
simulate — Monte Carlo simulations

Description Quick start Syntax Options
Remarks and examples References Also see

Description
simulate eases the programming task of performing Monte Carlo–type simulations. Typing

. simulate exp list, reps(#): command

runs command for # replications and collects the results in exp list.

command defines the command that performs one simulation. Most Stata commands and user-written

programs can be used with simulate, as long as they follow standard Stata syntax; see [U] 11 Language

syntax. The by prefix may not be part of command.

exp list specifies the expression to be calculated from the execution of command. If no expressions

are given, exp list assumes a default, depending upon whether command changes results in e() or r().
If command changes results in e(), the default is b. If command changes results in r() (but not e()),
the default is all the scalars posted to r(). It is an error not to specify an expression in exp list otherwise.

Quick start
Simple program for use with simulate

Define program myreg to generate data and fit a linear regression

program myreg, eclass
drop _all
set obs 25
generate x = rnormal()
generate y = 3*x + 1 + rnormal()
regress y x

end

Perform simulation

Record coefficients and SEs from 1,000 simulated replications of program myreg
simulate _b _se, reps(1000): myreg

Same as above, and set random-number seed to 5,762 for reproducible results

simulate _b _se, reps(1000) seed(5762): myreg

1

https://www.stata.com/manuals/u11.pdf#u11Languagesyntax
https://www.stata.com/manuals/u11.pdf#u11Languagesyntax

simulate — Monte Carlo simulations 2

Syntax
simulate [exp list], reps(#) [options] : command

options Description

nodots suppress replication dots

dots(#) display dots every # replications

noisily display any output from command

trace trace command

saving(filename, . . .) save results to filename

nolegend suppress table legend

verbose display the full table legend

seed(#) set random-number seed to #

All weight types supported by command are allowed; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist

eexp

elist contains newvar = (exp)
(exp)

eexp is specname

[eqno]specname

specname is b
b[]
se
se[]

eqno is # #

name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and [], which indicate optional arguments.

Options
reps(#) is required—it specifies the number of replications to be performed.

nodots and dots(#) specify whether to display replication dots. By default, one dot character is dis-

played for each successful replication. An “x” is displayed if command returns an error or if any value

in exp list is missing. You can also control whether dots are displayed using set dots; see [R] set.

nodots suppresses display of the replication dots.

dots(#) displays dots every # replications. dots(0) is a synonym for nodots.

noisily requests that any output from command be displayed. This option implies the nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/rset.pdf#rset

simulate — Monte Carlo simulations 3

saving(filename[, suboptions]) creates a Stata data file (.dta file) consisting of (for each statistic in

exp list) a variable containing the replicates.

double specifies that the results for each replication be saved as doubles, meaning 8-byte reals. By
default, they are saved as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified

only in conjunctionwith saving()when command takes a long time for each replication. This will

allow recovery of partial results should some other software crash your computer. See [P] postfile.

replace specifies that filename be overwritten if it exists.

nolegend suppresses display of the table legend. The table legend identifies the rows of the table with

the expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors are

not displayed.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following

command before calling simulate:

. set seed #

Remarks and examples
For an introduction to Monte Carlo methods, see Cameron and Trivedi (2022, chap. 5). White (2010)

provides a command for analyzing results of simulation studies.

Example 1: Simulating basic summary statistics
We have a dataset containing means and variances of 100-observation samples from a lognormal

distribution (as a first step in evaluating, say, the coverage of a 95%, 𝑡-based confidence interval). Then
we perform the experiment 1,000 times.

The following command definition will generate 100 independent observations from a lognormal

distribution and compute the summary statistics for this sample.

program lnsim, rclass
version 19.5 // (or version 19 if you do not have StataNow)
drop _all
set obs 100
generate z = exp(rnormal())
summarize z
return scalar mean = r(mean)
return scalar Var = r(Var)

end

We can save 1,000 simulated means and variances from lnsim by typing

. set seed 1234

. simulate mean=r(mean) var=r(Var), reps(1000) nodots: lnsim
Command: lnsim

mean: r(mean)
var: r(Var)

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/ppostfile.pdf#ppostfile

simulate — Monte Carlo simulations 4

. describe *
Variable Storage Display Value

name type format label Variable label

mean float %9.0g r(mean)
var float %9.0g r(Var)
. summarize

Variable Obs Mean Std. dev. Min Max

mean 1,000 1.630648 .2173062 1.106372 2.612052
var 1,000 4.60798 4.502166 .966087 70.5597

Technical note
Before executing our lnsim simulator, we can verify that it works by executing it interactively.

. set seed 1234

. lnsim
Number of observations (_N) was 0, now 100.

Variable Obs Mean Std. dev. Min Max

z 100 1.534256 1.584568 .0400387 9.818309
. return list
scalars:

r(Var) = 2.510857086217961
r(mean) = 1.53425569280982

Example 2: Simulating a regression model
Consider a more complicated problem. Let’s experiment with fitting 𝑦𝑗 = 𝑎 + 𝑏𝑥𝑗 + 𝑢𝑗 when the

true model has 𝑎 = 1, 𝑏 = 2, 𝑢𝑗 = 𝑧𝑗 + 𝑐𝑥𝑗, and when 𝑧𝑗 is 𝑁(0, 1). We will save the parameter

estimates and standard errors and experiment with varying 𝑐. 𝑥𝑗 will be fixed across experiments but

will originally be generated as 𝑁(0, 1). We begin by interactively making the true data:

. drop _all

. set obs 100
Number of observations (_N) was 0, now 100.
. set seed 54321
. generate x = rnormal()
. generate true_y = 1+2*x
. save truth
file truth.dta saved

Our program is

program hetero1
version 19.5 // (or version 19 if you do not have StataNow)
args c
use truth, clear
generate y = true_y + (rnormal() + ‘c’*x)
regress y x

end

simulate — Monte Carlo simulations 5

Note the use of ‘c’ in our statement for generating y. c is a local macro generated from args c and thus

refers to the first argument supplied to hetero1. If we want 𝑐 = 3 for our experiment, we type

. simulate _b _se, reps(10000): hetero1 3
(output omitted)

Our program hetero1 could, however, be more efficient because it rereads the file truth once every

replication. It would be better if we could read the data just once. In fact, if we read in the data right

before running simulate, we really should not have to reread for each subsequent replication. A faster

version reads

program hetero2
version 19.5 // (or version 19 if you do not have StataNow)
args c
capture drop y
generate y = true_y + (rnormal() + ‘c’*x)
regress y x

end

Requiring that the current dataset has the variables true y and x may become inconvenient. Another

improvement would be to require that the user supply variable names, such as in

program hetero3
version 19.5 // (or version 19 if you do not have StataNow)
args truey x c
capture drop y
generate y = ‘truey’ + (rnormal() + ‘c’*‘x’)
regress y x

end

Thus, we can type

. simulate _b _se, reps(10000): hetero3 true_y x 3
(output omitted)

Example 3: Simulating a ratio of statistics
Now, let’s consider the problem of simulating the ratio of two medians. Suppose that each sample

of size 𝑛𝑖 comes from a normal population with a mean 𝜇𝑖 and standard deviation 𝜎𝑖, where 𝑖 = 1, 2.
We write the program below and save it as a text file called myratio.ado (see [U] 17 Ado-files). Our

program is an rclass command that requires six arguments as input, identified by the local macros n1,
mu1, sigma1, n2, mu2, and sigma2, which correspond to 𝑛1, 𝜇1, 𝜎1, 𝑛2, 𝜇2, and 𝜎2, respectively. With

these arguments, myratio will generate the data for the two samples, use summarize to compute the

two medians and store the ratio of the medians in r(ratio).

program myratio, rclass
version 19.5 // (or version 19 if you do not have StataNow)
args n1 mu1 sigma1 n2 mu2 sigma2
// generate the data
drop _all
local N = ‘n1’+‘n2’
set obs ‘N’
tempvar y
generate ‘y’ = rnormal()
replace ‘y’ = cond(_n<=‘n1’,‘mu1’+‘y’*‘sigma1’,‘mu2’+‘y’*‘sigma2’)
// calculate the medians
tempname m1

https://www.stata.com/manuals/u17.pdf#u17Ado-files

simulate — Monte Carlo simulations 6

summarize ‘y’ if _n<=‘n1’, detail
scalar ‘m1’ = r(p50)
summarize ‘y’ if _n>‘n1’, detail
// store the results
return scalar ratio = ‘m1’ / r(p50)

end

The result of running our simulation is

. set seed 19192

. simulate ratio=r(ratio), reps(1000) nodots: myratio 5 3 1 10 3 2
Command: myratio 5 3 1 10 3 2

ratio: r(ratio)

. summarize
Variable Obs Mean Std. dev. Min Max

ratio 1,000 1.10875 .5219166 .3606606 9.857285

Technical note
Stata lets us do simulations of simulations and simulations of bootstraps. Stata’s bootstrap com-

mand (see [R] bootstrap) works much like simulate, except that it feeds the user-written program a

bootstrap sample. Say that we want to evaluate the bootstrap estimator of the standard error of the median

when applied to lognormally distributed data. We want to perform a simulation, resulting in a dataset of

medians and bootstrap estimated standard errors.

As background, summarize (see [R] summarize) calculates summary statistics, leaving the mean

in r(mean) and the standard deviation in r(sd). summarize with the detail option also calculates

summary statistics, but more of them, and leaves the median in r(p50).

Thus, our plan is to perform simulations by randomly drawing a dataset: we calculate the median of

our random sample, we use bootstrap to obtain a dataset of medians calculated from bootstrap samples

of our random sample, the standard deviation of those medians is our estimate of the standard error, and

the summary statistics are stored in the results of summarize.

Our simulator is

program define bsse, rclass
version 19.5 // (or version 19 if you do not have StataNow)
drop _all
set obs 100
generate x = rnormal()
tempfile bsfile
bootstrap midp=r(p50), rep(100) saving(‘bsfile’): summarize x, detail
use ‘bsfile’, clear
summarize midp
return scalar mean = r(mean)
return scalar sd = r(sd)

end

https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rsummarize.pdf#rsummarize

simulate — Monte Carlo simulations 7

We can obtain final results, running our simulation 1,000 times, by typing

. set seed 48901

. simulate med=r(mean) bs_se=r(sd), reps(1000): bsse
Command: bsse

med: r(mean)
bs_se: r(sd)

Simulations (1,000):10.........20.........30.........40.........50....
>60.........70.........80.........90.........100.........110.........120..
>130.........140.........150.........160.........170.........180........
> .190.........200.........210.........220.........230.........240.........250..
>260.........270.........280.........290.........300.........310........
> .320.........330.........340.........350.........360.........370.........380..
>390.........400.........410.........420.........430.........440........
> .450.........460.........470.........480.........490.........500.........510..
>520.........530.........540.........550.........560.........570........
> .580.........590.........600.........610.........620.........630.........640..
>650.........660.........670.........680.........690.........700........
> .710.........720.........730.........740.........750.........760.........770..
>780.........790.........800.........810.........820.........830........
> .840.........850.........860.........870.........880.........890.........900..
>910.........920.........930.........940.........950.........960........
> .970.........980.........990.........1,000 done
. summarize

Variable Obs Mean Std. dev. Min Max

med 1,000 -.0013359 .1221602 -.3795549 .3656219
bs_se 1,000 .1278773 .0303109 .0614031 .2484805

This is a case where the simulation dots (drawn by default, unless the nodots option is specified) will

give us an idea of how long this simulation will take to finish as it runs.

References
Cameron, A. C., and P. K. Trivedi. 2022.Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104–124.

Taylor, M. A. 2018. Simulating the central limit theorem. Stata Journal 18: 345–356.

White, I. R. 2010. simsum: Analyses of simulation studies including Monte Carlo error. Stata Journal 10: 369–385.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] permute — Permutation tests

[R] set rngstream — Specify the stream for the stream random-number generator

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata-press.com/books/microeconometrics-stata
https://www.stata-journal.com/article.html?article=st0186
https://www.stata-journal.com/article.html?article=st0525
https://www.stata-journal.com/article.html?article=st0200
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/rpermute.pdf#rpermute
https://www.stata.com/manuals/rsetrngstream.pdf#rsetrngstream
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

