slogit — Stereotype logistic regression

Description

slogit fits Anderson’s (1984) maximum-likelihood stereotype logistic regression model for categorical dependent variables. Stereotype logistic models can be used when the relevance of the ordering is unclear. These models do not impose the proportional-odds assumption.

Quick start

One-dimensional model of \(y \) as a function of \(x_1 \) and \(x_2 \)

\[
\text{slogit } y \ x_1 \ x_2
\]

Add indicators for categorical variable \(a \) and set \(y = 1 \) as the base category

\[
\text{slogit } y \ x_1 \ x_2 \ i.a, \ \text{baseoutcome}(1)
\]

Multidimensional model reparameterizing a multinomial logit when \(y \) has 4 categories

\[
\text{slogit } y \ x_1 \ x_2 \ i.a, \ \text{dimensions}(3) \ \text{baseoutcome}(1)
\]

Menu

Statistics > Categorical outcomes > Stereotype logistic regression
Syntax

slogit depvar [indepvars] [if] [in] [weight] [, options]

options Description

Model

dimension(#) dimension of the model; default is dimension(1)
baseoutcome(# | lbl) set the base outcome to # or lbl; default is the last outcome
constraints(numlist) apply specified linear constraints
ncorner do not generate the corner constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsr do not display constraints
display_options control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling

Maximization

maximize_options control the maximization process; seldom used
initialize(initype) method of initializing scale parameters; initype can be constant, random, or svd; see Options for details
nonormalize do not normalize the numeric variables
collinear keep collinear variables
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

--- Model ---

dimension(#) specifies the dimension of the model, which is the number of equations required to describe the relationship between the dependent variable and the independent variables. The maximum dimension is \(\min(m - 1, p) \), where \(m \) is the number of categories of the dependent variable and \(p \) is the number of independent variables in the model. The stereotype model with maximum dimension is a reparameterization of the multinomial logistic model.

baseoutcome(# | lbl) specifies the outcome level whose scale parameters and intercept are constrained to be zero. The base outcome may be specified as a number or a label. By default, slogit assumes
that the outcome levels are ordered and uses the largest level of the dependent variable as the base outcome.

constraints(\textit{numlist}); see \texttt{[R] Estimation options}.

By default, the linear equality constraints suggested by Anderson (1984), termed the corner constraints, are generated for you. You can add constraints to these as needed, or you can turn off the corner constraints by specifying \texttt{nocorner}. These constraints are in addition to the constraints placed on the \(\phi \) parameters corresponding to \texttt{baseoutcome(#)}.

\texttt{nocorner} specifies that \texttt{slogit} not generate the corner constraints. If you specify \texttt{nocorner}, you must specify at least \texttt{dimension() \times dimension()} constraints for the model to be identified.

\texttt{SE/Robust}

\texttt{vce(\textit{vcetype})} specifies the type of standard error reported, which includes types that are derived from asymptotic theory (\texttt{oim, opg}), that are robust to some kinds of misspecification (\texttt{robust}), that allow for intragroup correlation (\texttt{cluster clustvar}), and that use bootstrap or jackknife methods (\texttt{bootstrap, jackknife}); see \texttt{[R] vce option}.

If specifying \texttt{vce(bootstrap)} or \texttt{vce(jackknife)}, you must also specify \texttt{baseoutcome()}.

\texttt{level(#), nocnsreport}; see \texttt{[R] Estimation options}.

\texttt{display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabe, fwrap(#), fwrappon(style), cformat(\%fmt), pformat(\%fmt), sformat(\%fmt), and nolstretch}; see \texttt{[R] Estimation options}.

\texttt{Maximization}

\texttt{maximize_options: difficult, technique(algorithm spec), iterate(#), [no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#), rtolerance(#), nonrtolerance, and from(init specs)}; see \texttt{[R] Maximize}. These options are seldom used.

Setting the optimization type to \texttt{technique(bhhh)} resets the default \texttt{vcetype} to \texttt{vce(opg)}.

\texttt{initialize(constant | random | svd)} specifies how initial estimates are computed. The default, \texttt{initialize(constant)}, is to set the scale parameters to the constant \(\min(1/2, 1/d) \), where \(d \) is the dimension specified in \texttt{dimension()}.

\texttt{initialize(random)} requests that uniformly distributed random numbers between 0 and 1 be used as initial values for the scale parameters. If you specify this option, you should also use \texttt{set seed} to ensure that you can replicate your results; see \texttt{[R] set seed}.

\texttt{initialize(svd)} requests that a singular value decomposition (SVD) be performed on the matrix of regression estimates from \texttt{mlogit} to reduce its rank to the dimension specified in \texttt{dimension()}. \texttt{slogit} uses the reduced-rank components of the SVD as initial estimates for the scale and regression coefficients. For details, see \textit{Methods and formulas}.

\texttt{nonormalize} specifies that the numeric variables not be normalized. Normalization of the numeric variables improves numerical stability but consumes more memory in generating temporary double-precision variables. Variables that are of type \texttt{byte} are not normalized, and if initial estimates are specified using the \texttt{from()} option, normalization of variables is not performed. See \textit{Methods and formulas} for more information.
The following options are available with `slogit` but are not shown in the dialog box: `collinear`, `coeflegend`; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

- Introduction
- One-dimensional model
- Higher-dimensional models

Introduction

Like multinomial logistic and ordered logistic models, stereotype logistic models are used with categorical dependent variables. They are often used when subjects are requested to assess or judge something. In a multinomial logistic model, the categories cannot be ranked. By contrast, in an ordered logistic model, the categories follow a natural ranking scheme and are subject to the proportional-odds assumption. Stereotype logistic regression can be viewed as a compromise between these two models and is primarily used when you are unsure of the relevance of the ordering of the outcome.

A common case is when subjects are asked to assess or judge something. For example, consider a survey in which consumers are asked to rate the quality of a product on a scale from 1 to 5, with 1 indicating poor quality and 5 indicating excellent quality. If the categories are monotonically related to one underlying latent variable, the ordered logistic model is appropriate. However, suppose that consumers weigh two or three latent factors when assessing quality. The stereotype logistic model is preferred to the ordered logistic model in this case because it allows you to specify multiple equations to capture the effects of the latent variables. Unlike multinomial logit models, the number of equations you specify could be fewer than \(m - 1 \), where \(m \) is the number of categories of the dependent variable. Stereotype logistic models are also used when categories may be indistinguishable. Suppose that a consumer must choose among A, B, C, or D. Multinomial logistic modeling assumes that the four choices are distinct in the sense that a consumer choosing one of the goods can distinguish its characteristics from the others. If goods A and B are in fact similar, consumers may be randomly picking between the two. One alternative is to combine the two categories and fit a three-category multinomial logistic model. A more flexible alternative is to use a stereotype logistic model.

In the multinomial logistic model, you estimate \(m - 1 \) parameter vectors \(\tilde{\beta}_k, k = 1, \ldots, m - 1 \), where \(m \) is the number of categories of the dependent variable. The stereotype logistic model is a restriction on the multinomial model in the sense that there are \(d \) parameter vectors, where \(d \) is between one and \(\min(m - 1, p) \), and \(p \) is the number of regressors. The relationship between the stereotype model’s coefficients \(\beta_j, j = 1, \ldots, d \), and the multinomial model’s coefficients is \(\tilde{\beta}_k = -\sum_{j=1}^{d} \phi_{jk} \beta_j \). The \(\phi \)s are scale parameters to be estimated along with the \(\beta \)s.

Given a row vector of covariates \(x \), let \(\eta_k = \theta_k - \sum_{j=1}^{d} \phi_{jk} x \beta_j \). The probability of observing outcome \(k \) is

\[
\Pr(Y_i = k) = \begin{cases}
\frac{\exp(\eta_k)}{1 + \sum_{l=1}^{m-1} \exp(\eta_l)} & k < m \\
\frac{1}{1 + \sum_{l=1}^{m-1} \exp(\eta_l)} & k = m
\end{cases}
\]
This model includes a set of \(\theta \) parameters so that each equation has an unrestricted constant term. If \(d = m - 1 \), the stereotype model is just a reparameterization of the multinomial logistic model. To identify the \(\phi \)s and the \(\beta \)s, you must place at least \(d^2 \) restrictions on the parameters. By default, \texttt{slogit} uses the “corner constraints” \(\phi_{jj} = 1 \) and \(\phi_{jk} = 0 \) for \(j \neq k \), \(k \leq d \), and \(j \leq d \).

For a discussion of the stereotype logistic model, see Lunt (2005).

One-dimensional model

> Example 1

We have 2 years of repair rating data on the make, price, mileage rating, and gear ratio of 104 foreign and 44 domestic automobiles (with 13 missing values on repair rating). We wish to fit a stereotype logistic model to discriminate between the levels of repair rating using mileage, price, gear ratio, and origin of the manufacturer. Here is an overview of our data:

```
. use https://www.stata-press.com/data/r16/auto2yr
(Automobile Models)
. tabulate repair

<table>
<thead>
<tr>
<th>Repair rating</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>5</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td>Fair</td>
<td>19</td>
<td>14.07</td>
<td>17.78</td>
</tr>
<tr>
<td>Average</td>
<td>57</td>
<td>42.22</td>
<td>60.00</td>
</tr>
<tr>
<td>Good</td>
<td>38</td>
<td>28.15</td>
<td>88.15</td>
</tr>
<tr>
<td>Excellent</td>
<td>16</td>
<td>11.85</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
```

The variable \texttt{repair} can take five values, 1, \ldots, 5, which represent the subjective rating of the car model’s repair record as \texttt{Poor}, \texttt{Fair}, \texttt{Average}, \texttt{Good}, and \texttt{Excellent}.

We wish to fit the one-dimensional stereotype logistic model

\[
\eta_k = \theta_k - \phi_k (\beta_1 \text{foreign} + \beta_2 \text{mpg} + \beta_3 \text{price} + \beta_4 \text{gratio})
\]

for \(k < 5 \) and \(\eta_5 = 0 \). To fit this model, we type
. s Rogit repair foreign mpg price gratio
Iteration 0: log likelihood = -173.78178 (not concave)
Iteration 1: log likelihood = -164.77316
Iteration 2: log likelihood = -161.7069
Iteration 3: log likelihood = -159.76138
Iteration 4: log likelihood = -159.34327
Iteration 5: log likelihood = -159.25914
Iteration 6: log likelihood = -159.25691
Iteration 7: log likelihood = -159.25691
Stereotype logistic regression

Number of obs = 135
Wald chi2(4) = 9.33
Log likelihood = -159.25691 Prob > chi2 = 0.0535

(1) [phi1_1]_cons = 1
(2) [phi1_2]_cons = [phi1_1]_cons
(3) [phi1_3]_cons = [phi1_1]_cons
(4) [phi1_4]_cons = [phi1_1]_cons
(5) [phi1_5]_cons = 0 (base outcome)
(6) [theta1]_cons = [phi1_1]_cons
(7) [theta2]_cons = [phi1_1]_cons
(8) [theta3]_cons = [phi1_1]_cons
(9) [theta4]_cons = [phi1_1]_cons
(10) [theta5]_cons = 0 (base outcome)

repair Coef. Std. Err. z P>|z| [95% Conf. Interval]
--- ------- ------- ------- ------- ------------------
foreign 5.947382 2.094126 2.84 0.005 1.84297 10.05179
mpg .1911968 .08554 2.24 0.025 .0235414 .3588521
price -.0000576 .0001357 -0.42 0.671 -.0003236 .0002083
gratio -4.307571 1.884713 -2.29 0.022 -8.00154 -.6136017

Wald chi2(4) = 9.33 Prob > chi2 = 0.0535

The coefficient associated with the first scale parameter, ϕ_{11}, is 1, and its standard error and other
statistics are missing. This is the corner constraint applied to the one-dimensional model; in the header,
this constraint is listed as $[phi1_1]_cons = 1$. Also, the ϕ and θ parameters that are associated
with the base outcome are identified. Keep in mind, though, that there are no coefficient estimates
for $[phi1_5]_cons$ or $[theta5]_cons$ in the e return matrix $e(b)$. The Wald statistic is for a
test of the joint significance of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients
$\tilde{\beta}_k$, $k = 1, \ldots, m - 1$ to be parallel; that is, $\tilde{\beta}_k = -\phi_k \beta$. As Lunt (2001) discusses, in the
one-dimensional stereotype model, one linear combination $x_i \beta$ best discriminates the outcomes of
the dependent variable, and the scale parameters ϕ_k measure the distance between the outcome levels
and the linear predictor. If $\phi_1 \geq \phi_2 \geq \cdots \geq \phi_{m-1} \geq \phi_m \equiv 0$, the model suggests that the subjective
assessment of the dependent variable is indeed ordered. Here the maximum likelihood estimates of
the ϕ's are not monotonic, as would be assumed in an ordered logit model.

We test that $\phi_1 = \phi_2$ by typing

. test [phi1_2]_cons = [phi1_1]_cons
 (1) - [phi1_1]_cons + [phi1_2]_cons = 0
 chi2(1) = 0.55
 Prob > chi2 = 0.4576

The coefficient associated with the first scale parameter, ϕ_{11}, is 1, and its standard error and other
statistics are missing. This is the corner constraint applied to the one-dimensional model; in the header,
this constraint is listed as $[phi1_1]_cons = 1$. Also, the ϕ and θ parameters that are associated
with the base outcome are identified. Keep in mind, though, that there are no coefficient estimates
for $[phi1_5]_cons$ or $[theta5]_cons$ in the e return matrix $e(b)$. The Wald statistic is for a
test of the joint significance of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients
$\tilde{\beta}_k$, $k = 1, \ldots, m - 1$ to be parallel; that is, $\tilde{\beta}_k = -\phi_k \beta$. As Lunt (2001) discusses, in the
one-dimensional stereotype model, one linear combination $x_i \beta$ best discriminates the outcomes of
the dependent variable, and the scale parameters ϕ_k measure the distance between the outcome levels
and the linear predictor. If $\phi_1 \geq \phi_2 \geq \cdots \geq \phi_{m-1} \geq \phi_m \equiv 0$, the model suggests that the subjective
assessment of the dependent variable is indeed ordered. Here the maximum likelihood estimates of
the ϕ's are not monotonic, as would be assumed in an ordered logit model.

We test that $\phi_1 = \phi_2$ by typing

. test [phi1_2]_cons = [phi1_1]_cons
 (1) - [phi1_1]_cons + [phi1_2]_cons = 0
 chi2(1) = 0.55
 Prob > chi2 = 0.4576
Because the two parameters are not statistically different, we decide to add a constraint to force $\phi_1 = \phi_2$:

```
. constraint define 1 [phi1_2]_cons = [phi1_1]_cons
. slogit repair foreign mpg price gratio, constraint(1) nolog
```

Stereotype logistic regression

```
Number of obs = 135
Wald chi2(4) = 21.28
Log likelihood = -159.65769  Prob > chi2 = 0.0003
```

(1) [phi1_1]_cons = 1
(2) - [phi1_1]_cons + [phi1_2]_cons = 0

<table>
<thead>
<tr>
<th>repair</th>
<th>Coef. Std. Err. z P></th>
<th>z</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>foreign</td>
<td>7.166515 1.690177 4.24 0.000 3.853829 10.4792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mpg</td>
<td>0.2340043 0.0807042 2.90 0.004 0.0758271 0.3921816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>price</td>
<td>-0.000041 0.001618 -0.25 0.800 -0.0003581 0.000276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gratio</td>
<td>-5.218107 1.798717 -2.90 0.004 -8.743528 -1.692686</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
/phi1_1 1 (constrained)
/phi2_1 1 (constrained)
/phi3_1 0.9751096 0.1286563 7.58 0.000 0.7229478 1.227271
/phi4_1 0.7209343 0.1220353 5.91 0.000 0.4817494 0.9601191
/phi5_1 0 (base outcome)
/theta1 -8.293452 4.645182 -1.79 0.074 -17.39784 0.8109368
/theta2 -6.958451 4.629292 -1.50 0.133 -16.0317 2.114795
/theta3 -5.620232 4.953981 -1.13 0.257 -15.32986 4.089392
/theta4 -3.745624 3.809189 -0.98 0.325 -11.2115 3.720249
/theta5 0 (base outcome)
```

(repair=Excellent is the base outcome)

The ϕ estimates are now monotonically decreasing and the standard errors of the ϕ’s are small relative to the size of the estimates, so we conclude that, with the exception of outcomes Poor and Fair, the groups are distinguishable for the one-dimensional model and that the quality assessment can be ordered.

Higher-dimension models

The stereotype logistic model is not limited to ordered categorical dependent variables; you can use it on nominal data to reduce the dimension of the regressions. Recall that a multinomial model fit to a categorical dependent variable with m levels will have $m - 1$ sets of regression coefficients. However, a model with fewer dimensions may fit the data equally well, suggesting that some of the categories are indistinguishable.

Example 2

As discussed in [R] mlogit, we have data on the type of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989). Patients may have either an indemnity (fee-for-service) plan or a prepaid plan, such as an HMO, or may be uninsured. Demographic variables include age, gender, race, and site.

First, we fit the saturated, two-dimensional model that is equivalent to a multinomial logistic model. We choose the base outcome to be 1 (indemnity insurance) because that is the default for mlogit.
use https://www.stata-press.com/data/r16/sysdsn1
(Health insurance data)
slogit insure age male nonwhite i.site, dim(2) base(1)
Iteration 0: log likelihood = -534.36165
Iteration 1: log likelihood = -534.36165
Stereotype logistic regression
Number of obs = 615
Wald chi2(10) = 38.17
Log likelihood = -534.36165
Prob > chi2 = 0.0000

(1) [phi1_2]_cons = 1
(2) [phi1_3]_cons = 0
(3) [phi2_2]_cons = 0
(4) [phi2_3]_cons = 1

| insure | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|--------|-----------|-------|------|----------------------|
| | | | | | |
| **dim1** | | | | | |
| age | 0.011745 | 0.0061946 | 1.90 | 0.058 | -0.0003962 - 0.0238862 |
| male | -0.5616934 | 0.2027465 | -2.77 | 0.006 | -0.9590693 - -0.1643175 |
| nonwhite | -0.9747768 | 0.2363213 | -4.12 | 0.000 | -1.437958 - -0.5115955 |
| site | | | | | |
| 2 | -0.1130359 | 0.2101903 | -0.54 | 0.591 | -0.5250013 - 0.2989296 |
| 3 | 0.5879879 | 0.2279351 | 2.58 | 0.010 | 0.1412433 - 1.034733 |
| **dim2** | | | | | |
| age | 0.0077961 | 0.0114418 | 0.68 | 0.496 | -0.0146294 - 0.0302217 |
| male | -0.4518496 | 0.3674867 | -1.23 | 0.219 | -1.17211 - 0.268411 |
| nonwhite | -0.2170589 | 0.4256361 | -0.51 | 0.610 | -1.05129 - 0.6171725 |
| site | | | | | |
| 2 | 1.211563 | 0.4705127 | 2.57 | 0.010 | 0.2893747 - 2.133751 |
| 3 | 0.2078123 | 0.3662926 | 0.57 | 0.570 | -0.510108 - 0.9257327 |
| /phi1_1| | | | | |
| /phi2_1| | | | | |
| /phi3_1| | | | | |
| /theta1| | | | | |
| /theta2| | | | | |
| /theta3| | | | | |

(insure=Indemnity is the base outcome)
For comparison, we also fit the model by using `mlogit`:

```
. mlogit insure age male nonwhite i.site, nolog
Multinomial logistic regression                Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000
Log likelihood = -534.36165  Pseudo R2 = 0.0387
```

| insure | Coef. | Std. Err. | z | P>|z| | 95% Conf. Interval |
|----------|--------|-----------|-------|------|-------------------|
| Indemnity (base outcome) | | | | | |
| Prepaid | | | | | |
| age | -.011745 | .0061946 | -1.90 | 0.058 | -.0238862 -.003962 |
| male | .5616934 | .2027465 | 2.77 | 0.006 | .1643175 .9590693 |
| nonwhite | .9747768 | .2363213 | 4.12 | 0.000 | .5115955 1.437958 |
| site | | | | | |
| 2 | .1130359 | .2101903 | 0.54 | 0.591 | -.2989296 .5250013 |
| 3 | -.5879879 | .2279351 | -2.58 | 0.010 | -.1034733 -.1412433 |
| _cons | .2697127 | .3284422 | 0.82 | 0.412 | -.3740222 .9134476 |
| Uninsure | | | | | |
| age | -.0077961 | .0114418 | -0.68 | 0.496 | -.0302217 .0146294 |
| male | .4518496 | .3674867 | 1.23 | 0.219 | -.268411 1.17211 |
| nonwhite | .2170589 | .4256361 | 0.51 | 0.610 | -.617125 1.05129 |
| site | | | | | |
| 2 | -1.211563 | .4705127 | -2.57 | 0.010 | -.2133751 -.2893747 |
| 3 | -.2078123 | .3662926 | -0.57 | 0.570 | -.9257327 .510108 |
| _cons | -1.286943 | .5923219 | -2.17 | 0.030 | -.447872 -.1260134 |

Apart from having opposite signs, the coefficients from the stereotype logistic model are identical to those from the multinomial logit model. Recall the definition of η_k given in the Remarks and examples, particularly the minus sign in front of the summation. One other difference in the output is that the constant estimates labeled `/theta` in the `slogit` output are the constants labeled `_cons` in the `mlogit` output.

Next, we examine the one-dimensional model.
. **slogit** insure age male nonwhite i.site, dim(1) base(1) nolog

Stereotype logistic regression

Number of obs = 615
Wald chi2(5) = 28.20
Log likelihood = -539.75205
Prob > chi2 = 0.0000

(1) [phi1_2]_cons = 1

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|----------|-----------|---------|------|----------------------|
| age | 0.0108366 | 0.0061918 | 1.75 | 0.080 | -.0012992 to .0229723 |
| male | -0.5032537 | 0.2078171 | -2.42 | 0.015 | -0.9105678 to -.0959396 |
| nonwhite| -0.9480351 | 0.2340604 | -4.05 | 0.000 | -1.406785 to -.489285 |
| site | | | | | |
| 2 | -0.2444316 | 0.2243799 | -1.09 | 0.277 | -.6847113 to .1958481 |
| 3 | 0.556665 | 0.2243799 | 2.48 | 0.013 | .1168886 to .9964415 |

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 0.0383539 0.4079705 0.09 0.925 -0.7612535 to .8379613

/theta1 0 (base outcome)
/theta2 0.187542 0.3303847 0.57 0.570 -0.4600001 to .835084

(these are not reported)

We have reduced a two-dimensional multinomial model to one dimension, reducing the number of estimated parameters by four and decreasing the model likelihood by ≈ 5.4.

slogit does not report a model likelihood-ratio test. The test of $d = 1$ (a one-dimensional model) versus $d = 0$ (the null model) does not have an asymptotic χ^2 distribution because the unconstrained ϕ parameters (/phi1_3 in this example) cannot be identified if $\beta = 0$. More generally, this problem precludes testing any hierarchical model of dimension d versus $d - 1$. Of course, the likelihood-ratio test of a full-dimension model versus $d = 0$ is valid because the full model is just multinomial logistic, and all the ϕ parameters are fixed at 0 or 1.

⚠️ **Technical note**

The stereotype model is a special case of the reduced-rank vector generalized linear model discussed by Yee and Hastie (2003). If we define $\eta_{ik} = \theta_k - \sum_{j=1}^{d} \phi_{jk} x_{ij} \beta_j$, for $k = 1, \ldots, m - 1$, we can write the expression in matrix notation as $\eta_i = \theta + \Phi(x_i B)'$, where Φ is a $(m - 1) \times d$ matrix containing the ϕ_{jk} parameters and B is a $p \times d$ matrix with columns containing the β_j parameters, $j = 1, \ldots, d$. The factorization $\Phi B'$ is not unique because $\Phi B' = \Phi MM^{-1} B'$ for any nonsingular $d \times d$ matrix M. To avoid this identifiability problem, we choose $M = \Phi_1^{-1}$, where Φ_1 is $d \times d$ of rank d so that $\Phi M = \Phi_1^{-1} \Phi_2$ and Φ_2 is $d \times d$ identity matrix. Thus, the corner constraints used by **slogit** are $\phi_{jj} \equiv 1$ and $\phi_{jk} \equiv 0$ for $j \neq k$ and $k, j \leq d$.

⚠️
slogit stores the following in `e()`:

Scalars

- `e(N)` number of observations
- `e(k)` number of parameters
- `e(k_indvars)` number of independent variables
- `e(k_out)` number of outcomes
- `e(k_eq)` number of equations in `e(b)`
- `e(k_eq_model)` number of equations in overall model test
- `e(df_m)` Wald test degrees of freedom
- `e(df_0)` null model degrees of freedom
- `e(k_dim)` model dimension
- `e(i_base)` base outcome index
- `e(ll)` log likelihood
- `e(ll_0)` null model log likelihood
- `e(N_clust)` number of clusters
- `e(chi2)` χ^2
- `e(p)` p-value for model test
- `e(ic)` number of iterations
- `e(rank)` rank of `e(V)`
- `e(rc)` return code
- `e(converged)` 1 if converged, 0 otherwise

Macros

- `e(cmd)` `slogit`
- `e(cmdline)` command as typed
- `e(depvar)` name of dependent variable
- `e(indvars)` independent variables
- `e(wtype)` weight type
- `e(wexp)` weight expression
- `e(title)` title in estimation output
- `e(clustvar)` name of cluster variable
- `e(out#)` outcome labels, $# = 1, \ldots, e(k_out)$
- `e(chi2type)` Wald; type of model χ^2 test
- `e(vcetype)` `vcetype` specified in `vce()`
- `e(vcetype)` title used to label Std. Err.
- `e(opt)` type of optimization
- `e(which)` `max` or `min`; whether optimizer is to perform maximization or minimization
- `e(ml_method)` type of `ml` method
- `e(user)` name of likelihood-evaluator program
- `e(technique)` maximization technique
- `e(properties)` `b V`
- `e(predict)` program used to implement `predict`
- `e(marginsnotok)` predictions disallowed by `margins`
- `e(marginsdefault)` default `predict()` specification for `margins`
- `e(footnote)` program used to implement the footnote display
- `e(asbalanced)` factor variables `fvset` as `asbalanced`
- `e(asobserved)` factor variables `fvset` as `asobserved`

Matrices

- `e(b)` coefficient vector
- `e(outcomes)` outcome values
- `e(Cns)` constraints matrix
- `e(ilog)` iteration log (up to 20 iterations)
- `e(gradient)` gradient vector
- `e(V)` variance–covariance matrix of the estimators
- `e(V_modelbased)` model-based variance

Functions

- `e(sample)` marks estimation sample
In addition to the above, the following is stored in \(r() \):

Matrices

\[
\text{r(table)} \quad \text{matrix containing the coefficients with their standard errors, test statistics, p-values, and confidence intervals}
\]

Note that results stored in \(r() \) are updated when the command is replayed and will be replaced when any \(r \)-class command is run after the estimation command.

Methods and formulas

`slogit` obtains the maximum likelihood estimates for the stereotype logistic model by using \texttt{ml}; see \texttt{[R] ml}. Each set of regression estimates, one set of \(\beta_j \)'s for each dimension, constitutes one \texttt{ml} model equation. The \(d \times (m - 1) \phi_s \) and the \((m - 1) \theta_s \) are \texttt{ml} ancillary parameters.

Without loss of generality, let the base outcome level be the \(m \)th level of the dependent variable. Define the row vector \(\phi_k = (\phi_1^k, \ldots, \phi_d^k) \) for \(k = 1, \ldots, m - 1 \), and define the \(p \times d \) matrix \(B = (\beta_1, \ldots, \beta_d) \). For observation \(i \), the log odds of outcome level \(k \) relative to level \(m \), \(k = 1, \ldots, m - 1 \) is the index

\[
\ln \left\{ \frac{\Pr(Y_i = k)}{\Pr(Y_i = m)} \right\} = \eta_{ik} = \theta_k - \phi_k^\prime (x_iB)'
\]

The row vector \(\nu_i \) can be interpreted as a latent variable reducing the \(p \)-dimensional vector of covariates to a more interpretable \(d < p \) dimension.

The probability of the \(i \)th observation having outcome level \(k \) is then

\[
\Pr(Y_i = k) = p_{ik} = \begin{cases}
\frac{e^{\eta_{ik}}}{1 + \sum_{j=1}^{m-1} e^{\eta_{ij}}}, & \text{if } k < m \\
1, & \text{if } k = m
\end{cases}
\]

from which the log-likelihood function is computed as

\[
L = \sum_{i=1}^{n} w_i \sum_{k=1}^{m} I_k(y_i) \ln(p_{ik}) \tag{1}
\]

Here \(w_i \) is the weight for observation \(i \) and

\[
I_k(y_i) = \begin{cases}
1, & \text{if observation } y_i \text{ has outcome } k \\
0, & \text{otherwise}
\end{cases}
\]

Numeric variables are normalized for numerical stability during optimization where a new double-precision variable \(\tilde{x}_j \) is created from variable \(x_j \), \(j = 1, \ldots, p \), such that \(\tilde{x}_j = (x_j - \bar{x}_j)/s_j \). This feature is turned off if you specify \texttt{nonormalize}, or if you use the \texttt{from()} option for initial estimates. Normalization is not performed on byte variables, including the indicator variables generated by \texttt{[R] xi}. The linear equality constraints for regression parameters, if specified, must be scaled also. Assume that a constraint is applied to the regression parameter associated with variable \(j \) and dimension \(i \), \(\beta_{ji} \), and the corresponding element of the constraint matrix (see \texttt{[P] makecns}) is divided by \(s_j \).
After convergence, the parameter estimates for variable j and dimension i—$\tilde{\beta}_{ji}$, say—are transformed back to their original scale, $\beta_{ji} = \tilde{\beta}_{ji}/s_j$. For the intercepts, you compute

$$\theta_k = \tilde{\theta}_k + \sum_{i=1}^{d} \phi_{ik} \sum_{j=1}^{p} \tilde{\beta}_{ji} \bar{x}_j / s_j$$

Initial values are computed using estimates obtained using `mlogit` to fit a multinomial logistic regression model. Let the $p \times (m-1)$ matrix \tilde{B} contain the multinomial logistic regression parameters less the $m-1$ intercepts. Each ϕ is initialized with constant values $\min(1/2, 1/d)$, the `initialize(constant)` option (the default), or, with uniform random numbers, the `initialize(random)` option. Constraints are then applied to the starting values so that the structure of the $(m-1) \times d$ matrix Φ is

$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{m-1} \end{pmatrix} = \begin{pmatrix} I_d \\ \tilde{\Phi} \end{pmatrix}$$

where I_d is a $d \times d$ identity matrix. Assume that only the corner constraints are used, but any constraints you place on the scale parameters are also applied to the initial scale estimates, so the structure of Φ will change accordingly. The ϕ parameters are invariant to the scale of the covariates, so initial estimates in $[0, 1]$ are reasonable. The constraints guarantee that the rank of Φ is at least d, so the initial estimates for the stereotype regression parameters are obtained from $B = \tilde{B} \Phi (\Phi')^{-1}$.

One other approach for initial estimates is provided: `initialize(svd)`. It starts with the `mlogit` estimates and computes $\tilde{B}' = U D V'$, where $U_{m-1 \times p}$ and $V_{p \times p}$ are orthonormal matrices and $D_{p \times p}$ is a diagonal matrix containing the singular values of \tilde{B}. The estimates for Φ and B are the first d columns of U and $V D$, respectively (Yee and Hastie 2003).

The score for regression coefficients is

$$u_{i}(\beta_{j}) = \frac{\partial L_{ik}}{\partial \beta_{j}} = x_i \left(\sum_{l=1}^{m-1} \phi_{jl} p_{il} - \phi_{jk} \right)$$

the score for the scale parameters is

$$u_{i}(\phi_{jl}) = \frac{\partial L_{ik}}{\partial \phi_{jl}} = \begin{cases} x_i \beta_{j} (p_{ik} - 1), & \text{if } l = k \\
 x_i \beta_{j} p_{il}, & \text{if } l \neq k \end{cases}$$

for $l = 1, \ldots, m-1$; and the score for the intercepts is

$$u_{i}(\theta_{l}) = \frac{\partial L_{ik}}{\partial \theta_{l}} = \begin{cases} 1 - p_{ik}, & \text{if } l = k \\
 - p_{il}, & \text{if } l \neq k \end{cases}$$

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using `vce(robust)` and `vce(cluster clustvar)`, respectively. See `[P] _robust`, particularly *Maximum likelihood estimators* and *Methods and formulas*.
slogit also supports estimation with survey data. For details on VCEs with survey data, see [SVY] Variance estimation.

References

Also see

[R] slogit postestimation — Postestimation tools for slogit
[R] logistic — Logistic regression, reporting odds ratios
[R] mlogit — Multinomial (polytomous) logistic regression
[R] ologit — Ordered logistic regression
[R] oprobit — Ordered probit regression
[R] roc — Receiver operating characteristic (ROC) analysis
[SVY] svy estimation — Estimation commands for survey data
[U] 20 Estimation and postestimation commands