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Description
The rocreg command is used to perform receiver operating characteristic (ROC) analyses with rating

and discrete classification data under the presence of covariates.

The two variables refvar and classvarmust be numeric. The reference variable indicates the true state

of the observation—such as diseased and nondiseased or normal and abnormal—and must be coded as

0 and 1. The refvar coded as 0 can also be called the control population, while the refvar coded as 1
comprises the case population. The rating or outcome of the diagnostic test or test modality is recorded

in classvar, which must be ordinal, with higher values indicating higher risk.

rocreg can fit three models: a nonparametric model, a parametric probit model that uses the bootstrap
for inference, and a parametric probit model fit using maximum likelihood.

Quick start
Nonparametric estimation with bootstrap resampling

Area under the ROC curve for test classifier v1 and true state true using seed 20547
rocreg true v1, bseed(20547)

Add v2 as an additional classifier

rocreg true v1 v2, bseed(20547)

Same as above, but estimate ROC value for a false-positive rate of 0.7

rocreg true v1 v2, bseed(20547) roc(.7)

Covariate stratification of controls by categorical variable a using seed 121819
rocreg true v1 v2, bseed(121819) ctrlcov(a)

Linear control covariate adjustment with binary variable b and continuous variable x
rocreg true v1 v2, bseed(121819) ctrlcov(b x) ctrlmodel(linear)
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Parametric estimation

Area under the ROC curve for test classifier v1 and true state true by estimating equations using seed

200512
rocreg true v1, probit bseed(200512)

And save results to myfile.dta for use by rocregplot
rocreg true v1, probit bseed(200512) bsave(myfile)

Add v2 as a classifier and x as a control covariate in a linear control covariate-adjustment model

rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ctrlmodel(linear)

Also treat x as a ROC covariate

rocreg true v1 v2, probit bseed(200512) ctrlcov(x) ///
ctrlmodel(linear) roccov(x)

Estimate AUC by maximum likelihood instead of bootstrap resampling

rocreg true v1, probit ml

Menu
Statistics > Epidemiology and related > ROC analysis > ROC regression models
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Syntax
Perform nonparametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar [ classvars ] [ if ] [ in ] [ , np options ]

Perform parametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar [ classvars ] [ if ] [ in ], probit [ probit options ]

Perform parametric analysis of ROC curve under covariates, using maximum likelihood

rocreg refvar classvar [ classvars ] [ if ] [ in ] [weight ] , probit ml

[ probit ml options ]

np options Description

Model

auc estimate total area under the ROC curve; the default

roc(numlist) estimate ROC for given false-positive rates

invroc(numlist) estimate false-positive rates for given ROC values

pauc(numlist) estimate partial area under the ROC curve (pAUC) up to each
false-positive rate

cluster(varname) variable identifying resampling clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)
pvc(empirical | normal) use empirical or normal distribution percentile value estimates;

default is pvc(empirical)
tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates

bseed(#) random-number seed for bootstrap

breps(#) number of bootstrap replications; default is breps(1000)
bootcc perform case–control (stratified on refvar) sampling rather than

cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling

nodots suppress bootstrap replication dots

Reporting

level(#) set confidence level; default is level(95)

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rrocreg.pdf#rrocregSyntaxnp_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rrocreg.pdf#rrocregSyntaxprobit_options
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rrocreg.pdf#rrocregSyntaxweight
https://www.stata.com/manuals/rrocreg.pdf#rrocregSyntaxprobit_ml_options
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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probit options Description

Model
∗ probit fit the probit model

roccov(varlist) covariates affecting ROC curve

fprpts(#) number of false-positive rate points to use in fitting ROC

curve; default is fprpts(10)
ctrlfprall fit ROC curve at each false-positive rate in control population

cluster(varname) variable identifying resampling clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)
pvc(empirical | normal) use empirical or normal distribution percentile value estimates;

default is pvc(empirical)
tiecorrected adjust for tied observations; not allowed with pvc(normal)

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates

bseed(#) random-number seed for bootstrap

breps(#) number of bootstrap replications; default is breps(1000)
bootcc perform case–control (stratified on refvar) sampling rather than

cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling

nodots suppress bootstrap replication dots

bsave(filename, ...) save bootstrap replicates from parametric estimation

bfile(filename) use bootstrap replicates dataset for estimation replay

Reporting

level(#) set confidence level; default is level(95)

∗probit is required.

probit ml options Description

Model
∗ probit fit the probit model
∗ ml fit the probit model by maximum likelihood estimation

roccov(varlist) covariates affecting ROC curve

cluster(varname) variable identifying clusters

ctrlcov(varlist) adjust control distribution for covariates in varlist

Reporting

level(#) set confidence level; default is level(95)
display options control column formats, line width, and display of omitted variables

Maximization

maximize options control the maximization process; seldom used

∗probit and ml are required.

fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.

collect is allowed. bayesboot is allowed only with maximum likelihood estimation. See [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rrocreg.pdf#rrocregOptionsdisplay_options
https://www.stata.com/manuals/rrocreg.pdf#rrocregOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options
Options are presented under the following headings:

Options for nonparametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using bootstrap
Options for parametric ROC estimation, using maximum likelihood

Options for nonparametric ROC estimation, using bootstrap

� � �
Model �

auc estimates the total area under the ROC curve. This is the default summary statistic.

roc(numlist) estimates the ROC corresponding to each of the false-positive rates in numlist. The values

of numlist must be in the range (0,1).

invroc(numlist) estimates the false-positive rates corresponding to each of the ROC values in numlist.

The values of numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.

The values of numlist must in the range (0,1].

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how tomodel the control population of classifiers on ctrlcov().
When ctrlmodel(linear) is specified, linear regression is used. The default is ctrlmodel(strata);
that is, the control population of classifiers is stratified on the control variables.

pvc(empirical | normal) determines how the percentile values of the control population will be calcu-

lated. When pvc(normal) is specified, the standard normal cumulative distribution function (CDF)

is used for calculation. Specifying pvc(empirical) will use the empirical CDFs of the control pop-

ulation classifiers for calculation. The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the proba-

bility that the classifier equals that value under the control population is added to the percentile value.

tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

� � �
Reporting �

level(#); see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Options for parametric ROC estimation, using bootstrap

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

roccov(varlist) specifies the covariates that will affect the ROC curve.

fprpts(#) sets the number of false-positive rate points to use in modeling the ROC curve. These points

form an equispaced grid on (0,1). The default is fprpts(10).

ctrlfprall models the ROC curve at each false-positive rate in the control population.

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on

ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is

ctrlmodel(strata); that is, the control population of classifiers is stratified on the control vari-

ables.

pvc(empirical | normal) determines how the percentile values of the control population will be calcu-

lated. When pvc(normal) is specified, the standard normal CDF is used for calculation. Specifying

pvc(empirical) will use the empirical CDFs of the control population classifiers for calculation.

The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the proba-

bility that the classifier equals that value under the control population is added to the percentile value.

tiecorrected is not allowed with pvc(normal).

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replication dots.

bsave(filename, ...) saves bootstrap replicates from parametric estimation in the given filename with

specified options (that is, replace). bsave() is only allowed with parametric analysis using boot-

strap.

bfile(filename) specifies to use the bootstrap replicates dataset for estimation replay. bfile() is only

allowed with parametric analysis using bootstrap.

� � �
Reporting �

level(#); see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Options for parametric ROC estimation, using maximum likelihood

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

ml fits the probit model by maximum likelihood estimation. This option is required and must be specified

with probit.

roccov(varlist) specifies the covariates that will affect the ROC curve.

cluster(varname) specifies the variable used for clustering.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noomitted, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch;
see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used. The technique(bhhh) option is not allowed.

Remarks and examples
Remarks are presented under the following headings:

Introduction
ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood

Introduction
Receiver operating characteristic (ROC) analysis provides a quantitative measure of the accuracy of

diagnostic tests to discriminate between two states or conditions. These conditions may be referred

to as normal and abnormal, nondiseased and diseased, or control and case. We will use these terms

interchangeably. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly

classify known control and case subjects.

The analysis uses the ROC curve, a graph of the sensitivity versus 1 − specificity of the diagnostic

test. The sensitivity is the fraction of positive cases that are correctly classified by the diagnostic test,

whereas the specificity is the fraction of negative cases that are correctly classified. Thus, the sensitivity

is the true-positive rate, and the specificity is the true-negative rate. We also call 1 − specificity the

false-positive rate.

These rates are functions of the possible outcomes of the diagnostic test. At each outcome, a decision

will be made by the user of the diagnostic test to classify the tested subject as either normal or abnormal.

The true-positive and false-positive rates measure the probability of correct classification or incorrect

classification of the subject as abnormal. Given the classification role of the diagnostic test, we will refer

to it as the classifier.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
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Using this basic definition of the ROC curve, Pepe (2000) and Pepe (2003) describe how ROC analysis

can be performed as a two-stage process. In the first stage, the control distribution of the classifier is

estimated. The specificity is then determined as the percentiles of the classifier values calculated based

on the control population. The false-positive rates are calculated as 1 − specificity. In the second stage,

the ROC curve is estimated as the cumulative distribution of the case population’s “false-positive” rates,

also known as the survival function under the case population of the previously calculated percentiles.

We use the terms ROC value and true-positive value interchangeably.

This formulation of ROC curve analysis provides simple, nonparametric estimates of several ROC curve

summary parameters: area under the ROC curve, partial area under the ROC curve, ROC value for a given

false-positive rate, and false-positive rate (also known as invROC) for a given ROC value. In the next

section, we will show how to use rocreg to compute these estimates with bootstrap inference. There

we will also show how rocreg complements the other nonparametric Stata ROC commands roctab and

roccomp.

Other factors beyond condition status and the diagnostic test may affect both stages of ROC analysis.

For example, a test center may affect the control distribution of the diagnostic test. Disease severity may

affect the distribution of the standardized diagnostic test under the case population. Our analysis of the

ROC curve in these situations will be more accurate if we take these covariates into account.

In a nonparametric ROC analysis, covariates may only affect the first stage of estimation; that is, they

may be used to adjust the control distribution of the classifier. In a parametric ROC analysis, it is assumed

that ROC follows a normal distribution, and thus covariates may enter the model at both stages; they may

be used to adjust the control distribution and to model ROC as a function of these covariates and the

false-positive rate. In parametric models, both sets of covariates need not be distinct but, in fact, they are

often the same.

To model covariate effects on the first stage of ROC analysis, Janes and Pepe (2009) propose a

covariate-adjusted ROC curve. We will demonstrate the covariate adjustment capabilities of rocreg
in Covariate-adjusted ROC curves.

To account for covariate effects at the second stage, we assume a parametric model. Particularly, the

ROC curve is a generalized linear model of the covariates. We will thus have a separate ROC curve for

each combination of the relevant covariates. In Parametric ROC curves: Estimating equations, we show

how to fit the model with estimating equations and bootstrap inference using rocreg. This method,

documented as the “pdf” approach in Alonzo and Pepe (2002), works well with weak assumptions about

the control distribution.

Also in Parametric ROC curves: Estimating equations, we show how to fit a constant-only parametric

model (involving no covariates) of the ROC curve with weak assumptions about the control distribution.

The constant-only model capabilities of rocreg in this context will be compared with those of rocfit.
roccomp has the binormal option, which will allow it to compute area under the ROC curve according

to a normal ROC curve, equivalent to that obtained by rocfit. We will compare this functionality with

that of rocreg.

In Parametric ROC curves: Maximum likelihood, we demonstrate maximum likelihood estimation

of the ROC curve model with rocreg. There we assume a normal linear model for the classifier on the
covariates and case–control status. This method is documented in Pepe (2003). We will also demonstrate

how to use this method with no covariates, and we will compare rocreg under the constant-only model

with rocfit and roccomp.

The rocregplot command is used repeatedly in this entry. This command provides graphical output

for rocreg and is documented in [R] rocregplot.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesCovariate-adjustedROCcurves
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesParametricROCcurvesEstimatingequations
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesParametricROCcurvesEstimatingequations
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesParametricROCcurvesMaximumlikelihood
https://www.stata.com/manuals/rrocregplot.pdf#rrocregplot
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ROC statistics
roctab computes the ROC curve by calculating the false-positive rate and true-positive rate empir-

ically at every value of the input classifier. It makes no distributional assumptions about the case or

control distributions. We can get identical behavior from rocreg by using the default option settings.

Example 1: Nonparametric ROC, AUC
Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify,

using a five-point scale, a random sample of 109 tomographic images from patients with neurological

problems. The rating scale was as follows: 1 is definitely normal, 2 is probably normal, 3 is questionable,

4 is probably abnormal, and 5 is definitely abnormal. The true disease status was normal for 58 of the

patients and abnormal for the remaining 51 patients.

Here we list 9 of the 109 observations:

. use https://www.stata-press.com/data/r19/hanley
(Tomographic images)
. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0 is normal, 1 is abnormal),
and rating contains the classification value assigned by the reviewer.

We run roctab on these data, specifying the graph option so that the ROC curve is rendered. We then

calculate the false-positive and true-positive rates of the ROC curve by using rocreg. We graph the rates

with rocregplot. Because we focus on rocreg output later, for now we use the quietly prefix to

omit the output of rocreg. Both graphs are combined using graph combine (see [G-2] graph combine)

for comparison. To ease the comparison, we specify the aspectratio(1) option in roctab; this is the
default aspect ratio in rocregplot.

https://www.stata.com/manuals/g-2graphcombine.pdf#g-2graphcombine
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. roctab disease rating, graph aspectratio(1) name(a) nodraw title(”roctab”)

. quietly rocreg disease rating

. rocregplot, name(b) nodraw legend(off) title(”rocreg”)

. graph combine a b
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Both roctab and rocreg compute the same false-positive rate and ROC values. The stairstep line

connection style of the graph on the right emphasizes the empirical nature of its estimates. The control

distribution of the classifier is estimated using the empirical CDF estimate. Similarly, the ROC curve, the

distribution of the resulting case observation false-positive rate values, is estimated using the empirical

CDF. Note the footnote in the roctab plot. By default, roctab will estimate the area under the ROC

curve (AUC) using a trapezoidal approximation to the estimated false-positive rate and true-positive rate

points.

TheAUC can be interpreted as the probability that a randomly selected member of the case population

will have a larger classifier value than a randomly selected member of the control population. It can also

be viewed as the average ROC value, averaged uniformly over the (0,1) false-positive rate domain (Pepe

2003).

The nonparametric estimator of the AUC (DeLong, DeLong, and Clarke-Pearson 1988; Hanley and

Hajian-Tilaki 1997) used by rocreg is equivalent to the sample mean of the percentile values of the case

observations. Thus to calculate the nonparametricAUC estimate, we only need to calculate the percentile

values of the case observations with respect to the control distribution.

This estimate can differ from the trapezoidal approximation estimate. Under discrete classification

data, like we have here, there may be ties between classifier values from case to control. The trapezoidal

approximation uses linear interpolation between the classifier values to correct for ties. Correcting the

nonparametric estimator involves adding a correction term to each observation’s percentile value, which

measures the probability that the classifier is equal to (instead of less than) the observation’s classifier

value.

The tie-corrected nonparametric estimate (trapezoidal approximation) is used when we think the true

ROC curve is smooth. This means that the classifier we measure is a discretized approximation of a true

latent and a continuous classifier.

We now recompute the ROC curve of rating for classifying disease and calculate the AUC. Spec-

ifying the tiecorrected option allows tie correction to be used in the rocreg calculation. Under

nonparametric estimation, rocreg bootstraps to obtain standard errors and confidence intervals for re-
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quested statistics. We use the default 1,000 bootstrap replications to obtain confidence intervals for our

parameters. This is a reasonable lower bound to the number of replications (Mooney and Duval 1993)

required for estimating percentile confidence intervals. By specifying the summary option in roctab, we
will obtain output showing the trapezoidal approximation of theAUC estimate, along with standard error

and confidence interval estimates for the trapezoidal approximation suggested by DeLong, DeLong, and

Clarke-Pearson (1988).

. roctab disease rating, summary
ROC Asymptotic normal

Obs area Std. err. [95% conf. interval]

109 0.8932 0.0307 0.83295 0.95339
. rocreg disease rating, tiecorrected bseed(29092)
(running rocregstat on estimation sample)
Bootstrap replications (1,000): .........10.........20.........30.........40....
> .....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170.........
> 180.........190.........200.........210.........220.........230.........240...
> ......250.........260.........270.........280.........290.........300.........
> 310.........320.........330.........340.........350.........360.........370...
> ......380.........390.........400.........410.........420.........430.........
> 440.........450.........460.........470.........480.........490.........500...
> ......510.........520.........530.........540.........550.........560.........
> 570.........580.........590.........600.........610.........620.........630...
> ......640.........650.........660.........670.........680.........690.........
> 700.........710.........720.........730.........740.........750.........760...
> ......770.........780.........790.........800.........810.........820.........
> 830.........840.........850.........860.........870.........880.........890...
> ......900.........910.........920.........930.........940.........950.........
> 960.........970.........980.........990.........1,000 done
Bootstrap results Number of obs = 109

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical, corrected for ties
ROC method : empirical
Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8931711 .0010376 .0309808 .8324498 .9538923 (N)
.8223829 .9475383 (P)
.8084577 .9435818 (BC)

The estimates of AUC match well. The standard error from roctab is close to the bootstrap standard

error calculated by rocreg. The bootstrap standard error generalizes to the more complex models that
we consider later, whereas the roctab standard-error calculation does not.

The AUC can be used to compare different classifiers. It is the most popular summary statistic for

comparisons (Pepe, Longton, and Janes 2009). roccomp will compute the trapezoidal approximation

of the AUC and graph the ROC curves of multiple classifiers. Using the DeLong, DeLong, and Clarke-

Pearson (1988) covariance estimates for the AUC estimate, roccomp performs a Wald test of the null

hypothesis that all classifier AUC values are equal. rocreg has similar capabilities.
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Example 2: Nonparametric ROC, AUC, multiple classifiers
Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed

to reconstruct CT images from phantoms. We will call these two algorithms modalities 1 and 2. A

sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54 were

abnormal. Each of the two modalities was applied to each phantom, and the resulting images were rated

by a reviewer using a six-point scale: 1 is definitely normal, 2 is probably normal, 3 is possibly normal,

4 is possibly abnormal, 5 is probably abnormal, and 6 is definitely abnormal. Because each modality

was applied to the same sample of phantoms, the two sets of outcomes are correlated.

We list the first seven observations:

. use https://www.stata-press.com/data/r19/ct, clear
(Reconstruction of CT images)
. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

Each observation corresponds to one phantom. The mod1 variable identifies the rating assigned for

the first modality, and the mod2 variable identifies the rating assigned for the second modality. The true

status of the phantoms is given by status==0 if they are normal and status==1 if they are abnormal.

The observations with at least one missing rating were dropped from the analysis.

A fictitious dataset was created from this true dataset, adding a third test modality. We will use

roccomp to compute the AUC statistic for each modality in these data and compare the AUC of the three

modalities. We obtain the same behavior from rocreg. As before, the tiecorrected option is specified
so that the AUC is calculated with the trapezoidal approximation.

. use https://www.stata-press.com/data/r19/ct2
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary

ROC Asymptotic normal
Obs area Std. err. [95% conf. interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381
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. rocreg status mod1 mod2 mod3, tiecorrected bseed(38038) nodots
Bootstrap results Number of obs = 112

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical, corrected for ties
ROC method : empirical
Area under the ROC curve

Status : status
Classifier: mod1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8828225 -.0010192 .0318564 .820385 .94526 (N)
.8150605 .9398384 (P)
.8119603 .9392538 (BC)

Status : status
Classifier: mod2

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9302363 .0005148 .0257043 .8798567 .9806159 (N)
.8746504 .9769936 (P)
.8616987 .9688995 (BC)

Status : status
Classifier: mod3

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9240102 .0001857 .0240864 .8768018 .9712187 (N)
.8727464 .9658895 (P)
.8629984 .9621795 (BC)

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0339546 Test based on bootstrap (N) assumptions.

We see that the AUC estimates are equivalent, and the standard errors are quite close as well. The 𝑝-
value for the tests of equalAUC under rocreg leads to similar inference as the 𝑝-value from roccomp. The
Wald test performed by rocreg uses the joint bootstrap estimate variance matrix of the three AUC esti-

mators rather than the DeLong, DeLong, and Clarke-Pearson (1988) variance estimate used by roccomp.

roccomp is used here on potentially correlated classifiers that are recorded in wide-format data. It

can also be used on long-format data to compare independent classifiers. Further details can be found in

[R] roccomp.

Citing theAUC’s lack of clinical relevance, there is argument against using it as a key summary statistic

of the ROC curve (Pepe 2003; Cook 2007). Pepe, Longton, and Janes (2009) suggest using the estimate

of the ROC curve itself at a particular point, or the estimate of the false-positive rate at a given ROC value,

also known as invROC.

https://www.stata.com/manuals/rroccomp.pdf#rroccomp
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Recall from example 1 how nonparametric rocreg graphs look, with the stairstep pattern in the ROC

curve. In an ideal world, the graph would be a smooth one-to-one function, and it would be trivial to

map a false-positive rate to its corresponding true-positive rate and vice versa.

However, smooth ROC curves can only be obtained by assuming a parametric model that uses linear

interpolation between observed false-positive rates and between observed true-positive rates, and rocreg
is certainly capable of that; see example 1 of [R] rocregplot. However, under nonparametric estimation,

the mapping between false-positive rates and true-positive rates is not one to one, and estimates tend to

be less reliable the further you are from an observed data point. This is somewhat mitigated by using

tie-corrected rates (the tiecorrected option).

Whenwe examine continuous data, the difference between the tie-corrected estimates and the standard

estimates becomes negligible, and the empirical estimate of the ROC curve becomes close to the smooth

ROC curve obtained by linear interpolation. So the nonparametric ROC and invROC estimates work well.

Fixing one rate value of interest can be difficult and subjective (Pepe 2003). Acompromise measure is

the partial area under the ROC curve (pAUC) (McClish 1989; Thompson and Zucchini 1989). This is the

integral of the ROC curve from 0 and above to a given false-positive rate (perhaps the largest clinically

acceptable value). Like the AUC estimate, the nonparametric estimate of the pAUC can be written as

a sample average of the case observation percentiles, but with an adjustment based on the prescribed

maximum false-positive rate (Dodd and Pepe 2003). A tie correction may also be applied so that it

reflects the trapezoidal approximation.

We cannot compare rocreg with roctab or roccomp on the estimation of pAUC, because pAUC is

not computed by the latter two.

Example 3: Nonparametric ROC, other statistics
To see how rocreg estimates ROC, invROC, and pAUC, we will examine a new study. Wieand et al.

(1989) examined a pancreatic cancer study with two continuous classifiers, here called y1 (CA 19-9) and

y2 (CA 125). This study was also examined in Pepe, Longton, and Janes (2009). The indicator of cancer

in a subject is recorded as d. The study was a case–control study, stratifying participants on disease

status.

We list the first five observations:

. use https://research.fredhutch.org/content/dam/stripe/diagnostic-biomarkers-
> statistical-center/files/wiedat2b.dta, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)
. list in 1/5

y1 y2 d

1. 28 13.3 no
2. 15.5 11.1 no
3. 8.2 16.7 no
4. 3.4 12.6 no
5. 17.3 7.4 no

We will estimate the ROC curves at a large value (0.7) and a small value (0.2) of the false-positive

rate. These values are specified in roc(). The false-positive rate for ROC or sensitivity value of 0.6

will also be estimated by specifying invroc(). Percentile confidence intervals for these parameters are
displayed in the graph obtained by rocregplot after rocreg. The pAUC statistic will be calculated for

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex1_rocreg
https://www.stata.com/manuals/rrocregplot.pdf#rrocregplotRemarksandexamplesex1
https://www.stata.com/manuals/rrocregplot.pdf#rrocregplot
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the false-positive rate of 0.5, which is specified as an argument to the pauc() option. Following Pepe,

Longton, and Janes (2009), we use a stratified bootstrap, sampling separately from the case and control

populations by specifying the bootcc option. This reflects the case–control nature of the study.

All four statistics can be estimated simultaneously by rocreg. For clarity, however, we will estimate
each statistic with a separate call to rocreg. rocregplot is used after estimation to graph the ROC

and false-positive rate estimates. The display of the individual, observation-specific false-positive rate

and ROC values will be omitted in the plot. This is accomplished by specifying msymbol(i) in our

plot1opts() and plot2opts() options to rocregplot.

. rocreg d y1 y2, roc(.7) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .9222222 .0010222 .0332527 .8570482 .9873962 (N)
.8555555 .9777778 (P)
.8555555 .9777778 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.7 .8888889 -.0046556 .0444103 .8018463 .9759314 (N)
.7833333 .9666666 (P)
.7666667 .9555556 (BC)

H0: All classifiers have equal ROC values
Ha: At least one classifier has a different ROC value
Test based on bootstrap (N) assumptions
ROC P-value

.7 .5537371
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. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))

0

.25

.5

.75

1

T
ru

e-
po

si
tiv

e 
ra

te
 (

R
O

C
)

0 .25 .5 .75 1
False-positive rate

CA 19-9
CA 125

In this study, we see that classifier y1 (CA 19-9) is a uniformly better test than is classifier y2 (CA

125) until high levels of false-positive rate and sensitivity or ROC value are reached. At the high level of

false-positive rate, 0.7, the ROC value does not significantly differ between the two classifiers. This can

be seen in the plot by the overlapping confidence intervals.

. rocreg d y1 y2, roc(.2) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .7777778 .0020778 .0487666 .6821969 .8733586 (N)
.6777778 .8722222 (P)
.6555555 .8555555 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC coefficient Bias std. err. [95% conf. interval]

.2 .4888889 -.0054 .1348859 .2245173 .7532605 (N)
.2222222 .6944444 (P)
.2111111 .6777778 (BC)
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H0: All classifiers have equal ROC values
Ha: At least one classifier has a different ROC value
Test based on bootstrap (N) assumptions
ROC P-value

.2 .0461582
. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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The sensitivity for the false-positive rate of 0.2 is found to be higher under y1 than under y2, and this
difference is significant at the 0.05 level. In the plot, this is shown by the vertical confidence intervals.

. rocreg d y1 y2, invroc(.6) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 0 .0149412 .0255885 -.0501525 .0501525 (N)
0 .0784314 (P)
0 .1372549 (BC)

Status : d
Classifier: y2

Observed Bootstrap
invROC coefficient Bias std. err. [95% conf. interval]

.6 .254902 .0074118 .0729374 .1119474 .3978566 (N)
.1372549 .4313726 (P)
.1176471 .3921569 (BC)
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H0: All classifiers have equal invROC values
Ha: At least one classifier has a different invROC value
Test based on bootstrap (N) assumptions
invROC P-value

.6 .0010863
. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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We find significant evidence that false-positive rates corresponding to a sensitivity of 0.6 are different

from y1 to y2. This is visually indicated by the horizontal confidence intervals, which are separated from
each other.

. rocreg d y1 y2, pauc(.5) bseed(8378923) bootcc nodots
Bootstrap results
Number of strata = 2 Number of obs = 141

Replications = 1,000
Nonparametric ROC estimation
Control standardization: empirical
ROC method : empirical
Partial area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
pAUC coefficient Bias std. err. [95% conf. interval]

.5 .3932462 .0011971 .0219031 .3503169 .4361755 (N)
.3489107 .4338235 (P)
.3453159 .4315904 (BC)
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Status : d
Classifier: y2

Observed Bootstrap
pAUC coefficient Bias std. err. [95% conf. interval]

.5 .2496732 .0033901 .0362569 .1786109 .3207355 (N)
.1837691 .3224946 (P)
.1721133 .3108932 (BC)

H0: All classifiers have equal pAUC values
Ha: At least one classifier has a different pAUC value
Test based on bootstrap (N) assumptions
pAUC P-value

.5 .001023

We also find significant evidence supporting the hypothesis that the pAUC for y1 up to a false-positive

rate of 0.5 differs from the area of the same region under the ROC curve of y2.

Covariate-adjusted ROC curves
When covariates affect the control distribution of the diagnostic test, thresholds for the test being

classified as abnormal may be chosen that vary with the covariate values. These conditional thresholds

will be more accurate than the marginal thresholds that would normally be used, because they take into

account the specific distribution of the diagnostic test under the given covariate values as opposed to the

marginal distribution over all covariate values.

By using these covariate-specific thresholds, we are essentially creating new classifiers for each

covariate-value combination, and thus we are creating multiple ROC curves. As explained in Pepe (2003),

when the case and control distributions of the covariates are the same, the marginal ROC curve will al-

ways be bound above by these covariate-specific ROC curves. So using conditional thresholds will never

provide a less powerful test diagnostic in this case.

In the marginal ROC curve calculation, the classifiers are standardized to percentiles according to the

control distribution, marginalized over the covariates. Thus, the ROC curve is the CDF of the standardized

case observations. The covariate-adjusted ROC curve is the CDF of one minus the conditional control

percentiles for the case observations, and the marginal ROC curve is the CDF of one minus the marginal

control percentiles for the case observations (Pepe and Cai 2004). Thus, the standardization of classifier

to false-positive rate value is conditioned on the specific covariate values under the covariate-adjusted

ROC curve.

The covariate-adjusted ROC curve (Janes and Pepe 2009) at a given false-positive rate 𝑡 is equivalent
to the expected value of the covariate-specific ROC at 𝑡 over all covariate combinations. When the co-

variates in question do not affect the case distribution of the classifier, the covariate-specific ROC will

have the same value at each covariate combination. So here the covariate-adjusted ROC is equivalent to

the covariate-specific ROC, regardless of covariate values.

When covariates do affect the case distribution of the classifier, users of the diagnostic test would

likely want to model the covariate-specific ROC curves separately. Tools to do this can be found in the

parametric modeling discussion in the following two sections. Regardless, the covariate-adjusted ROC

curve can serve as a meaningful summary of covariate-adjusted accuracy.
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Also note that the ROC summary statistics defined in the previous section have covariate-adjusted

analogs. These analogs are estimated in a similar manner as under the marginal ROC curve (Janes, Long-

ton, and Pepe 2009). The options for their calculation in rocreg are identical to those given in the

previous section. Further details can be found in Methods and formulas.

Example 4: Nonparametric ROC, linear covariate adjustment
Norton et al. (2000) studied data from a neonatal audiology study on three tests to identify hearing

impairment in newborns. These data were also studied in Janes, Longton, and Pepe (2009). Here we list

5 of the 5,058 observations.

. use https://www.stata-press.com/data/r19/nnhs, clear
(Norton - neonatal audiology data)
. list in 1/5

id ear male currage d y1 y2 y3

1. B0157 R M 42.42 0 -3.1 -9 -1.5
2. B0157 L M 42.42 0 -4.5 -8.7 -2.71
3. B0158 R M 40.14 1 -3.2 -13.2 -2.64
4. B0161 L F 38.14 0 -22.1 -7.8 -2.59
5. B0167 R F 37 0 -10.9 -6.6 -1.42

The classifiers y1 (DPOAE 65 at 2 kHz), y2 (TEOAE 80 at 2 kHz), and y3 (ABR) and the hearing

impairment indicator d are recorded along with some relevant covariates. The infant’s age is recorded

in months as currage, and the infant’s gender is indicated by male. Over 90% of the newborns were

tested in each ear (ear), so we will cluster on infant ID (id).

Following the strategy of Janes, Longton, and Pepe (2009), we will first perform ROC analysis for

the classifiers while adjusting for the covariate effects of the infant’s gender and age. This is done by

specifying these variables in the ctrlcov() option. We adjust using a linear regression rule, by spec-

ifying ctrlmodel(linear). This means that when a user of the diagnostic test chooses a threshold

conditional on the age and gender covariates, they assume that the diagnostic test classifier has some

linear dependence on age and gender and equal variance as their levels vary. Our cluster adjustment is

made by specifying the cluster() option.

We will focus on the first classifier. The percentile, or specificity, values are calculated empirically by

default, and thus so are the false-positive rates, (1 − specificity). Also by default, the ROC curve values

are empirically defined by the false-positive rates. To draw the ROC curve, we again use rocregplot.

https://www.stata.com/manuals/rrocreg.pdf#rrocregMethodsandformulas


rocreg — Parametric and nonparametric ROC regression 21

The AUC is calculated by default. For brevity, we specify the nobootstrap option so that bootstrap

sampling is not performed. The AUC point estimate will be sufficient for our purposes.

. rocreg d y1, ctrlcov(male currage) ctrlmodel(linear) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 5,056
Covariate control : linear regression
Control variables : male currage
Control standardization: empirical
ROC method : empirical
Status : d
Classifier: y1
Covariate control adjustment model:
Linear regression Number of obs = 4,907

F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. err. adjusted for 2,686 clusters in id)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

male .2471744 .2603598 0.95 0.343 -.2633516 .7577005
currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Area under the ROC curve
Status : d
Classifier: y1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.6293994 . . . . (N)
. . (P)
. . (BC)
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. rocregplot
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Our covariate control adjustment model shows that currage has a negative effect on y1 (DPOAE 65

at 2 kHz) under the control population. At the 0.001 significance level, we reject that its contribution to

y1 is zero, and the point estimate has a negative sign. This result does not directly tell us about the effect

of currage on the ROC curve of y1 as a classifier of d. None of the case observations are used in the

linear regression, so information on currage for abnormal cases is not used in the model. This result

does show us how to calculate false-positive rates for tests that use thresholds conditional on a child’s

sex and current age. We will see how currage affects the ROC curve when y1 is used as a classifier and

conditional thresholds are used based on male and currage in the following section, Parametric ROC

curves: Estimating equations.

Technical note
Under this nonparametric estimation, rocreg saved the false-positive rate for each observation’s

y1 values in the utility variable fpr y1. The true-positive rates are stored in the utility variable

roc y1. For other models, say with classifier yname, these variables would be named fpr yname

and roc yname. They will also be overwritten with each call of rocreg. The variables roc * and

fpr * are usually for internal rocreg use only and are overwritten with each call of rocreg. They
are only created for nonparametric models or parametric models that do not involve ROC covariates. In

these models, covariates may only affect the first stage of estimation, the control distribution, and not the

ROC curve itself. In parametric models that allow ROC covariates, different covariate values would lead

to different ROC curves.

To see how the covariate-adjusted ROC curve estimate differs from the standard marginal estimate, we

will reestimate the ROC curve for classifier y1 without covariate adjustment. We rename these variables

before the new estimation and then draw an overlaid twoway line (see [G-2] graph twoway line) plot

to compare the two.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesParametricROCcurvesEstimatingequations
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesParametricROCcurvesEstimatingequations
https://www.stata.com/manuals/g-2graphtwowayline.pdf#g-2graphtwowayline
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. rename _fpr_y1 o_fpr_y1

. rename _roc_y1 o_roc_y1

. label variable o_roc_y1 ”Covariate adjusted”

. rocreg d y1, cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 5,058
Control standardization: empirical
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.6279645 . . . . (N)
. . (P)
. . (BC)

. label variable _roc_y1 ”Marginal”

. label variable o_fpr_y1 ”False-positive rate for y1”

. twoway line _roc_y1 _fpr_y1, sort(_fpr_y1 _roc_y1) connect(J) ||
> line o_roc_y1 o_fpr_y1, sort(o_fpr_y1 o_roc_y1)
> connect(J) lpattern(dash) aspectratio(1) legend(cols(1))
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Though they are close, particularly in AUC, there are clearly some points of difference between the

estimates. So the covariate-adjusted ROC curve may be useful here.

In our examples thus far, we have used the empirical CDF estimator to estimate the control distribu-

tion. rocreg allows some flexibility here. The pvc(normal) option may be specified to calculate the

percentile values according to a Gaussian distribution of the control.

Covariate adjustment in rocreg may also be performed with stratification instead of linear regres-

sion. Under the stratification method, the unique values of the stratified covariates each define separate

parameters for the control distribution of the classifier. A user of the diagnostic test chooses a threshold

based on the control distribution conditioned on the unique covariate value parameters.



rocreg — Parametric and nonparametric ROC regression 24

We will demonstrate the use of normal percentile values and covariate stratification in our next ex-

ample.

Example 5: Nonparametric ROC, covariate stratification
The hearing test study of Stover et al. (1996) examined the effectiveness of negative signal-to-noise

ratio, nsnr, as a classifier of hearing loss. The test was administered under nine different settings, cor-
responding to different frequency, xf, and intensity, xl, combinations. Here we list 10 of the 1,848

observations.

. use https://www.stata-press.com/data/r19/dp, clear
(Stover - DPOAE test data)
. list in 1/10

id d nsnr xf xl xd

1. 101 1 18 10.01 5.5 3.5
2. 101 1 19 20.02 5.5 3
3. 101 1 7.6 10.01 6 3.5
4. 101 1 15 20.02 6 3
5. 101 1 16 10.01 6.5 3.5

6. 101 1 5.8 20.02 6.5 3
7. 102 0 -2.6 10.01 5.5 .
8. 102 0 -3 14.16 5.5 .
9. 102 1 10 20.02 5.5 1

10. 102 0 -5.8 10.01 6 .

Hearing loss is represented by d. The covariate xd is a measure of the degree of hearing loss. We will

use this covariate in later analysis, because it only affects the case distribution of the classifier. Multiple

measurements are taken for each individual, id, so we will cluster by individual.

We evaluate the effectiveness of nsnr using xf and xl as stratification covariates with rocreg; the
default method of covariate adjustment.

Asmentioned before, the default false-positive rate calculationmethod in rocreg estimates the condi-
tional control distribution of the classifiers empirically. For comparison, we will also estimate a separate

ROC curve using false-positive rates assuming the conditional control distribution is normal. This be-

havior is requested by specifying the pvc(normal) option. Using the rocregplot option name() to

store the ROC plots and using the graph combine command, we are able to compare the Gaussian and

empirical ROC curves side by side. As before, for brevity we specify the nobootstrap option to suppress
bootstrap sampling.
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. rocreg d nsnr, ctrlcov(xf xl) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 1,848
Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9264192 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Empirical FPR) name(a) nodraw

. rocreg d nsnr, pvc(normal) ctrlcov(xf xl) cluster(id) nobootstrap
Nonparametric ROC estimation Number of obs = 1,848
Covariate control : stratification
Control variables : xf xl
Control standardization: normal
ROC method : empirical
Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9309901 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Normal FPR) name(b) nodraw

. graph combine a b, xsize(5)
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On cursory visual inspection, we see little difference between the two curves. The AUC values are close

as well. So it is sensible to assume that we have Gaussian percentile values for control standardization.

Parametric ROC curves: Estimating equations
We now assume a parametric model for covariate effects on the second stage of ROC analysis. Par-

ticularly, the ROC curve is a probit model of the covariates. We will thus have a separate ROC curve for

each combination of the relevant covariates.

Under weak assumptions about the control distribution of the classifier, we can fit this model by

using estimating equations as described in Alonzo and Pepe (2002). This method can be also be used

without covariate effects in the second stage, assuming a parametric model for the single (constant only)

ROC curve. Covariates may still affect the first stage of estimation, so we parametrically model the

single covariate-adjusted ROC curve (from the previous section). The marginal ROC curve, involving no

covariates in either stage of estimation, can be fit parametrically as well.

In addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton,

and Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The parametric models that we consider assume that the ROC curve is a cumulative distribution func-

tion 𝑔 invoked with input of a linear polynomial in the corresponding quantile function invoked on the

false-positive rate 𝑢. In this context, we assume that 𝑔 corresponds to a standard normal cumulative

distribution function, Φ. So the corresponding quantile function is Φ−1. The constant intercept of the

polynomial may depend on covariates, but the slope term 𝛼 (the quantile coefficient) may not.

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

The first step of the algorithm involves the choice of false-positive rates to use in the parametric

fit. These are typically a set of equispaced points spanning the interval (0,1). Alonzo and Pepe (2002)

examined the effect of fitting large and small sets of points, finding that relatively small sets could be

used with little loss of efficiency. Alternatively, the set can be formed by using the observed false-positive

rates in the data (Pepe 2003). Further details on the algorithm are provided in Methods and formulas.

Under parametric estimation, all the summary measures we defined earlier, except the AUC, are not

calculated until postestimation. In models with covariates, each covariate combination would yield a

different ROC curve and thus different summary parameters, so no summary parameters are initially esti-

mated. In marginal parametric models (where there are no ROC covariates, but there are potentially con-

trol covariates), we will calculate theAUC and leave the other measures for postestimation; see [R] rocreg

postestimation. As with the other parameters, we bootstrap for standard errors and inference.

We will now demonstrate how rocreg performs the Alonzo and Pepe (2002) algorithm using the

previous section’s examples and others.

Example 6: Parametric ROC, linear covariate adjustment
We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000), which

we discussed in example 4. Janes, Longton, and Pepe (2009) suspected the current age of the infant would

play a role in the case distribution of the classifier y1 (DPOAE 65 at 2 kHz). They postulated a probit link

between the ROC curve and the covariate-adjusted false-positive rates. We follow their investigation and

reach similar results.

https://www.stata.com/manuals/rrocreg.pdf#rrocregMethodsandformulas
https://www.stata.com/manuals/rrocregpostestimation.pdf#rrocregpostestimation
https://www.stata.com/manuals/rrocregpostestimation.pdf#rrocregpostestimation
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex4_rocreg
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In example 4, we saw the results of adjusting for the currage and male variables in the control

population for classifier y1. Now, we see how currage affects the ROC curve when y1 is used with

thresholds conditioned on male and currage.

We specify the covariates that should affect the ROC curve in the roccov() option. By default, rocreg
will choose 10 equally spaced false-positive rates in the (0,1) interval as fitting points. The fprpts()
option allows the user to specify more or fewer points. We specify the bsave() option with the nnhs2y1
dataset so that we can use the bootstrap resamples in postestimation.

. use https://www.stata-press.com/data/r19/nnhs, clear
(Norton - neonatal audiology data)
. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1) nodots
Bootstrap results Number of obs = 5,056

Replications = 1,000
Parametric ROC estimation
Covariate control : linear regression
Control variables : currage male
Control standardization: empirical
ROC method : parametric Link: probit
Status : d
Classifier: y1
Covariate control adjustment model:
Linear regression Number of obs = 4,907

F(2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. err. adjusted for 2,686 clusters in id)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624
male .2471744 .2603598 0.95 0.343 -.2633516 .7577005

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Status : d
Classifier: y1
ROC Model :

(Replications based on 2,741 clusters in id)

Observed Bootstrap
y1 coefficient Bias std. err. [95% conf. interval]

_cons -1.272505 -.058656 1.157249 -3.540671 .995661 (N)
-3.703316 .8687538 (P)
-3.550433 1.094785 (BC)

currage .0448228 .0015634 .0300731 -.0141194 .1037649 (N)
-.0107322 .108762 (P)
-.0156332 .1044122 (BC)

probit

_cons .9372393 .0153781 .0739921 .7922176 1.082261 (N)
.8027433 1.108293 (P)

.78655 1.077874 (BC)

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex4_rocreg
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Note how the number of clusters—here infants—changes from the covariate control adjustment

model fit to the ROC model. The control fit is limited to control cases and thus fewer infants. The

ROC is fit on all the data, so the variance is adjusted for all clustering on all infants.

With a 0.05 level of statistical significance, we cannot reject the null hypothesis that currage has

no effect on the ROC curve at a given false-positive rate. This is because each of our 95% bootstrap

confidence intervals contains 0. This corresponds with the finding in Janes, Longton, and Pepe (2009)

where the reported 95% intervals each contained 0. We cannot reject that the intercept parameter 𝛽0,

reported as cons in the main table, is 0 at the 0.05 level either. The slope parameter 𝛼, reported as

cons in the probit table, is close to 1 and cannot be rejected as being 1 at the 0.05 level. Under the

assumption that the ROC coefficients except 𝛼 are 0 and that 𝛼 = 1, the ROC curve at false-positive rate

𝑢 is equal to 𝑢. In other words, we cannot reject that the false-positive rate is equal to the true-positive
rate, and so the test is noninformative. Further investigation of the results requires postestimation; see

[R] rocreg postestimation.

The fitting point set can be formed by using the observed false-positive rates (Pepe 2003). Our next

example will illustrate this.

Example 7: Parametric ROC, covariate stratification
We return to the hearing test study of Stover et al. (1996), which we discussed in example 5. Pepe

(2003) suspected that intensity, xd, would play a role in the case distribution of the negative signal-to-

noise ratio (nsnr) classifier. A ROC regression was fit with covariate adjustment for xf and xl with

stratification, and for ROC covariates xf, xl, and xd. There is no prohibition against the same covariate
being used in the first and second stages of ROC calculation. The false-positive rate fitting point set was

composed of all observed false-positive rates in the control data.

We fit the model with rocreg here. Using observed false-positive rates as the fitting point set can

make the dataset very large, so fitting the model is computationally intensive. We demonstrate the fitting

algorithmwithout precise confidence intervals, focusing instead on the coefficient estimates and standard

errors. We will thus perform only 50 bootstrap replications, a reasonable number to obtain accurate stan-

dard error estimates (Mooney and Duval 1993). The number of replications is specified in the breps()
option.

The ROC covariates are specified in roccov(). We specify that all observed false-positive rates in

the control observations be used as fitting points with the ctrlfprall option. The nobstrata option

specifies that the bootstrap is not stratified. The covariate stratification in the first stage of estimation

does not affect the resampling. We will return to this example in postestimation, so we save the bootstrap

results in the nsnrf dataset with the bsave() option.

https://www.stata.com/manuals/rrocregpostestimation.pdf#rrocregpostestimation
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex5_rocreg
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. use https://www.stata-press.com/data/r19/dp
(Stover - DPOAE test data)
. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ctrlfprall cluster(id)
> nobstrata bseed(156385) breps(50) bsave(nsnrf)
(running rocregstat on estimation sample)
Bootstrap replications (50): .........10.........20.........30.........40.......
> ..50 done
Bootstrap results Number of obs = 1,848

Replications = 50
Parametric ROC estimation
Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: nsnr
ROC Model :

(Replications based on 208 clusters in id)

Observed Bootstrap
nsnr coefficient Bias std. err. [95% conf. interval]

_cons 3.247872 .0868351 .8985028 1.486839 5.008905 (N)
1.834415 5.606226 (P)
1.834415 6.275457 (BC)

xf .0502557 .0079289 .0290622 -.0067051 .1072166 (N)
-.0033383 .1145611 (P)
-.0454014 .0883843 (BC)

xl -.4327223 -.024214 .1249467 -.6776134 -.1878313 (N)
-.7207585 -.2425129 (P)
-.7207585 -.1547958 (BC)

xd .4431764 .0200785 .0875782 .2715264 .6148264 (N)
.3388809 .6706273 (P)
.3388809 .6706273 (BC)

probit

_cons 1.032657 .0026243 .1287713 .7802699 1.285044 (N)
.8308481 1.284435 (P)
.7808038 1.284435 (BC)

We obtain results similar to those reported in Pepe (2003, 159). We find that the coefficients for xl
and xd differ from 0 at the 0.05 level of significance. So over certain covariate combinations, we can

have a variety of informative tests using nsnr as a classifier.

As mentioned before, when there are no covariates, rocreg can still fit a parametric model for the

ROC curve of a classifier by using the Alonzo and Pepe (2002) method. roccomp and rocfit can fit

marginal probit models as well. We will compare the behavior of rocreg with that of roccomp and

rocfit for probit models without covariates.

When the binormal option is specified, roccomp calculates the AUC for input classifiers according

to the maximum likelihood algorithm of rocfit. The rocfit algorithm expects discrete classifiers but

can slice continuous classifiers into discrete partitions. Further, the case and control distributions are

both assumed normal. Actually, the observed classification values are taken as discrete indicators of the

latent normally distributed classification values. This method is documented in Dorfman andAlf (1969).
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Alonzo and Pepe (2002) compared their estimating equations probability density function method

(with empirical estimation of the false-positive rates) to the maximum likelihood approach of Dorfman

and Alf (1969) and found that they had similar efficiency and mean squared error. So we should expect

rocfit and rocreg to give similar results when fitting a simple probit model.

Example 8: Parametric ROC, marginal model
We return to the Hanley andMcNeil (1982) data. Wewill fit a probit model to the ROC curve, assuming

that the rating variable is a discrete indicator of an underlying latent normal random variable in both

the case and control populations of disease. We invoke rocfit with the default options. rocreg is

invoked with the probit option. The percentile values are calculated empirically. Because there are

fewer categories than 10, there will be fewer than 10 false-positive rates that trigger a different true-

positive rate value. So for efficiency, we invoke rocreg with the ctrlfprall option.

. use https://www.stata-press.com/data/r19/hanley
(Tomographic images)
. rocfit disease rating, nolog
Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
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. rocreg disease rating, probit ctrlfprall bseed(8574309) nodots
Bootstrap results Number of obs = 109

Replications = 1,000
Parametric ROC estimation
Control standardization: empirical
ROC method : parametric Link: probit

Status : disease
Classifier: rating
ROC Model :

Observed Bootstrap
rating coefficient Bias std. err. [95% conf. interval]

_cons 1.635041 .0850129 .3706472 .9085857 2.361496 (N)
1.139856 2.649876 (P)
1.103894 2.428801 (BC)

probit

_cons .6951252 .0642966 .275061 .1560155 1.234235 (N)
.3242299 1.409152 (P)
.2721681 1.292525 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9102903 -.0029679 .0300486 .8513963 .9691844 (N)
.8448006 .9602325 (P)
.8475004 .9607949 (BC)

We see that the intercept and slope parameter estimates are close. The intercept ( cons in the main

table) is clearly nonzero. Under rocreg, the slope ( cons in the probit table) and its percentile and

bias-corrected confidence intervals are close to those of rocfit. The area under the ROC curve for each

of the rocreg and rocfit estimators also matches closely.

Now, we will compare the parametric fit of rocreg under the constant probit model with roccomp.

Example 9: Parametric ROC, marginal model, multiple classifiers
We now use the fictitious dataset generated from Hanley and McNeil (1983). To fit a probit model

using roccomp, we specify the binormal option. Our specification of rocreg remains the same as

before.

rocregplot is used to render the model produced by rocreg. We specify several graph options to

both roccomp and rocregplot to ease comparison. When the binormal option is specified along with

graph, roccomp will draw the binormal fitted lines in addition to connected line plots of the empirical

false-positive and true-positive rates.
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In this plot, we overlay scatterplots of the empirical false-positive rates (because percentile value

calculation defaulted to pvc(empirical)) and the parametric true-positive rates.

. use https://www.stata-press.com/data/r19/ct2, clear
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 ”Modality 1”) label(3 ”Modality 2”)
> label(5 ”Modality 3”) label(2 ”Modality 1 fit”)
> label(4 ”Modality 2 fit”) label(6 ”Modality 3 fit”)
> order(1 3 5 2 4 6) pos(6))
> title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs area Std. err. [95% conf. interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ctrlfprall bseed(867340912) nodots
Bootstrap results Number of obs = 112

Replications = 999
Parametric ROC estimation
Control standardization: empirical
ROC method : parametric Link: probit

Status : status
Classifier: mod1
ROC Model :

Observed Bootstrap
mod1 coefficient Bias std. err. [95% conf. interval]

_cons 1.726034 .164964 .5823832 .5845836 2.867484 (N)
1.197595 3.410778 (P)
1.154531 3.027969 (BC)

probit

_cons .9666323 .1104948 .4635417 .0581071 1.875157 (N)
.5102274 2.319844 (P)
.5193889 2.319844 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.8927007 .000062 .0306285 .83267 .9527315 (N)
.8297837 .946722 (P)
.8262202 .9423347 (BC)
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Status : status
Classifier: mod2
ROC Model :

Observed Bootstrap
mod2 coefficient Bias std. err. [95% conf. interval]

_cons 1.696811 .0760455 .4750493 .7657314 2.627891 (N)
1.191126 2.854689 (P)
1.205256 2.916377 (BC)

probit

_cons .4553828 .0245707 .304156 -.140752 1.051518 (N)
.0857558 1.070745 (P)
.1495717 1.434937 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.938734 -.0033942 .0268351 .8861382 .9913297 (N)
.875 .9774636 (P)

.8775983 .9777322 (BC)

Status : status
Classifier: mod3
ROC Model :

Observed Bootstrap
mod3 coefficient Bias std. err. [95% conf. interval]

_cons 2.281359 .1143008 .5773577 1.149758 3.412959 (N)
1.653256 3.882332 (P)
1.65594 3.882332 (BC)

probit

_cons 1.107736 .0482007 .4195496 .2854334 1.930038 (N)
.6128833 2.256342 (P)
.6514254 2.527536 (BC)

Observed Bootstrap
AUC coefficient Bias std. err. [95% conf. interval]

.9368321 -.0008781 .0226477 .8924435 .9812207 (N)
.887858 .9720291 (P)

.8866298 .971411 (BC)

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0599896 Test based on bootstrap (N) assumptions.
. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))
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. graph combine a b, xsize(5)

0.00

0.25

0.50

0.75

1.00
S

en
si

tiv
ity

0.00 0.25 0.50 0.75 1.00
1-specificity

Modality 1

Modality 2

Modality 3

Modality 1 fit

Modality 2 fit

Modality 3 fit

roccomp

0

.25

.5

.75

1

T
ru

e-
po

si
tiv

e 
ra

te
 (

R
O

C
)

0 .25 .5 .75 1
False-positive rate

Modality 1

Modality 2

Modality 3

Modality 1 fit

Modality 2 fit

Modality 3 fit

rocreg

We see differing true-positive rate values in the scattered points, which is expected because roccomp
gives the empirical estimate and rocreg gives the parametric estimate. However, the estimated curves

and areas under the ROC curve look similar. Using the Wald test based on the bootstrap covariance,

rocreg rejects the null hypothesis that each test has the sameAUC at the 0.1 significance level. roccomp
formulates the asymptotic covariance using the rocfit estimates ofAUC. Examination of its output leads
to rejection of the null hypothesis that the AUCs are equal across each test at the 0.05 significance level.

Parametric ROC curves: Maximum likelihood
The Alonzo and Pepe (2002) method of fitting a parametric model to the ROC curve is powerful

because it can be generally applied, but that can be a limitation as well. Whenever we invoke the method

and want anything other than point estimates of the parameters, we must perform bootstrap resampling.

An alternative is to use maximum likelihood inference to fit the ROC curve. This method can save

computational time by avoiding the bootstrap.

rocreg implements maximum likelihood estimation for ROC curve analysis when both the case and

control populations are normal. Particularly, the classifier is a normal linear model on certain covari-

ates, and the covariate effect and variance of the classifier may change between the case and control

populations. This model is defined in Pepe (2003, 145).

𝑦 = z′β
0

+ 𝐷x′β
1

+ 𝜎 (𝐷) 𝜖

Our error term, 𝜖, is a standard normal random variable. The variable𝐷 is our true status variable, being 1

for the case population observations and 0 for the control population observations. The variance function

𝜎 is defined as

𝜎 (𝐷) = 𝜎0 (𝐷 = 0) + 𝜎1 (𝐷 = 1)

This provides two variance parameters in the model and does not depend on covariate values.

Suppose a covariate 𝑥𝑖 is present in z and x. The coefficient 𝛽1𝑖 represents the interaction effect of

the 𝑥𝑖 and 𝐷. It is the extra effect that 𝑥𝑖 has on classifier 𝑦 under the case population, 𝐷 = 1, beyond

the main effect 𝛽0𝑖. These β1 coefficients are directly related to the ROC curve of 𝑦.
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Under this model, the ROC curve is derived to be

ROC (𝑢) = Φ [ 1
𝜎1

{x′β
1

+ 𝜎0Φ−1 (𝑢)}]

For convenience, we reparameterize the model at this point, creating the parameters 𝛽𝑖 = 𝜎−1
1 𝛽1𝑖 and

𝛼 = 𝜎−1
1 𝜎0. We refer to 𝛽0 as the constant intercept, i cons. The parameter 𝛼 is referred to as the

constant slope, s cons.
ROC (𝑢) = Φ{x′β + 𝛼Φ−1 (𝑢)}

We may interpret the final coefficients as the standardized linear effect of the ROC covariate on the

classifier under the case population. The marginal effect of the covariate on the classifier in the control

population is removed, and it is rescaled by the case population standard deviation of the classifier when

all ROC covariate effects are removed. An appreciable effect on the classifier by a ROC covariate in this

measure leads to an appreciable effect on the classifier’s ROC curve by the ROC covariate.

The advantage of estimating the control coefficients β0 is similar to the gains of estimating the co-

variate control models in the estimating equations ROC method and nonparametric ROC estimation. This

model would similarly apply when evaluating a test that is conditioned on control covariates.

Again, we note that under parametric estimation, all the summary measures we defined earlier except

the AUC are not calculated until postestimation. In models with covariates, each covariate combination

would yield a different ROC curve and thus different summary parameters, so no summary parameters

are estimated initially. In marginal parametric models, we will calculate the AUC and leave the other

measures for postestimation. There is a simple closed-form formula for theAUC under the probit model.

Using this formula, the delta method can be invoked for inference on theAUC. Details onAUC estimation

for probit marginal models are found in Methods and formulas.

We will demonstrate the maximum likelihood method of rocreg by revisiting the models of the

previous section.

Example 10: Maximum likelihood ROC, single classifier
Returning to the hearing test study of Stover et al. (1996), we use a similar covariate grouping as

before. The frequency xf and intensity xl are control covariates (z), while all three covariates xf, xl,
and hearing loss degree xd are case covariates (x). In example 7, we fit this model using the Alonzo

and Pepe (2002) method. Earlier we stratified on the control covariates and estimated the conditioned

control distribution of nsnr empirically. Now, we assume a normal linear model for nsnr on xf and xl
under the control population.

https://www.stata.com/manuals/rrocreg.pdf#rrocregMethodsandformulas
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex7_rocreg
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We fit the model by specifying the control covariates in the ctrlcov() option and the case covariates

in the roccov() option. The ml option tells rocreg to perform maximum likelihood estimation.

. use https://www.stata-press.com/data/r19/dp, clear
(Stover - DPOAE test data)
. rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit ml cluster(id) nolog
Parametric ROC estimation Number of obs = 112

Replications = 999
Covariate control : linear regression
Control variables : xf xl
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: nsnr
Classifier : nsnr
Covariate control adjustment model:

(Std. err. adjusted for 208 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

casecov
xf .4690907 .1408683 3.33 0.001 .192994 .7451874
xl -3.187785 .8976521 -3.55 0.000 -4.947151 -1.42842
xd 3.042998 .3569756 8.52 0.000 2.343339 3.742657

_cons 23.48064 5.692069 4.13 0.000 12.32439 34.63689

casesd
_cons 7.979708 .354936 22.48 0.000 7.284047 8.67537

ctrlcov
xf -.1447499 .0615286 -2.35 0.019 -.2653438 -.0241561
xl -.8631348 .2871976 -3.01 0.003 -1.426032 -.3002378

_cons 1.109477 1.964004 0.56 0.572 -2.7399 4.958854

ctrlsd
_cons 7.731203 .3406654 22.69 0.000 7.063511 8.398894

Status : d
ROC Model :

(Std. err. adjusted for 208 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

nsnr
i_cons 2.942543 .7569821 3.89 0.000 1.458885 4.426201

xf .0587854 .0175654 3.35 0.001 .024358 .0932129
xl -.3994865 .1171914 -3.41 0.001 -.6291775 -.1697955
xd .381342 .0449319 8.49 0.000 .2932771 .4694068

s_cons .9688578 .0623476 15.54 0.000 .8466587 1.091057

We find the results are similar to those of example 7. Frequency (xf) and intensity (xl) have a negative
effect on the classifier nsnr in the control population.

The negative control effect is mitigated for xf in the case population, but the effect for xl is even

more negative there. Hearing loss severity, xd, has a positive effect on nsnr in the case population, and

it is undefined in the control population.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex7_rocreg
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The ROC coefficients are shown in the ROC Model table. Each are different from 0 at the 0.05 level. At

this level, we also cannot conclude that the variances differ from case to control populations, because 1 is

in the 95% confidence interval for s cons, the ratio of the case to control standard deviation parameters.

Both frequency (xf) and hearing loss severity (xd) make a positive contribution to the ROC curve and

thus make the test more powerful. Intensity (xl) has a negative effect on the ROC curve and weakens

the test. We previously saw in example 5 that the control distribution appears to be normal, so using

maximum likelihood to fit this model is a reasonable approach.

This model was also fit in Pepe (2003, 147). Pepe used separate least-squares estimates for the case

and control samples. We obtain similar results for the coefficients, but the maximum likelihood fitting

yields slightly different standard deviations by considering both case and control observations concur-

rently. In addition, a misprint in Pepe (2003, 147) reports a coefficient of −4.91 for xl in the case

population instead of −3.19 as reported by Stata.

Inference on multiple classifiers using the Alonzo and Pepe (2002) estimating equation method is per-

formed by fitting each model separately and bootstrapping to determine the dependence of the estimates.

Using the maximum likelihood method, we also fit each model separately. We use suest (see [R] suest)

to estimate the joint variance–covariance of our parameter estimates.

For our models, we can view the score equation for each model as an estimating equation. The

estimate that solves the estimating equation (that makes the score 0) is asymptotically normal with a

variance matrix that can be estimated using the inverse of the squared scores. By stacking the score

equations of the separate models, we can estimate the variance matrix for all the parameter estimates

by using this rule. This is an informal explanation; further details can be found in [R] suest and in the

references Rogers (1993); White (1982 and 1996).

Now, we will examine a case with multiple classification variables.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex5_rocreg
https://www.stata.com/manuals/rsuest.pdf#rsuest
https://www.stata.com/manuals/rsuest.pdf#rsuest
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Example 11: Maximum likelihood ROC, multiple classifiers
We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000). In

example 6, we fit a model with male and currage as control covariates, and currage as a ROC covariate
for the classifier y1 (DPOAE 65 at 2 kHz). We will refit this model, extending it to include the classifier

y2 (TEOAE 80 at 2 kHz).

. use https://www.stata-press.com/data/r19/nnhs
(Norton - neonatal audiology data)
. rocreg d y1 y2, probit ml ctrlcov(currage male) roccov(currage) cluster(id)
> nolog
Parametric ROC estimation Number of obs = 1,848
Covariate control : linear regression
Control variables : currage male
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: y1 y2
Classifier : y1
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
currage .494211 .2126672 2.32 0.020 .077391 .9110311

_cons -15.00403 8.238094 -1.82 0.069 -31.1504 1.142338

casesd
_cons 8.49794 .4922792 17.26 0.000 7.533091 9.46279

ctrlcov
currage -.2032048 .0323803 -6.28 0.000 -.266669 -.1397406

male .2369359 .2201391 1.08 0.282 -.1945288 .6684006
_cons -1.23534 1.252775 -0.99 0.324 -3.690734 1.220055

ctrlsd
_cons 7.749156 .0782225 99.07 0.000 7.595843 7.902469

Classifier : y2
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
currage .5729861 .2422662 2.37 0.018 .0981532 1.047819

_cons -18.2597 9.384968 -1.95 0.052 -36.6539 .1344949

casesd
_cons 9.723858 .5632985 17.26 0.000 8.619813 10.8279

ctrlcov
currage -.1694575 .0291922 -5.80 0.000 -.2266732 -.1122419

male .7122587 .1993805 3.57 0.000 .3214802 1.103037
_cons -5.651728 1.129452 -5.00 0.000 -7.865415 -3.438042

ctrlsd
_cons 6.986167 .0705206 99.07 0.000 6.84795 7.124385

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex6_rocreg
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Status : d
ROC Model :

(Std. err. adjusted for 2,741 clusters in id)

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

y1
i_cons -1.765608 1.105393 -1.60 0.110 -3.932138 .4009225

currage .0581566 .0290177 2.00 0.045 .0012828 .1150303
s_cons .9118864 .0586884 15.54 0.000 .7968593 1.026913

y2
i_cons -1.877825 .905174 -2.07 0.038 -3.651933 -.1037167

currage .0589258 .0235849 2.50 0.012 .0127002 .1051514
s_cons .7184563 .0565517 12.70 0.000 .607617 .8292957

Both classifiers have similar results. The results for y1 show the same direction as the estimating

equation results in example 6. However, we can now reject the null hypothesis that the ROC currage
coefficient is 0 at the 0.05 level.

In example 6, we could not reject that the slope parameter s conswas 1 and that the constant intercept
or ROC coefficient for current age was 0. The resulting ROC curve implied a noninformative test using y1
as a classifier. This is not the case with our current results. As currage increases, we expect a steeper

ROC curve and thus a more powerful test, for both classifiers y1 (DPOAE 65 at 2 kHz) and y2 (TEOAE 80

at 2 kHz).

In example 10, the clustering of observations within infant id was adjusted in the individual fit of

nsnr. In our current example, the adjustment for the clustering of observations within id is performed

during concurrent estimation, as opposed to during the individual classifier fits (as in example 10). This

adjustment, performed by suest, is still accurate.

Now, we will fit constant probit models and compare rocreg with rocfit and roccomp with the

binormal option. Our first applications of rocfit and roccomp are taken directly from examples 8 and

9. The Dorfman andAlf (1969) algorithm that rocfit works with uses discrete classifiers or uses slicing
to make a classifier discrete. So we are applying the maximum likelihood method of rocreg on discrete

classification data here, where it expects continuous data. We expect to see some discrepancies, but we

do not find great divergence in the estimates. After revisiting examples 8 and 9, we will fit a probit model

with a continuous classifier and no covariates using rocreg, and we will compare the results with those
from rocfit.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex6_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex6_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex10_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex10_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex8_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex9_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex8_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex9_rocreg


rocreg — Parametric and nonparametric ROC regression 40

Example 12: Maximum likelihood ROC, marginal model
Using the Hanley and McNeil (1982) data, discussed in example 1 and in example 8, we fit a constant

probit model of the classifier rating with true status disease. rocreg is invoked with the ml option

and compared with rocfit.

. use https://www.stata-press.com/data/r19/hanley, clear
(Tomographic images)
. rocfit disease rating, nolog
Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
. rocreg disease rating, probit ml nolog
Binormal model of disease on rating Number of obs = 109

GOF chi2(0) = .
Log likelihood = -123.64855 Prob > chi2 = .
Control standardization: normal
ROC method : parametric Link: probit

Status : disease
Classifiers: rating
Classifier : rating
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.3357 .2334285 10.01 0.000 1.878188 2.793211

casesd
_cons 1.117131 .1106124 10.10 0.000 .9003344 1.333927

ctrlcov
_cons 2.017241 .1732589 11.64 0.000 1.67766 2.356823

ctrlsd
_cons 1.319501 .1225125 10.77 0.000 1.07938 1.559621

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex1_rocreg
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Status : disease
ROC Model :

Coefficient Std. err. z P>|z| [95% conf. interval]

rating
i_cons 2.090802 .2941411 7.11 0.000 1.514297 2.667308
s_cons 1.181151 .1603263 7.37 0.000 .8669177 1.495385

auc .9116494 .0261658 34.84 0.000 .8603654 .9629333

We compare the estimates for these models:

rocfit rocreg, ml
slope 0.7130 1.1812

SE of slope 0.2159 0.1603

intercept 1.6568 2.0908

SE of intercept 0.3105 0.2941

AUC 0.9113 0.9116

SE of AUC 0.0295 0.0262

We find that both the intercept and the slope are estimated as higher with the maximum likelihood

method under rocreg than with rocfit. The AUC (ROC area in rocfit) is close for both commands.
We find that the standard errors of each of these estimates is slightly lower under rocreg than rocfit
as well.

Both rocfit and rocreg suggest that the slope parameter of the ROC curve (slope in rocfit and

s cons in rocreg) is not significantly different from 1. Thus, we cannot reject that the classifier has

the same variance in both case and control populations. There is, however, significant evidence that

the intercepts (i cons in rocreg and intercept in rocfit) differ from 0. Because of the positive

direction of the intercept estimates, the ROC curve for rating as a classifier of disease suggests that

rating provides an informative test. This is also suggested by the high AUC, which is significantly

different from 0.5, that is, a flip of a coin.
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Example 13: Maximum likelihood ROC, marginal model, multiple classifiers
We use the fictitious dataset generated from Hanley and McNeil (1983), which we previously used in

example 2 and in example 9. To fit a probit model using roccomp, we specify the binormal option. We

perform parametric, maximum likelihood ROC analysis using rocreg. We use rocregplot to plot the

ROC curves created by rocreg.

. use https://www.stata-press.com/data/r19/ct2, clear
(Reconstruction of CT images)
. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 ”Modality 1”) label(3 ”Modality 2”)
> label(5 ”Modality 3”) label(2 ”Modality 1 fit”)
> label(4 ”Modality 2 fit”) label(6 ”Modality 3 fit”)
> order(1 3 5 2 4 6) pos(6)) title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs area Std. err. [95% conf. interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

H0: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ml nolog
Parametric ROC estimation Number of obs = 109
Control standardization: normal
ROC method : parametric Link: probit

Status : status
Classifiers: mod1 mod2 mod3
Classifier : mod1
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.118135 .2165905 9.78 0.000 1.693626 2.542645

casesd
_cons 1.166078 .1122059 10.39 0.000 .9461589 1.385998

ctrlcov
_cons 2.344828 .1474147 15.91 0.000 2.0559 2.633755

ctrlsd
_cons 1.122677 .1042379 10.77 0.000 .9183746 1.32698

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex2_rocreg
https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex9_rocreg
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Classifier : mod2
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.659642 .2072731 12.83 0.000 2.253395 3.06589

casesd
_cons 1.288468 .1239829 10.39 0.000 1.045466 1.53147

ctrlcov
_cons 1.655172 .1105379 14.97 0.000 1.438522 1.871823

ctrlsd
_cons .8418313 .0781621 10.77 0.000 .6886365 .9950262

Classifier : mod3
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 2.353768 .1973549 11.93 0.000 1.966959 2.740576

casesd
_cons 1.143359 .1100198 10.39 0.000 .9277243 1.358994

ctrlcov
_cons 2.275862 .1214094 18.75 0.000 2.037904 2.51382

ctrlsd
_cons .9246267 .0858494 10.77 0.000 .7563649 1.092888

Status : status
ROC Model :

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

mod1
i_cons 1.81646 .3144804 5.78 0.000 1.20009 2.432831
s_cons .9627801 .1364084 7.06 0.000 .6954245 1.230136

auc .904657 .0343518 26.34 0.000 .8373287 .9719853

mod2
i_cons 2.064189 .3267274 6.32 0.000 1.423815 2.704563
s_cons .6533582 .1015043 6.44 0.000 .4544135 .8523029

auc .9580104 .0219713 43.60 0.000 .9149473 1.001073

mod3
i_cons 2.058643 .2890211 7.12 0.000 1.492172 2.625113
s_cons .8086932 .1163628 6.95 0.000 .5806262 1.03676

auc .9452805 .0236266 40.01 0.000 .8989732 .9915877

H0: All classifiers have equal AUC values
Ha: At least one classifier has a different AUC value
P-value: .0808808
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. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))
. graph combine a b, xsize(5)
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We compare the AUC estimates for these models:

roccomp rocreg, ml
mod1 0.8945 0.9047

mod2 0.9382 0.9580

mod3 0.9376 0.9453

Each classifier has a higher estimated AUC under rocreg than roccomp. Each curve appears to be

raised and smoothed in the rocreg fit as compared with roccomp. They are different, but not drastically
different. The inference on whether the curve areas are the same is similar to example 9. We reject

equality at the 0.10 level under rocreg and at the 0.05 level under roccomp.

Each intercept is significantly different from 0 at the 0.05 level and is estimated in a positive direction.

Though all but classifier mod2 has 1 in their slope confidence intervals, the high intercepts suggest steep

ROC curves and powerful tests.

Also note that the false-positive and true-positive rate points are calculated empirically in the roccomp
graph and parametrically in rocreg. In example 9, the false-positive rates calculated by rocreg were

calculated empirically, similar to roccomp. But in this example, the rates are calculated based on normal
percentiles.

Now, we will generate an example to compare rocfit and rocreg under maximum likelihood esti-

mation of a continuous classifier.

Example 14: Maximum likelihood ROC, graphical comparison with rocfit
We generate 500 realizations of a population under threat of disease. One quarter of the population has

the disease. A classifier x is measured, which has a control distribution of 𝑁(1, 3) and a case distribution
of 𝑁(1 + 5, 2). We will invoke rocreg with the ml option on this generated data. We specify the

continuous() option for rocfit and invoke it on the data as well. The continuous() option tells

rocfit how many discrete slices to partition the data into before fitting.

https://www.stata.com/manuals/rrocreg.pdf#rrocregRemarksandexamplesex9_rocreg
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For comparison of the two curves, we will use the rocfit postestimation command, rocplot; see
[R] rocfit postestimation. This command graphs the empirical false-positive and true-positive rates with

an overlaid fit of the binormal curve estimated by rocfit. rocplot also supports an addplot() option.
We use the saved variables from rocreg in this option to overlay a line plot of the rocreg fit.

. clear

. set seed 8675309

. set obs 500
Number of observations (_N) was 0, now 500.
. generate d = runiform() < .25
. quietly generate double epsilon = 3*invnormal(runiform()) if d == 0
. quietly replace epsilon = 2*invnormal(runiform()) if d == 1
. quietly generate double x = 1 + d*5 + epsilon
. rocreg d x, probit ml nolog
Parametric ROC estimation Number of obs = 112
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: x
Classifier : x
Covariate control adjustment model:

Coefficient Std. err. z P>|z| [95% conf. interval]

casecov
_cons 4.823931 .2305469 20.92 0.000 4.372067 5.275795

casesd
_cons 1.926652 .1204158 16.00 0.000 1.690642 2.162663

ctrlcov
_cons 1.14378 .155409 7.36 0.000 .8391841 1.448376

ctrlsd
_cons 2.99742 .1098907 27.28 0.000 2.782038 3.212802

Status : d
ROC Model :

Coefficient Std. err. z P>|z| [95% conf. interval]

x
i_cons 2.503789 .1969952 12.71 0.000 2.117686 2.889893
s_cons 1.555766 .1127296 13.80 0.000 1.33482 1.776712

auc .912102 .0123921 73.60 0.000 .8878139 .9363902

https://www.stata.com/manuals/rrocfitpostestimation.pdf#rrocfitpostestimation
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. rocfit d x, continuous(10) nolog
Binormal model of d on x Number of obs = 500
Goodness-of-fit chi2(7) = 1.33
Prob > chi2 = 0.9877
Log likelihood = -914.15521

Coefficient Std. err. z P>|z| [95% conf. interval]

intercept 2.647297 0.277012 9.56 0.000 2.104362 3.190231
slope (*) 1.670103 0.195433 3.43 0.001 1.287062 2.053145

/cut1 -2.079091 0.153221 -13.57 0.000 -2.379398 -1.778783
/cut2 -1.383360 0.093448 -14.80 0.000 -1.566515 -1.200205
/cut3 -0.905227 0.075606 -11.97 0.000 -1.053413 -0.757041
/cut4 -0.252654 0.065679 -3.85 0.000 -0.381382 -0.123925
/cut5 0.310051 0.065913 4.70 0.000 0.180863 0.439239
/cut6 0.915048 0.072958 12.54 0.000 0.772054 1.058042
/cut7 1.512188 0.092153 16.41 0.000 1.331570 1.692805
/cut8 2.095878 0.136662 15.34 0.000 1.828026 2.363731
/cut9 2.516563 0.181939 13.83 0.000 2.159970 2.873156

Indices from binormal fit
Index Estimate Std. err. [95% conf. interval]

ROC area 0.913079 0.012942 0.887713 0.938445
delta(m) 1.585110 0.107531 1.374352 1.795868

d(e) 1.982917 0.121777 1.744239 2.221596
d(a) 1.923275 0.115671 1.696565 2.149985

(*) z test for slope==1
. rocplot, plotopts(msymbol(i)) lineopts(lpattern(dash))
> norefline addplot(line _roc_x _fpr_x, sort(_fpr_x _roc_x)
> lpattern(solid)) aspectratio(1) legend(off)
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Area under curve = 0.9131  se(area) = 0.0129

We find that the curves are close. As before, the rocfit estimates are lower for the slope and intercept
than under rocreg. TheAUC estimates are close. Though the slope confidence interval contains 1, a high
ROC intercept suggests a steep ROC curve and thus a powerful test.
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Stored results
Nonparametric rocreg stores the following in e():

Scalars

e(N) number of observations

e(N strata) number of covariate strata

e(N clust) number of clusters

e(level) confidence level for bootstrap CIs

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable, reference variable

e(ctrlmodel) covariate-adjustment specification

e(ctrlcov) covariate-adjustment variables

e(pvc) percentile value calculation method

e(title) title in estimation output

e(tiecorrected) tiecorrected, if specified
e(nobootstrap) nobootstrap, if specified
e(rngstate) random-number state used in bootstrap, if bootstrap was performed

e(breps) number of bootstrap resamples, if bootstrap performed

e(bootcc) bootcc, if specified
e(nobstrata) nobstrata, if specified
e(clustvar) name of cluster variable

e(exp#) expression for the #th statistic

e(roc) false-positive rates where ROC was estimated

e(invroc) ROC values where false-positive rates were estimated

e(pauc) false-positive rates where pAUC was estimated

e(auc) indicates thatAUC was calculated

e(vce) bootstrap
e(properties) b V (or b if bootstrap not performed)

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(ci normal) normal-approximation confidence intervals

e(ci percentile) percentile confidence intervals

e(ci bc) bias-corrected confidence intervals

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Parametric, bootstrap rocreg stores the following in e():

Scalars

e(N) number of observations

e(N strata) number of covariate strata

e(N clust) number of clusters

e(level) confidence level for bootstrap CIs

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable, reference variable

e(ctrlmodel) covariate-adjustment specification

e(ctrlcov) covariate-adjustment variables

e(pvc) percentile value calculation method

e(title) title in estimation output

e(tiecorrected) tiecorrected, if specified
e(probit) probit, if specified
e(roccov) ROC covariates

e(fprpts) number of points used as false-positive rate fit points

e(ctrlfprall) indicates whether all observed false-positive rates were used as fit points

e(nobootstrap) nobootstrap, if specified
e(rngstate) random-number state used in bootstrap

e(breps) number of bootstrap resamples

e(bootcc) bootcc, if specified
e(nobstrata) nobstrata, if specified
e(clustvar) name of cluster variable

e(exp#) expression for the #th statistic

e(vce) bootstrap
e(properties) b V (or b if nobootstrap is specified)

e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(b bs) bootstrap estimates

e(reps) number of nonmissing results

e(bias) estimated biases

e(se) estimated standard errors

e(z0) median biases

e(ci normal) normal-approximation confidence intervals

e(ci percentile) percentile confidence intervals

e(ci bc) bias-corrected confidence intervals

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Parametric, maximum likelihood rocreg stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) rocreg
e(cmdline) command as typed

e(classvars) classification variable list

e(refvar) status variable

e(ctrlmodel) linear
e(ctrlcov) control population covariates

e(roccov) ROC covariates

e(probit) probit, if specified
e(pvc) normal
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(vce) cluster if clustering used

e(vcetype) robust if multiple classifiers or clustering used

e(ml) ml, if specified
e(predict) program used to implement predict

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Assume that we applied a diagnostic test to each of 𝑁0 control and 𝑁1 case subjects. Further assume

that the higher the outcome value of the diagnostic test, the higher the risk of the subject being abnormal.

Let 𝑦1𝑖, 𝑖 = 1, 2, . . . , 𝑁1, and 𝑦0𝑗, 𝑗 = 1, 2, . . . , 𝑁0, be the values of the diagnostic test for the case

and control subjects, respectively. The true status variable 𝐷 identifies an observation as case 𝐷 = 1 or

control 𝐷 = 0. The CDF of the classifier 𝑌 is 𝐹. Conditional on 𝐷, we write the CDF as 𝐹𝐷.

Methods and formulas are presented under the following headings:

ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood
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ROC statistics
Weobtain these definitions and their estimates from Pepe (2003) and Pepe, Longton, and Janes (2009).

The false-positive and true-positive rates at cutoff 𝑐 are defined as

FPR (𝑦) = 𝑃 (𝑌 ≥ 𝑦∣𝐷 = 0)

TPR (𝑦) = 𝑃 (𝑌 ≥ 𝑦∣𝐷 = 1)

The true-positive rate, or ROC value at false-positive rate 𝑢, is given by

ROC (𝑢) = 𝑃 (1 − 𝐹0 (𝑌) ≤ 𝑢∣𝐷 = 1)

When 𝑌 is continuous, the false-positive rate can be written as

FPR (𝑦) = 1 − 𝐹0 (𝑦)

The empirical CDF for the sample 𝑧1, . . . , 𝑧𝑛 is given by

̂𝐹 (𝑧) =
𝑛

∑
𝑖=1

𝐼 (𝑧 < 𝑧𝑖)
𝑛

The empirical estimates F̂PR and R̂OC both use this empirical CDF estimator.

The area under the ROC curve is defined as

AUC = ∫
1

0
ROC (𝑢) 𝑑𝑢

The partial area under the ROC curve for false-positive rate 𝑎 is defined as

pAUC (𝑎) = ∫
𝑎

0
ROC (𝑢) 𝑑𝑢

The nonparametric estimate for the AUC is given by

ÂUC =
𝑁1

∑
𝑖=1

1 − F̂PR (𝑦1𝑖)
𝑁1

The nonparametric estimate of pAUC is given by

p̂AUC (𝑎) =
𝑁1

∑
𝑖=1

max {1 − F̂PR (𝑦1𝑖) − (1 − 𝑎), 0}
𝑁1

For discrete classifiers, a correction term is subtracted from the false-positive rate estimate so that the

ÂUC and p̂AUC estimates correspond with a trapezoidal approximation to the area of the ROC curve.

FPR𝑐 (𝑦) = 1 − ̂𝐹0 (𝑦) − 1
2

𝑁0

∑
𝑗=1

𝐼 (𝑦 = 𝑦0𝑗)
𝑁0
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In the nonparametric estimation of the ROC curve, all inference is performed using the bootstrap
command (see [R] bootstrap). rocreg also allows users to calculate the ROC curve and related statistics

by assuming a normal control distribution. So these formulas are updated by replacing 𝐹0 by Φ (with

adjustment of the marginal mean and variance of the control distribution).

Covariate-adjusted ROC curves
Suppose we observe covariate vector 𝑍 in addition to the classifier 𝑌. Let 𝑍1𝑖, 𝑖 = 1, 2, . . . , 𝑁1, and

𝑍0𝑗, 𝑗 = 1, 2, . . . , 𝑁0, be the values of the covariates for the case and control subjects, respectively.

The covariate-adjusted ROC curve is defined by Janes and Pepe (2009) as

AROC (𝑡) = 𝐸 {ROC (𝑡∣𝑍0)}

It is calculated by replacing the marginal control CDF estimate, ̂𝐹0, with the conditional control CDF

estimate, ̂𝐹0𝑍. If we used a normal control CDF, then we would replace the marginal control mean and

variance with the conditional control mean and variance. The formulas of the previous section can be

updated for covariate-adjustment by making this substitution of the conditional CDF for the marginal CDF

in the false-positive rate calculation.

Because the calculation of the ROC value is now performed based on the conditionally calculated

false-positive rate, no further conditioning is made in its calculation under nonparametric estimation.

rocreg supports covariate adjustment with stratification and linear regression. Under stratification,

separate parameters are estimated for the control distribution at each level of the covariates. Under linear

regression, the classifier is regressed on the covariates over the control distribution, and the resulting

coefficients serve as parameters for ̂𝐹0𝑍.

Parametric ROC curves: Estimating equations
Under nonparametric estimation of the ROC curve with covariate adjustment, no further conditioning

occurs in the ROC curve calculation beyond the use of covariate-adjusted false-positive rates as inputs.

Under parametric estimation of the ROC curve, we can relax this restriction. We model the ROC curve

as a cumulative distribution function 𝑔 (standard normal Φ) invoked with input of a linear polynomial

in the corresponding quantile function (here Φ−1) invoked on the false-positive rate 𝑢. The constant

intercept of the polynomial may depend on covariates; the slope term 𝛼 (quantile coefficient) may not.

ROC (𝑢) = 𝑔{x′β + 𝛼𝑔−1 (𝑢)}

Pepe (2003) notes that having a binormal ROC (𝑔 = Φ) is equivalent to specifying that somemonotone
transformation of the data exists to make the case and control classifiers normally distributed. This

specification applies to the marginal case and control.

Under weak assumptions about the control distribution of the classifier, we can fit this model by using

estimating equations (Alonzo and Pepe 2002). The method can be used without covariate effects in the

second stage, assuming a parametric model for the single ROC curve. Using the Alonzo and Pepe (2002)

method, the covariate-adjusted ROC curve may be fit parametrically. The marginal ROC curve, involving

no covariates in either stage of estimation, can be fit parametrically as well. In addition to the Alonzo and

Pepe (2002) explanation, further details are given in Pepe, Longton, and Janes (2009); Janes, Longton,

and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
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The algorithm can be described as follows:

1. Estimate the false-positive rates of the classifier fpr. These may be computed in any fashion

outlined so far: covariate-adjusted, empirically, etc.

2. Determine a set of 𝑛𝑝 false-positive rates to use as fitting points 𝑓1, . . . , 𝑓𝑛𝑝
. These may be an

equispaced grid on (0, 1) or the set of observed false-positive rates from part 1.

3. Expand the case observation portion of the data to include a subobservation for each fitting point.

So there are now 𝑁1(𝑛𝑝 − 1) additional observations in the data.

4. Generate a new dummy variable u. For subobservation 𝑗, u = 𝐼 (fpr ≤ 𝑓𝑗).

5. Generate a new variable quant containing the quantiles of the false-positive rate fitting points.

For subobservation 𝑗, quant = 𝑔−1 (𝑓𝑗).

6. Perform a binary regression (probit, 𝑔 = Φ) of fpr on the covariates x and quantile variable

quant.

The coefficients of part 6 are the coefficients of the ROC model. The coefficients of the covariates

coincide naturally with estimates of β, and the 𝛼 parameter is estimated by the coefficient on quant.
Because the method is so general and makes few distributional assumptions, bootstrapping must be per-

formed for inference. If multiple classifiers are to be fit, the algorithm is performed separately for each

in each bootstrap, and the bootstrap is used to estimate covariances.

We mentioned earlier that in parametric estimation, the AUC was the only summary parameter that

could be estimated initially. This is true when we fit the marginal probit model because there are no

covariates in part 6 of the algorithm.

To calculate the AUC statistic under a marginal probit model, we use the formula

AUC = Φ ( 𝛽0√
1 + 𝛼2

)

Alternatively, the AUC for the probit model can be calculated as pAUC(1) in postestimation. Under both

models, bootstrapping is performed for inference on the AUC.

Parametric ROC curves: Maximum likelihood
rocreg supports another form of parametric ROC estimation: maximum likelihood with a normally

distributed classifier. This method assumes that the classifier is a normal linear model on certain co-

variates, and the covariate effect and variance of the classifier may change between the case and control

populations. The model is defined in Pepe (2003, 145).

𝑦 = z′β
0

+ 𝐷x′β
1

+ 𝜎 (𝐷) 𝜖

Our error term, 𝜖, is a standard normal random variable. The variable𝐷 is our true status variable, being 1

for the case population observations and 0 for the control population observations. The variance function

𝜎 is defined as

𝜎 (𝐷) = 𝜎0 (𝐷 = 0) + 𝜎1 (𝐷 = 1)

This provides two variance parameters in the model and does not depend on covariate values.
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Under this model, the ROC curve is easily derived to be

ROC (𝑢) = Φ [ 1
𝜎1

{x′β
1

+ 𝜎0Φ−1 (𝑢)}]

We reparameterize the model, creating the parameters 𝛽𝑖 = 𝜎−1
1 𝛽1𝑖 and 𝛼 = 𝜎−1

1 𝜎0. We refer to 𝛽0 as

the constant intercept, i cons. The parameter 𝛼 is referred to as the constant slope, s cons.

ROC (𝑢) = Φ{x′β + 𝛼Φ−1 (𝑢)}

The original model defining the classifier 𝑦 leads to the following single observation likelihoods for

𝐷 = 0 and 𝐷 = 1:

𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷 = 0, 𝑦, z, x) = 1√

2𝜋𝜎0
exp

−(𝑦 − z′β
0
)2

2𝜎2
0

𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷 = 1, 𝑦, z, x) = 1√

2𝜋𝜎1
exp

−(𝑦 − z′β
0

− x′β
1
)2

2𝜎2
1

These can be combined to yield the observation-level log likelihood:

ln𝐿(β
0
,β

1
, 𝜎1, 𝜎0, ∣𝐷, 𝑦, z, x) = − ln2𝜋

2

− 𝐼 (𝐷 = 0) { ln𝜎0 +
(𝑦 − z′β

0
)2

2𝜎2
0

}

− 𝐼 (𝐷 = 1) { ln𝜎1 +
(𝑦 − z′β

0
− x′β

1
)2

2𝜎2
1

}

When there are multiple classifiers, each classifier is fit separately with maximum likelihood. Then,

the results are combined by stacking the scores and using the sandwich variance estimator. For more

information, see [R] suest and the references White (1982); Rogers (1993); and White (1996).
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