic regression can be viewed as a compromise between these two models

and is primarily used when you are unsure of the relevance of the ordering of the outcome.

A common case is when subjects are asked to assess or judge something. For example, consider a

survey in which consumers are asked to rate the quality of a product on a scale from 1 to 5, with 1 indi-

cating poor quality and 5 indicating excellent quality. If the categories are monotonically related to one

underlying latent variable, the ordered logistic model is appropriate. However, suppose that consumers

weigh two or three latent factors when assessing quality. The stereotype logistic model is preferred to

the ordered logistic model in this case because it allows you to specify multiple equations to capture the

effects of the latent variables. Unlike multinomial logit models, the number of equations you specify

could be fewer than 𝑚 − 1, where 𝑚 is the number of categories of the dependent variable. Stereotype

logistic models are also used when categories may be indistinguishable. Suppose that a consumer must

choose amongA, B, C, or D. Multinomial logistic modeling assumes that the four choices are distinct in

the sense that a consumer choosing one of the goods can distinguish its characteristics from the others. If

goodsA and B are in fact similar, consumers may be randomly picking between the two. One alternative

is to combine the two categories and fit a three-category multinomial logistic model. A more flexible

alternative is to use a stereotype logistic model.

In the multinomial logistic model, you estimate𝑚−1 parameter vectors β̃𝑘, 𝑘 = 1, . . . , 𝑚−1, where

𝑚 is the number of categories of the dependent variable. The stereotype logistic model is a restriction

on the multinomial model in the sense that there are 𝑑 parameter vectors, where 𝑑 is between one and

min(𝑚 − 1, 𝑝), and 𝑝 is the number of regressors. The relationship between the stereotype model’s

coefficients β𝑗, 𝑗 = 1, . . . , 𝑑, and the multinomial model’s coefficients is β̃𝑘 = − ∑𝑑
𝑗=1 𝜙𝑗𝑘β𝑗. The 𝜙s

are scale parameters to be estimated along with the β𝑗s.

https://www.stata.com/manuals/rslogit.pdf#rslogitMethodsandformulas
https://www.stata.com/manuals/rslogit.pdf#rslogitMethodsandformulas
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Given a row vector of covariates x, let 𝜂𝑘 = 𝜃𝑘−∑𝑑
𝑗=1 𝜙𝑗𝑘xβ𝑗. The probability of observing outcome

𝑘 is

Pr(𝑌𝑖 = 𝑘) =

⎧{{
⎨{{⎩

exp (𝜂𝑘)
1 + ∑𝑚−1

𝑙=1 exp (𝜂𝑙)
𝑘 < 𝑚

1
1 + ∑𝑚−1

𝑙=1 exp (𝜂𝑙)
𝑘 = 𝑚

This model includes a set of 𝜃 parameters so that each equation has an unrestricted constant term. If

𝑑 = 𝑚 − 1, the stereotype model is just a reparameterization of the multinomial logistic model. To

identify the 𝜙s and the βs, you must place at least 𝑑2 restrictions on the parameters. By default, slogit
uses the “corner constraints” 𝜙𝑗𝑗 = 1 and 𝜙𝑗𝑘 = 0 for 𝑗 ≠ 𝑘, 𝑘 ≤ 𝑑, and 𝑗 ≤ 𝑑.

For a discussion of the stereotype logistic model, see Lunt (2005).

One-dimensional model

Example 1
We have 2 years of repair rating data on the make, price, mileage rating, and gear ratio of 104 foreign

and 44 domestic automobiles (with 13 missing values on repair rating). We wish to fit a stereotype

logistic model to discriminate between the levels of repair rating using mileage, price, gear ratio, and

origin of the manufacturer. Here is an overview of our data:

. use https://www.stata-press.com/data/r19/auto2yr
(Automobile models)
. tabulate repair

Repair
rating Freq. Percent Cum.

Poor 5 3.70 3.70
Fair 19 14.07 17.78

Average 57 42.22 60.00
Good 38 28.15 88.15

Excellent 16 11.85 100.00

Total 135 100.00

The variable repair can take five values, 1, . . . , 5, which represent the subjective rating of the car

model’s repair record as Poor, Fair, Average, Good, and Excellent.

We wish to fit the one-dimensional stereotype logistic model

𝜂𝑘 = 𝜃𝑘 − 𝜙𝑘 (𝛽1foreign + 𝛽2mpg + 𝛽3price + 𝛽4gratio)

for 𝑘 < 5 and 𝜂5 = 0. To fit this model, we type
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. slogit repair foreign mpg price gratio
Iteration 0: Log likelihood = -237.99802 (not concave)
Iteration 1: Log likelihood = -204.98644 (not concave)
Iteration 2: Log likelihood = -169.79473 (not concave)
Iteration 3: Log likelihood = -167.53649
Iteration 4: Log likelihood = -164.63477
Iteration 5: Log likelihood = -163.20867 (not concave)
Iteration 6: Log likelihood = -160.67522
Iteration 7: Log likelihood = -159.69646
Iteration 8: Log likelihood = -159.35057
Iteration 9: Log likelihood = -159.28495
Iteration 10: Log likelihood = -159.25748
Iteration 11: Log likelihood = -159.25691
Iteration 12: Log likelihood = -159.25691
Stereotype logistic regression Number of obs = 135

Wald chi2(4) = 9.33
Log likelihood = -159.25691 Prob > chi2 = 0.0535
( 1) [phi1_1]_cons = 1

repair Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 5.947382 2.094126 2.84 0.005 1.84297 10.05179
mpg .1911968 .08554 2.24 0.025 .0235414 .3588521

price -.0000576 .0001357 -0.42 0.671 -.0003236 .0002083
gratio -4.307571 1.884713 -2.29 0.022 -8.00154 -.6136017

/phi1_1 1 (constrained)
/phi1_2 1.262268 .3530565 3.58 0.000 .5702904 1.954247
/phi1_3 1.17593 .3169397 3.71 0.000 .5547394 1.79712
/phi1_4 .8657195 .2411228 3.59 0.000 .3931275 1.338311
/phi1_5 0 (base outcome)

/theta1 -6.864749 4.21252 -1.63 0.103 -15.12114 1.391639
/theta2 -7.613977 4.861803 -1.57 0.117 -17.14294 1.914981
/theta3 -5.80655 4.987508 -1.16 0.244 -15.58189 3.968786
/theta4 -3.85724 3.824132 -1.01 0.313 -11.3524 3.637922
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The coefficient associatedwith the first scale parameter, 𝜙11, is 1, and its standard error and other statistics

are missing. This is the corner constraint applied to the one-dimensional model; in the header, this

constraint is listed as [phi1 1] cons = 1. Also, the 𝜙 and 𝜃 parameters that are associated with the base
outcome are identified. Keep in mind, though, that there are no coefficient estimates for [phi1 5] cons
or [theta5] cons in the ereturn matrix e(b). The Wald statistic is for a test of the joint significance

of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients β̃𝑘,

𝑘 = 1, . . . , 𝑚 − 1 to be parallel; that is, β̃𝑘 = −𝜙𝑘β. As Lunt (2001) discusses, in the one-dimensional
stereotype model, one linear combination x𝑖β best discriminates the outcomes of the dependent variable,

and the scale parameters 𝜙𝑘 measure the distance between the outcome levels and the linear predictor.

If 𝜙1 ≥ 𝜙2 ≥ · · · 𝜙𝑚−1 ≥ 𝜙𝑚 ≡ 0, the model suggests that the subjective assessment of the dependent

variable is indeed ordered. Here the maximum likelihood estimates of the 𝜙’s are not monotonic, as
would be assumed in an ordered logit model.
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We test that 𝜙1 = 𝜙2 by typing

. test [phi1_2]_cons = [phi1_1]_cons
( 1) - [phi1_1]_cons + [phi1_2]_cons = 0

chi2( 1) = 0.55
Prob > chi2 = 0.4576

Because the two parameters are not statistically different, we decide to add a constraint to force 𝜙1 = 𝜙2:

. constraint define 1 [phi1_2]_cons = [phi1_1]_cons

. slogit repair foreign mpg price gratio, constraint(1) nolog
Stereotype logistic regression Number of obs = 135

Wald chi2(4) = 21.28
Log likelihood = -159.65769 Prob > chi2 = 0.0003
( 1) [phi1_1]_cons = 1
( 2) - [phi1_1]_cons + [phi1_2]_cons = 0

repair Coefficient Std. err. z P>|z| [95% conf. interval]

foreign 7.166515 1.690177 4.24 0.000 3.853828 10.4792
mpg .2340043 .0807042 2.90 0.004 .0758271 .3921816

price -.000041 .0001618 -0.25 0.800 -.0003581 .000276
gratio -5.218107 1.798717 -2.90 0.004 -8.743528 -1.692686

/phi1_1 1 (constrained)
/phi1_2 1 (constrained)
/phi1_3 .9751096 .1286563 7.58 0.000 .7229478 1.227271
/phi1_4 .7209343 .1220353 5.91 0.000 .4817494 .9601191
/phi1_5 0 (base outcome)

/theta1 -8.293452 4.645182 -1.79 0.074 -17.39784 .8109369
/theta2 -6.958451 4.629292 -1.50 0.133 -16.0317 2.114795
/theta3 -5.620232 4.953981 -1.13 0.257 -15.32986 4.089392
/theta4 -3.745624 3.809189 -0.98 0.325 -11.2115 3.720249
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The 𝜙 estimates are now monotonically decreasing and the standard errors of the 𝜙’s are small relative to
the size of the estimates, so we conclude that, with the exception of outcomes Poor and Fair, the groups

are distinguishable for the one-dimensional model and that the quality assessment can be ordered.

Higher-dimension models
The stereotype logistic model is not limited to ordered categorical dependent variables; you can use

it on nominal data to reduce the dimension of the regressions. Recall that a multinomial model fit to a

categorical dependent variable with 𝑚 levels will have 𝑚 − 1 sets of regression coefficients. However,

a model with fewer dimensions may fit the data equally well, suggesting that some of the categories are

indistinguishable.

Example 2
As discussed in [R] mlogit, we have data on the type of health insurance available to 616 psycho-

logically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients may

have either an indemnity (fee-for-service) plan or a prepaid plan, such as an HMO, or may be uninsured.

Demographic variables include age, gender, race, and site.

https://www.stata.com/manuals/rmlogit.pdf#rmlogit
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First, we fit the saturated, two-dimensional model that is equivalent to a multinomial logistic model.

We choose the base outcome to be 1 (indemnity insurance) because that is the default for mlogit.

. use https://www.stata-press.com/data/r19/sysdsn1
(Health insurance data)
. slogit insure age male nonwhite i.site, dim(2) base(1)
Iteration 0: Log likelihood = -534.36165
Iteration 1: Log likelihood = -534.36165
Stereotype logistic regression Number of obs = 615

Wald chi2(10) = 38.17
Log likelihood = -534.36165 Prob > chi2 = 0.0000
( 1) [phi1_2]_cons = 1
( 2) [phi1_3]_cons = 0
( 3) [phi2_2]_cons = 0
( 4) [phi2_3]_cons = 1

insure Coefficient Std. err. z P>|z| [95% conf. interval]

dim1
age .011745 .0061946 1.90 0.058 -.0003962 .0238862

male -.5616934 .2027465 -2.77 0.006 -.9590693 -.1643175
nonwhite -.9747768 .2363213 -4.12 0.000 -1.437958 -.5115955

site
2 -.1130359 .2101903 -0.54 0.591 -.5250013 .2989296
3 .5879879 .2279351 2.58 0.010 .1412433 1.034733

dim2
age .0077961 .0114418 0.68 0.496 -.0146294 .0302217

male -.4518496 .3674867 -1.23 0.219 -1.17211 .268411
nonwhite -.2170589 .4256361 -0.51 0.610 -1.05129 .6171725

site
2 1.211563 .4705127 2.57 0.010 .2893747 2.133751
3 .2078123 .3662926 0.57 0.570 -.510108 .9257327

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 0 (omitted)

/phi2_1 0 (base outcome)
/phi2_2 0 (omitted)
/phi2_3 1 (constrained)

/theta1 0 (base outcome)
/theta2 .2697127 .3284422 0.82 0.412 -.3740222 .9134476
/theta3 -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

(insure=Indemnity is the base outcome)
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For comparison, we also fit the model by using mlogit:

. mlogit insure age male nonwhite i.site, nolog
Multinomial logistic regression Number of obs = 615

LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coefficient Std. err. z P>|z| [95% conf. interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Apart from having opposite signs, the coefficients from the stereotype logistic model are identical to

those from the multinomial logit model. Recall the definition of 𝜂𝑘 given in the Remarks and examples,

particularly the minus sign in front of the summation. One other difference in the output is that the

constant estimates labeled /theta in the slogit output are the constants labeled cons in the mlogit
output.

https://www.stata.com/manuals/rslogit.pdf#rslogitRemarksandexamplesdef_etak
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Next, we examine the one-dimensional model.

. slogit insure age male nonwhite i.site, dim(1) base(1) nolog
Stereotype logistic regression Number of obs = 615

Wald chi2(5) = 28.20
Log likelihood = -539.75205 Prob > chi2 = 0.0000
( 1) [phi1_2]_cons = 1

insure Coefficient Std. err. z P>|z| [95% conf. interval]

age .0108366 .0061918 1.75 0.080 -.0012992 .0229723
male -.5032537 .2078171 -2.42 0.015 -.9105678 -.0959396

nonwhite -.9480351 .2340604 -4.05 0.000 -1.406785 -.489285

site
2 -.2444316 .2246366 -1.09 0.277 -.6847113 .1958481
3 .556665 .2243799 2.48 0.013 .1168886 .9964415

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 .0383539 .4079705 0.09 0.925 -.7612535 .8379613

/theta1 0 (base outcome)
/theta2 .187542 .3303847 0.57 0.570 -.4600001 .835084
/theta3 -1.860134 .2158898 -8.62 0.000 -2.28327 -1.436997

(insure=Indemnity is the base outcome)

We have reduced a two-dimensional multinomial model to one dimension, reducing the number of esti-

mated parameters by four and decreasing the model likelihood by ≈ 5.4.

slogit does not report a model likelihood-ratio test. The test of 𝑑 = 1 (a one-dimensional model)

versus 𝑑 = 0 (the null model) does not have an asymptotic 𝜒2 distribution because the unconstrained

𝜙 parameters (/phi1 3 in this example) cannot be identified if β = 0. More generally, this problem

precludes testing any hierarchical model of dimension 𝑑 versus 𝑑 −1. Of course, the likelihood-ratio test

of a full-dimension model versus 𝑑 = 0 is valid because the full model is just multinomial logistic, and

all the 𝜙 parameters are fixed at 0 or 1.
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Technical note
The stereotype model is a special case of the reduced-rank vector generalized linear model discussed

by Yee and Hastie (2003). If we define 𝜂𝑖𝑘 = 𝜃𝑘 − ∑𝑑
𝑗=1 𝜙𝑗𝑘x𝑖β𝑗, for 𝑘 = 1, . . . , 𝑚 − 1, we can write

the expression in matrix notation as

η𝑖 = θ + 𝚽 (x𝑖B)′

where𝚽 is a (𝑚−1)×𝑑matrix containing the 𝜙𝑗𝑘 parameters and B is a 𝑝×𝑑matrix with columns con-
taining the β𝑗 parameters, 𝑗 = 1, . . . , 𝑑. The factorization𝚽B′ is not unique because 𝚽B′ =𝚽MM−1B′

for any nonsingular 𝑑 × 𝑑 matrixM. To avoid this identifiability problem, we chooseM = 𝚽−1
1 , where

𝚽 = (𝚽1
𝚽2

)

and 𝚽1 is 𝑑 × 𝑑 of rank 𝑑 so that

𝚽M = ( I𝑑
𝚽2𝚽−1

1
)

and I𝑑 is a 𝑑 × 𝑑 identity matrix. Thus, the corner constraints used by slogit are 𝜙𝑗𝑗 ≡ 1 and 𝜙𝑗𝑘 ≡ 0

for 𝑗 ≠ 𝑘 and 𝑘, 𝑗 ≤ 𝑑.

Stored results
slogit stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k indvars) number of independent variables

e(k out) number of outcomes

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(df m) Wald test degrees of freedom

e(df 0) null model degrees of freedom

e(k dim) model dimension

e(i base) base outcome index

e(ll) log likelihood

e(ll 0) null model log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(ic) number of iterations

e(rank) rank of e(V)
e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) slogit
e(cmdline) command as typed

e(depvar) name of dependent variable

e(indvars) independent variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable
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e(out#) outcome labels, # = 1, . . . ,e(k out)
e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method
e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(footnote) program used to implement the footnote display

e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(outcomes) outcome values

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas
slogit obtains the maximum likelihood estimates for the stereotype logistic model by using ml; see

[R] ml. Each set of regression estimates, one set of β𝑗s for each dimension, constitutes one ml model
equation. The 𝑑 × (𝑚 − 1) 𝜙s and the (𝑚 − 1) 𝜃s are ml ancillary parameters.

https://www.stata.com/manuals/rml.pdf#rml
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Without loss of generality, let the base outcome level be the 𝑚th level of the dependent variable.

Define the row vector φ𝑘 = (𝜙1𝑘, . . . , 𝜙𝑑𝑘) for 𝑘 = 1, . . . , 𝑚 − 1, and define the 𝑝 × 𝑑 matrix B =
(β1, . . . ,β𝑑). For observation 𝑖, the log odds of outcome level 𝑘 relative to level 𝑚, 𝑘 = 1, . . . , 𝑚 − 1

is the index

ln{ Pr(𝑌𝑖 = 𝑘)
Pr(𝑌𝑖 = 𝑚)

} = 𝜂𝑖𝑘 = 𝜃𝑘 − φ𝑘 (x𝑖B)′

= 𝜃𝑘 − φ𝑘ν
′
𝑖

The row vector ν𝑖 can be interpreted as a latent variable reducing the 𝑝-dimensional vector of covariates
to a more interpretable 𝑑 < 𝑝 dimension.

The probability of the 𝑖th observation having outcome level 𝑘 is then

Pr(𝑌𝑖 = 𝑘) = 𝑝𝑖𝑘 =

⎧{{
⎨{{⎩

𝑒𝜂𝑖𝑘

1 + ∑𝑚−1
𝑗=1 𝑒𝜂𝑖𝑗

, if 𝑘 < 𝑚

1
1 + ∑𝑚−1

𝑗=1 𝑒𝜂𝑖𝑗
, if 𝑘 = 𝑚

from which the log-likelihood function is computed as

𝐿 =
𝑛

∑
𝑖=1

𝑤𝑖

𝑚
∑
𝑘=1

𝐼𝑘(𝑦𝑖) ln(𝑝𝑖𝑘) (1)

Here 𝑤𝑖 is the weight for observation 𝑖 and

𝐼𝑘(𝑦𝑖) = {1 , if observation 𝑦𝑖 has outcome 𝑘
0 , otherwise

Numeric variables are normalized for numerical stability during optimization where a new double-

precision variable ̃𝑥𝑗 is created from variable 𝑥𝑗, 𝑗 = 1, . . . , 𝑝, such that ̃𝑥𝑗 = (𝑥𝑗 − 𝑥𝑗)/𝑠𝑗. This

feature is turned off if you specify nonormalize, or if you use the from() option for initial estimates.

Normalization is not performed on byte variables, including the indicator variables generated by [R] xi.

The linear equality constraints for regression parameters, if specified, must be scaled also. Assume that

a constraint is applied to the regression parameter associated with variable 𝑗 and dimension 𝑖, 𝛽𝑗𝑖, and

the corresponding element of the constraint matrix (see [P] makecns) is divided by 𝑠𝑗.

After convergence, the parameter estimates for variable 𝑗 and dimension 𝑖— ̃𝛽𝑗𝑖, say—are trans-

formed back to their original scale, 𝛽𝑗𝑖 = ̃𝛽𝑗𝑖/𝑠𝑗. For the intercepts, you compute

𝜃𝑘 = ̃𝜃𝑘 +
𝑑

∑
𝑖=1

𝜙𝑖𝑘

𝑝

∑
𝑗=1

̃𝛽𝑗𝑖𝑥𝑗

𝑠𝑗

https://www.stata.com/manuals/rxi.pdf#rxi
https://www.stata.com/manuals/pmakecns.pdf#pmakecns
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Initial values are computed using estimates obtained using mlogit to fit a multinomial logistic model.
Let the 𝑝 × (𝑚 − 1) matrix B̃ contain the multinomial logistic regression parameters less the 𝑚 −
1 intercepts. Each 𝜙 is initialized with constant values min (1/2, 1/𝑑), the initialize(constant)
option (the default), or, with uniform random numbers, the initialize(random) option. Constraints

are then applied to the starting values so that the structure of the (𝑚 − 1) × 𝑑 matrix 𝚽 is

𝚽 =
⟮
⟮
⟮
⟮

φ1
φ2
⋮

φ𝑚−1

⟯
⟯
⟯
⟯

= ⟮
I𝑑
𝚽̃⟯

where I𝑑 is a 𝑑 × 𝑑 identity matrix. Assume that only the corner constraints are used, but any constraints
you place on the scale parameters are also applied to the initial scale estimates, so the structure of 𝚽 will

change accordingly. The 𝜙 parameters are invariant to the scale of the covariates, so initial estimates in

[ 0, 1 ] are reasonable. The constraints guarantee that the rank of 𝚽 is at least 𝑑, so the initial estimates
for the stereotype regression parameters are obtained from B = B̃𝚽(𝚽′𝚽)−1.

One other approach for initial estimates is provided: initialize(svd). It starts with the mlogit
estimates and computes B̃′ = UDV′, where U𝑚−1×𝑝 and V𝑝×𝑝 are orthonormal matrices and D𝑝×𝑝 is a

diagonal matrix containing the singular values of B̃. The estimates for 𝚽 and B are the first 𝑑 columns

of U and VD, respectively (Yee and Hastie 2003).

The score for regression coefficients is

u𝑖(β𝑗) = 𝜕𝐿𝑖𝑘
𝜕β𝑗

= x𝑖 (
𝑚−1
∑
𝑙=1

𝜙𝑗𝑙𝑝𝑖𝑙 − 𝜙𝑗𝑘)

the score for the scale parameters is

𝑢𝑖(𝜙𝑗𝑙) = 𝜕𝐿𝑖𝑘
𝜕𝜙𝑗𝑙

= {
x𝑖β𝑗(𝑝𝑖𝑘 − 1), if 𝑙 = 𝑘
x𝑖β𝑗𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

for 𝑙 = 1, . . . , 𝑚 − 1; and the score for the intercepts is

𝑢𝑖(𝜃𝑙) = 𝜕𝐿𝑖𝑘
𝜕𝜃𝑙

= {1 − 𝑝𝑖𝑘, if 𝑙 = 𝑘
−𝑝𝑖𝑙, if 𝑙 ≠ 𝑘

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

slogit also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.

https://www.stata.com/manuals/p_robust.pdf#p_robust
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
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