\textbf{Description}

\texttt{signrank} tests the equality of matched pairs of observations by using the Wilcoxon matched-pairs signed-ranks test (Wilcoxon 1945). The null hypothesis is that both distributions are the same.

\texttt{signtest} also tests the equality of matched pairs of observations (Arbuthnott [1710], but better explained by Snedecor and Cochran [1989]) by calculating the differences between \texttt{varname} and the expression. The null hypothesis is that the median of the differences is zero; no further assumptions are made about the distributions. This, in turn, is equivalent to the hypothesis that the true proportion of positive (negative) signs is one-half.

For equality tests on unmatched data, see \texttt{[R] ranksum}.

\textbf{Quick start}

Wilcoxon matched-pairs signed-ranks test for \texttt{v1} and \texttt{v2}

\begin{verbatim}
 signrank v1 = v2
\end{verbatim}

As above, but conduct test separately for groups defined by levels of \texttt{catvar}

\begin{verbatim}
 by catvar: signrank v1 = v2
\end{verbatim}

Test that the median of differences between matched pairs \texttt{v1} and \texttt{v2} is 0

\begin{verbatim}
 signtest v1 = v2
\end{verbatim}

\textbf{Menu}

\texttt{signrank}

Statistics $>$ Nonparametric analysis $>$ Tests of hypotheses $>$ Wilcoxon matched-pairs signed-rank test

\texttt{signtest}

Statistics $>$ Nonparametric analysis $>$ Tests of hypotheses $>$ Test equality of matched pairs
Syntax

Wilcoxon matched-pairs signed-ranks test

\[\text{signrank } \text{varname} = \text{exp} \ [\text{if}] \ [\text{in}] \]

Sign test of matched pairs

\[\text{signtest } \text{varname} = \text{exp} \ [\text{if}] \ [\text{in}] \]

by is allowed with signrank and signtest; see [D] by.

Remarks and examples

Example 1: signrank

We are testing the effectiveness of a new fuel additive. We run an experiment with 12 cars. We first run each car without the fuel treatment and measure the mileage. We then add the fuel treatment and repeat the experiment. The results of the experiment are

<table>
<thead>
<tr>
<th>Without treatment</th>
<th>With treatment</th>
<th>Without treatment</th>
<th>With treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>24</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>23</td>
</tr>
</tbody>
</table>

We create two variables called mpg1 and mpg2, representing mileage without and with the treatment, respectively. We can test the null hypothesis that the treatment had no effect by typing

```
use http://www.stata-press.com/data/r15/fuel
signrank mpg1=mpg2
```

Wilcoxon signed-rank test

<table>
<thead>
<tr>
<th>sign</th>
<th>obs</th>
<th>sum ranks</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>3</td>
<td>13.5</td>
<td>38.5</td>
</tr>
<tr>
<td>negative</td>
<td>8</td>
<td>63.5</td>
<td>38.5</td>
</tr>
<tr>
<td>zero</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

all | 12 | 78 | 78 |

unadjusted variance 162.50
adjustment for ties -1.62
adjustment for zeros -0.25

adjusted variance 160.62

Ho: mpg1 = mpg2

\[z = -1.973 \]

\[\text{Prob } > |z| = 0.0485 \]

The output indicates that we can reject the null hypothesis at any level above 4.85%.
Example 2: signtest

SIGNTEST tests that the median of the differences is zero, making no further assumptions, whereas SIGNRANK assumed that the distributions are equal as well. Using the data above, we type

```
  . signtest mpg1=mpg2
```

Sign test

<table>
<thead>
<tr>
<th>sign</th>
<th>observed</th>
<th>expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>3</td>
<td>5.5</td>
</tr>
<tr>
<td>negative</td>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td>zero</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

One-sided tests:
- Ho: median of mpg1 - mpg2 = 0 vs. Ha: median of mpg1 - mpg2 > 0
 - $Pr(#positive >= 3) = \text{Binomial}(n = 11, x >= 3, p = 0.5) = 0.9673$
- Ho: median of mpg1 - mpg2 = 0 vs. Ha: median of mpg1 - mpg2 < 0
 - $Pr(#negative >= 8) = \text{Binomial}(n = 11, x >= 8, p = 0.5) = 0.1133$

Two-sided test:
- Ho: median of mpg1 - mpg2 = 0 vs. Ha: median of mpg1 - mpg2 != 0
 - $Pr(#positive >= 8 \text{ or } #negative >= 8) = \min(1, 2\ast\text{Binomial}(n = 11, x >= 8, p = 0.5)) = 0.2266$

The summary table indicates that there were three comparisons for which mpg1 exceeded mpg2, eight comparisons for which mpg2 exceeded mpg1, and one comparison for which they were the same.

The output below the summary table is based on the binomial distribution. The significance of the one-sided test, where the alternative hypothesis is that the median of mpg2 - mpg1 is greater than zero, is 0.1133. The significance of the two-sided test, where the alternative hypothesis is simply that the median of the differences is different from zero, is $0.2266 = 2 \times 0.1133$.

Stored results

SIGNRANK stores the following in r():

Scalars
- r(N_neg) number of negative comparisons
- r(N_pos) number of positive comparisons
- r(N_tie) number of tied comparisons
- r(sum_pos) sum of the positive ranks
- r(sum_neg) sum of the negative ranks
- r(z) z statistic
- r(Var_a) adjusted variance

SIGNTEST stores the following in r():

Scalars
- r(N_neg) number of negative comparisons
- r(N_pos) number of positive comparisons
- r(N_tie) number of tied comparisons
- r(p_neg) one-sided probability of negative comparison
- r(p_pos) one-sided probability of positive comparison
- r(p_2) two-sided probability
Methods and formulas

For a practical introduction to these techniques with an emphasis on examples rather than theory, see Bland (2015) or Sprent and Smeeton (2007). For a summary of these tests, see Snedecor and Cochran (1989).

Methods and formulas are presented under the following headings:

- signrank
- signtest

signrank

Both the sign test and Wilcoxon signed-rank tests test the null hypothesis that the distribution of a random variable $D = \text{varname} - \text{exp}$ has median zero. The sign test makes no additional assumptions, but the Wilcoxon signed-rank test makes the additional assumption that the distribution of D is symmetric. If $D = X_1 - X_2$, where X_1 and X_2 have the same distribution, then it follows that the distribution of D is symmetric about zero. Thus the Wilcoxon signed-rank test is often described as a test of the hypothesis that two distributions are the same, that is, $X_1 \sim X_2$.

Let d_j denote the difference for any matched pair of observations,

$$d_j = x_{1j} - x_{2j} = \text{varname} - \text{exp}$$

for $j = 1, 2, \ldots, n$.

Rank the absolute values of the differences, $|d_j|$, and assign any tied values the average rank. Consider the signs of d_j, and let

$$r_j = \text{sign}(d_j) \text{ rank}(|d_j|)$$

be the signed ranks. The test statistic is

$$T_{obs} = \sum_{j=1}^{n} r_j = (\text{sum of ranks for + signs}) - (\text{sum of ranks for - signs})$$

The null hypothesis is that the distribution of d_j is symmetric about 0. Hence the likelihood is unchanged if we flip signs on the d_j, and thus the randomization datasets are the 2^n possible sign changes for the d_j. Thus the randomization distribution of our test statistic T can be computed by considering all the 2^n possible values of

$$T = \sum_{j=1}^{n} S_j r_j$$

where the r_j are the observed signed ranks (considered fixed) and S_j is either +1 or -1.

With this distribution, the mean and variance of T are given by

$$E(T) = 0 \quad \text{and} \quad \text{Var}_{adj}(T) = \sum_{j=1}^{n} r_j^2$$

The test statistic for the Wilcoxon signed-rank test is often expressed (equivalently) as the sum of the positive signed-ranks, T_+, where
\[E(T_+) = \frac{n(n + 1)}{4} \quad \text{and} \quad \text{Var}_{\text{adj}}(T_+) = \frac{1}{4} \sum_{j=1}^{n} r_j^2 \]

Zeros and ties do not affect the theory above, and the exact variance is still given by the above formula for \(\text{Var}_{\text{adj}}(T_+) \). When \(d_j = 0 \) is observed, \(d_j \) will always be zero in each of the randomization datasets (using \(\text{sign}(0) = 0 \)). When there are ties, you can assign averaged ranks for each group of ties and then treat them the same as the other ranks.

The “unadjusted variance” reported by \texttt{signrank} is the variance that the randomization distribution would have had if there had been no ties or zeros:

\[\text{Var}_{\text{unadj}}(T_+) = \frac{1}{4} \sum_{j=1}^{n} j^2 = \frac{n(n + 1)(2n + 1)}{24} \]

The adjustment for zeros is the change in the variance when the ranks for the zeros are signed to make \(r_j = 0 \),

\[\Delta \text{Var}_{\text{zero adj}}(T_+) = -\frac{1}{4} \sum_{j=1}^{n_0} j^2 = -\frac{n_0(n_0 + 1)(2n_0 + 1)}{24} \]

where \(n_0 \) is the number of zeros. The adjustment for ties is the change in the variance when the ranks (for nonzero observations) are replaced by averaged ranks:

\[\Delta \text{Var}_{\text{ties adj}}(T_+) = \text{Var}_{\text{adj}}(T_+) - \text{Var}_{\text{unadj}}(T_+) - \Delta \text{Var}_{\text{zero adj}}(T_+) \]

A normal approximation is used to calculate

\[z = \frac{T_+ - E(T_+)}{\sqrt{\text{Var}_{\text{adj}}(T_+)}} \]

\texttt{signtest}

The test statistic for the sign test is the number \(n_+ \) of differences

\[d_j = x_{1j} - x_{2j} = \text{varname} - \text{exp} \]

greater than zero. Assuming that the probability of a difference being equal to zero is exactly zero, then, under the null hypothesis, \(n_+ \sim \text{binomial}(n, p = 1/2) \), where \(n \) is the total number of observations.

But what if some differences are zero? This question has a ready answer if you view the test from the perspective of Fisher’s Principle of Randomization (Fisher 1935). Fisher’s idea (stated in a modern way) was to look at a family of transformations of the observed data such that the a priori likelihood (under the null hypothesis) of the transformed data is the same as the likelihood of the observed data. The distribution of the test statistic is then produced by calculating its value for each of the transformed “randomization” datasets, assuming that each dataset is equally likely.

For the sign test, the “data” are simply the set of signs of the differences. Under the null hypothesis of the sign test, the probability that \(d_j \) is less than zero is equal to the probability that \(d_j \) is greater than zero. Thus you can transform the observed signs by flipping any number of them, and the set of signs will have the same likelihood. The \(2^n \) possible sign changes form the family of randomization datasets. If you have no zeros, this procedure again leads to \(n_+ \sim \text{binomial}(n, p = 1/2) \).
If you do have zeros, changing their signs leaves them as zeros. So, if you observe \(n_0 \) zeros, each of the \(2^n \) sign-change datasets will also have \(n_0 \) zeros. Hence, the values of \(n_+ \) calculated over the sign-change datasets range from 0 to \(n - n_0 \), and the “randomization” distribution of \(n_+ \) is binomial\((n - n_0, p = 1/2) \).

The work of Arbuthnott (1710) and later eighteenth-century contributions is discussed by Hald (2003, chap. 17).

Frank Wilcoxon (1892–1965) was born in Ireland to American parents. After working in various occupations (including merchant seaman, oil-well pump attendant, and tree surgeon), he settled in chemistry, gaining degrees from Rutgers and Cornell and employment from various companies. Working mainly on the development of fungicides and insecticides, Wilcoxon became interested in statistics in 1925 and made several key contributions to nonparametric methods. After retiring from industry, he taught statistics at Florida State until his death.

References

Also see

[R] *ranksum* — Equality tests on unmatched data

[R] *ttest* — t tests (mean-comparison tests)