
set rngstream — Specify the stream for the stream random-number generator

Description Syntax Remarks and examples References Also see

Description
set rngstream specifies the subsequence, known as a stream, from which Stata’s stream random-

number generator should draw random numbers. When performing a bootstrap estimation or a Monte

Carlo simulation in parallel on multiple machines, you should set the same seed on all machines but set

a different stream on each machine. This will ensure that random numbers drawn on different machines

are independent. We strongly recommend that you set the seed and the stream only once in each Stata

session.

Syntax
set rngstream #

is any integer between 1 and 32,767.

Remarks and examples
Stata’s stream random-number generator, the stream 64-bit Mersenne Twister (mt64s), allows sepa-

rate instances of Stata to simultaneously draw independent random numbers. This feature enables you

to use bootstrap and to run Monte Carlo simulations in parallel on multiple machines.

What we call random numbers are elements in a sequence of deterministic numbers that appear to

be random. A seed specifies a starting value in this sequence. In figure 1, each tick is an element in a

random sequence and setting the seed to 12345 means that the tick identified by the arrow below is the

first number drawn.

Figure 1. Seed specifies first number in random sequence

A stream random-number generator partitions a sequence of random numbers into nonoverlapping

subsequences known as streams. The random numbers in each stream are independent of those in other

streams because they come from distinct nonoverlapping subsets of the original sequence.

1

https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap

set rngstream — Specify the stream for the stream random-number generator 2

Figure 2 depicts a stream version of the generator depicted in figure 1. The stream version also starts

at the place implied by seed 12345, but it additionally partitions the random numbers into 4 streams and

a set of unused numbers.

Figure 2. A stream version of figure 1 generator

In contrast to nonstream random-number generators, setting the seed for a random-number generator

controls not just where the sequence starts but also how the sequence is partitioned. Compare figure 2

with figure 3 for an illustration.

Figure 3. Changing the seed changes the streams

Seed 123456 specifies the first random number, and the streams of random numbers in figure 3 differ

from those in figure 2.

The mt64s generator is a stream version of Stata’s default generator, the 64-bit Mersenne Twister

implemented in mt64; see Matsumoto and Nishimura (1998) and Random-number generators in Stata

in [R] set rng for more details. Our implementation of the method discussed in Haramoto et al. (2008)

partitions the mt64 sequence into 32,767 streams, each containing 2128 random numbers. The remaining

numbers are unused. The mt64s seed determines the starting point of every stream in the Mersenne

Twister sequence.

Stream 1 of mt64s has the same starting point as the mt64 generator. That is, given the same seed,

mt64s with rngstream set to 1 will generate the same random numbers as mt64.

The mt64s generator is designed to simultaneously draw independent random numbers on different

machines. To draw from different streams that guarantee independence, use the same seed and change

the stream. For example, to draw some uniform(0,1) random numbers from stream 10 of the mt64s
generator under seed 123, type

. set rng mt64s

. set rngstream 10

. set seed 123

. generate u = runiform()

If we wanted to simultaneously draw some uniform(0,1) random numbers on another machine from

stream 11 of the mt64s generator, we would type

. set rng mt64s

. set rngstream 11

. set seed 123

. generate u = runiform()

Again, each seed creates a different partition of the mt64 sequence into nonoverlapping subsets.

We strongly recommend that you set the stream and the seed once in each Stata session and draw

numbers only from this stream.

https://www.stata.com/manuals/rsetrng.pdf#rsetrngRemarksandexamplesRandom-numbergeneratorsinStata
https://www.stata.com/manuals/rsetrng.pdf#rsetrng

set rngstream — Specify the stream for the stream random-number generator 3

c(rngstream) returns the current stream number. c(rngseed mt64s) returns the last seed that was

set for mt64s. See [P] creturn for more details. See [R] set seed for details about storing and restoring

the current position in the random sequence.

As with the single-stream generators, use local state = c(rngstate) to store the current position

in the current random stream; see [R] set seed for details. The mt64s state encodes the seed used in

addition to the stream number, because the seed determines the position of every random number in

every stream. Unlike the case of single-stream generators, restoring the state also restores the seed. For

example, suppose you save an mt64s state with local state = c(rngstate) change the seed and the

stream, and later restore that state with set rngstate ‘state’. The current mt64s seed is changed

to the one encoded in state. In addition to changing the current stream to the one encoded in state,
the current mt64s seed is changed to the one encoded in state. This behavior ensures any subsequent
stream changes draw from nonoverlapping subsets.

set rngstream also sets the random-number generator to mt64s.

Example 1: Using stream random numbers to parallelize a bootstrap
We illustrate how to simultaneously perform 100 bootstrap replications on machine 1 and 100 boot-

strap replications on machine 2. We focus on the mechanics of distributing the draws over machines

using stream random numbers; see [R] bootstrap for an introduction to the bootstrap.

On machine 1, we type

. clear all

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. set rng mt64s
. set rngstream 1
. set seed 12345
. bootstrap, reps(100) saving(machine1, replace): regress mpg weight gear foreign
(running regress on estimation sample)
(file machine1.dta not found)
Bootstrap replications (100):10.........20.........30.........40......
> ...50.........60.........70.........80.........90.........100 done
Linear regression Number of obs = 74

Replications = 100
Wald chi2(3) = 191.66
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005462 -11.24 0.000 -.0072095 -.0050685
gear_ratio 1.457113 1.271301 1.15 0.252 -1.03459 3.948817

foreign -2.221682 1.090115 -2.04 0.042 -4.358267 -.0850957
_cons 36.10135 4.720623 7.65 0.000 26.8491 45.3536

https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/rsetrng.pdf#rsetrng
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap

set rngstream — Specify the stream for the stream random-number generator 4

On machine 2, we type

. clear all

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. set rng mt64s
. set rngstream 2
. set seed 12345
. bootstrap, reps(100) saving(machine2, replace): regress mpg weight gear foreign
(running regress on estimation sample)
(file machine2.dta not found)
Bootstrap replications (100):10.........20.........30.........40......
> ...50.........60.........70.........80.........90.........100 done
Linear regression Number of obs = 74

Replications = 100
Wald chi2(3) = 121.48
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005909 -10.39 0.000 -.0072972 -.0049809
gear_ratio 1.457113 1.267439 1.15 0.250 -1.027022 3.941249

foreign -2.221682 1.253503 -1.77 0.076 -4.678502 .2351393
_cons 36.10135 4.419797 8.17 0.000 27.43871 44.764

After copying machine2.dta from machine 2 to the working directory on machine 1, we produce

the combined results by typing

. clear all

. use machine1
(bootstrap: regress)
. append using machine2
. bstat
Bootstrap results Number of obs = 74

Replications = 200
Command: regress mpg weight gear foreign

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

weight -.006139 .0005678 -10.81 0.000 -.0072519 -.0050262
gear_ratio 1.457113 1.266586 1.15 0.250 -1.02535 3.939577

foreign -2.221682 1.187847 -1.87 0.061 -4.549819 .1064562
_cons 36.10135 4.562644 7.91 0.000 27.15873 45.04397

set rngstream — Specify the stream for the stream random-number generator 5

We used regress in this example, but the divide-and-conquer strategy reduces computation time for

any command that works with bootstrap. In fact, problems that take longer produce more noticeable
speed improvements. For computationally intensive problems, the two-machine time will be about one-

half the one-machine time. Using distinct streams on many different machines can dramatically reduce

the time required for computationally intensive problems.

Example 2: Using stream random numbers to parallelize a Monte Carlo simulation
Wewant to simultaneously perform 100 Monte Carlo replications on machine 3 and 100 Monte Carlo

replications on machine 4. Again, we focus entirely on the mechanics of distributing the draws over

machines. See Drukker (2015) for an introduction to Monte Carlo simulations using Stata.

As discussed in [R] simulate, the simulate command uses an ado-file that draws from the popu-

lation of interest; it then computes and returns the estimates. Our program chi2sim draws from a 𝜒2

distribution with one degree of freedom.

program define chi2sim, rclass
version 19.5 // (or version 19 if you do not have StataNow)
drop _all
set obs 200
tempvar z
generate ‘z’ = rchi2(1)
summarize ‘z’
return scalar mean = r(mean)
return scalar Var = r(Var)

end

On machine 3, we type

. set rng mt64s

. set rngstream 3

. set seed 12345

. simulate mean=r(mean) var=r(Var), reps(500) saving(machine3, replace): chi2sim
Command: chi2sim

mean: r(mean)
var: r(Var)

(file machine3.dta not found)
Simulations (500):10.........20.........30.........40.........50......
> ...60.........70.........80.........90.........100.........110.........120....
>130.........140.........150.........160.........170.........180.........1
> 90.........200.........210.........220.........230.........240.........250....
>260.........270.........280.........290.........300.........310.........3
> 20.........330.........340.........350.........360.........370.........380....
>390.........400.........410.........420.........430.........440.........4
> 50.........460.........470.........480.........490.........500 done

https://www.stata.com/manuals/rsimulate.pdf#rsimulate

set rngstream — Specify the stream for the stream random-number generator 6

On machine 4, we run a do-file that performs

. set rng mt64s

. set rngstream 4

. set seed 12345

. simulate mean=r(mean) var=r(Var), reps(500) saving(machine4, replace): chi2sim
Command: chi2sim

mean: r(mean)
var: r(Var)

(file machine4.dta not found)
Simulations (500):10.........20.........30.........40.........50......
> ...60.........70.........80.........90.........100.........110.........120....
>130.........140.........150.........160.........170.........180.........1
> 90.........200.........210.........220.........230.........240.........250....
>260.........270.........280.........290.........300.........310.........3
> 20.........330.........340.........350.........360.........370.........380....
>390.........400.........410.........420.........430.........440.........4
> 50.........460.........470.........480.........490.........500 done

After copying machine4.dta from machine 4 to the working directory on machine 3, we combine

the results by typing

. clear all

. use machine3
(simulate: chi2sim)
. append using machine4
. summarize mean var

Variable Obs Mean Std. dev. Min Max

mean 1,000 1.00296 .1011507 .7098877 1.330305
var 1,000 2.01955 .5194171 .8931134 4.381884

As in example 1, more machines enable further parallelization.

Technical note
While mt64s has been made robust to switching between streams within a Stata session, convoluted

combinations of set rngstream # and set seed # can lead to drawing the same random numbers, just

as it can in the case of single-stream generators. We strongly recommend that you do not switch between

streams within a session.

https://www.stata.com/manuals/rsetrngstream.pdf#rsetrngstreamRemarksandexamplesex1

set rngstream — Specify the stream for the stream random-number generator 7

Example 3: Position within a stream is stored
This example illustrates that the sequence picks up where it left off when the stream is switched, and it

illustrates that clear rngstream resets all streams to their beginning positions. These features facilitate

advanced programming techniques, and we recommend against using this feature in standard use.

. clear all

. set obs 10
Number of observations (_N) was 0, now 10.
. set rng mt64s
. set rngstream 5
. set seed 12345
. generate x = runiform() in 1/5
(5 missing values generated)
. set rngstream 6
. generate y = runiform()
. set rngstream 5
. replace x = runiform() in 6/10
(5 real changes made)
. clear rngstream
. set rngstream 5
. generate z = runiform()
. list

x y z

1. .5095264 .8838338 .5095264
2. .9766202 .7677673 .9766202
3. .3933811 .5665985 .3933811
4. .950057 .3141659 .950057
5. .5862163 .6635106 .5862163

6. .4837167 .6781911 .4837167
7. .1752382 .7169843 .1752382
8. .2302023 .7554966 .2302023
9. .4927879 .8685812 .4927879

10. .9114158 .5634732 .9114158

After setting the rngstream to 5 and setting the seed, we put the first 5 draws from stream 5 into

observations 1–5 of x, switch to rngstream 6, put the first 10 random draws from stream 6 into y, return
to rngstream 5, and put the next 5 draws from stream 5 into observations 6–10 of x. Then we use clear
rngstream to initialize each rngstream at its initial position for seed 12345 and put the first 10 draws

from stream 5 into z.

That the random numbers in x match those in z illustrates that the sequence picks up where it left off

when the stream is switched and the seed has not been changed.

set rngstream — Specify the stream for the stream random-number generator 8

References
Drukker, D. M. 2015. Monte Carlo simulations using Stata. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2015/10/06/monte-carlo-simulations-using-stata/.

Haramoto, H., M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. 2008. Efficient jump ahead for 𝐹2-linear

random number generators. INFORMS Journal on Computing 20: 385–390. https://doi.org/10.1287/ijoc.1070.0251.

Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-

random number generator.ACM Transactions on Modeling and Computer Simulation 8: 3–30. https://doi.org/10.1145/

272991.272995.

Taylor, M. A. 2018. Simulating the central limit theorem. Stata Journal 18: 345–356.

Vega Yon, G. G., and B. Quistorff. 2019. parallel: A command for parallel computing. Stata Journal 19: 667–684.

Also see
[R] set — Overview of system parameters

[R] set rng — Set which random-number generator (RNG) to use

[R] set seed — Specify random-number seed and state

[D] clear — Clear memory

[FN] Random-number functions

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
https://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
https://doi.org/10.1287/ijoc.1070.0251
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://www.stata-journal.com/article.html?article=st0525
https://doi.org/10.1177/1536867X19874242
https://www.stata.com/manuals/rset.pdf#rset
https://www.stata.com/manuals/rsetrng.pdf#rsetrng
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/dclear.pdf#dclear
https://www.stata.com/manuals/fnrandom-numberfunctions.pdf#fnRandom-numberfunctions
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

