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Description
regress performs ordinary least-squares linear regression. regress can also perform weighted esti-

mation, compute robust and cluster–robust standard errors, and adjust results for complex survey designs.

Quick start
Simple linear regression of y on x1

regress y x1

Regression of y on x1, x2, and indicators for categorical variable a
regress y x1 x2 i.a

Add the interaction between continuous variable x2 and a
regress y x1 c.x2##i.a

Fit model for observations where v1 is greater than zero

regress y x1 x2 i.a if v1>0

With cluster–robust standard errors for clustering by levels of cvar
regress y x1 x2 i.a, vce(cluster cvar)

With cluster–robust standard errors for clustering by levels of cvar1 and cvar2
regress y x1 x2 i.a, vce(cluster cvar1 cvar2)

With bootstrap standard errors

regress y x1 x2 i.a, vce(bootstrap)

Report standardized coefficients

regress y x1 x2 i.a, beta

Adjust for complex survey design using svyset data

svy: regress y x1 x2 i.a

Use sampling weight wvar
regress y x1 x2 i.a [pweight=wvar]

Menu
Statistics > Linear models and related > Linear regression
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Syntax
regress depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

hascons has user-supplied constant

tsscons compute total sum of squares with constant; seldom used

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvarlist, bootstrap,
jackknife, hc2 [ clustvar ], or hc3

Reporting

level(#) set confidence level; default is level(95)
beta report standardized beta coefficients

eform(string) report exponentiated coefficients and label as string

depname(varname) substitute dependent variable name; programmer’s option

clustertable display table of multiway cluster combinations

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

noheader suppress output header

notable suppress coefficient table

plus make table extendable

mse1 force mean squared error to 1
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bayesboot, bootstrap, by, collect, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby,
stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: regress and
[FMM] fmm: regress.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

hascons, tsscons, vce(), beta, noheader, notable, plus, depname(), mse1, and weights are not allowed with the svy
prefix; see [SVY] svy.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, plus, mse1, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rregress.pdf#rregressSyntaxweight
https://www.stata.com/manuals/rregress.pdf#rregressOptionsvcetype
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rregress.pdf#rregressOptionsdisplay_options
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesregress.pdf#bayesbayesregress
https://www.stata.com/manuals/fmmfmmregress.pdf#fmmfmmregress
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

noconstant; see [R] Estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent vari-

ables in indepvars. Some caution is recommended when specifying this option, as resulting estimates

may not be as accurate as they otherwise would be. Use of this option requires “sweeping” the constant

last, so the moment matrix must be accumulated in absolute rather than deviation form. This option

may be safely specified when the means of the dependent and independent variables are all reasonable

and there is not much collinearity between the independent variables. The best procedure is to view

hascons as a reporting option—estimate with and without hascons and verify that the coefficients

and standard errors of the variables not affected by the identity of the constant are unchanged.

tsscons forces the total sum of squares to be computed as though the model has a constant, that is, as

deviations from the mean of the dependent variable. This is a rarely used option that has an effect

only when specified with noconstant. It affects the total sum of squares and all results derived from

the total sum of squares.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (ols), that are robust to some kinds of misspecification (robust), that allow for in-

tragroup correlation (cluster clustvarlist), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

vce(cluster clustvarlist) specifies that standard errors allow for intragroup correlation within

groups defined by one or more variables in clustvarlist, relaxing the usual requirement that

the observations be independent. For example, vce(cluster clustvar1) produces clus-

ter–robust standard errors that allow for observations that are independent across groups defined

by clustvar1 but not necessarily independent within groups. You could also type vce(cluster
clustvar1 clustvar2 . . . cluster𝑝) to account for correlation within groups formed by 𝑝 vari-
ables (multiway clustering).

regress also allows the following:

vce(hc2 [ clustvar ][ , dfadjust ]) and vce(hc3) specify alternative bias corrections for the robust

variance calculation. vce(hc2) and vce(hc3) may not be specified with the svy prefix. In the

unclustered case, vce(robust) uses �̂�2
𝑗 = {𝑛/(𝑛 − 𝑘)}𝑢2

𝑗 as an estimate of the variance of the

𝑗th observation, where 𝑛 is the number of observations, 𝑘 is the number of regressors, 𝑢𝑗 is the

calculated residual, and 𝑛/(𝑛 − 𝑘) is included to improve the overall estimate’s small-sample

properties.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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vce(hc2) instead uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗) as the observation’s variance estimate, where ℎ𝑗𝑗 is the

diagonal element of the hat (projection) matrix. This estimate is unbiased if the model really

is homoskedastic. vce(hc2) tends to produce slightly more conservative confidence intervals.

vce(hc2 clustvar) produces estimates that allow for intragroup correlation within groups defined

by clustvar. dfadjust computes the Bell and McCaffrey (2002) adjusted degrees of freedom

based on clustvar. Note that dfadjust does not affect multiple-imputation results when the com-

mand is used with mi estimate. See Methods and formulas for a description of the computation

when clustvar is specified.

vce(hc3) uses 𝑢2
𝑗 /(1− ℎ𝑗𝑗)2 as suggested by Davidson and MacKinnon (1993), who report that

this method tends to produce better results when the model really is heteroskedastic. vce(hc3)
produces confidence intervals that tend to be even more conservative.

See Davidson and MacKinnon (1993, 554–556) and Angrist and Pischke (2009, 294–308) for

more discussion on these two bias corrections.

� � �
Reporting �

level(#); see [R] Estimation options.

beta asks that standardized beta coefficients be reported instead of confidence intervals. The beta co-

efficients are the regression coefficients obtained by first standardizing all variables to have a mean

of 0 and a standard deviation of 1. beta may not be specified with vce(cluster clustvarlist) or the

svy prefix.

eform(string) is used only in programs and ado-files that use regress to fit models other than linear

regression. eform() specifies that the coefficient table be displayed in exponentiated form as defined

in [R]Maximize and that string be used to label the exponentiated coefficients in the table.

depname(varname) is used only in programs and ado-files that use regress to fit models other than

linear regression. depname() may be specified only at estimation time. varname is recorded as

the identity of the dependent variable, even though the estimates are calculated using depvar. This

method affects the labeling of the output—not the results calculated—but could affect subsequent

calculations made by predict, where the residual would be calculated as deviations from varname

rather than depvar. depname() is most typically used when depvar is a temporary variable (see

[P] macro) used as a proxy for varname.

depname() is not allowed with the svy prefix.

clustertable displays a table reporting cluster combinations and the number of clusters per combina-

tion. This option is available only when vce(cluster clustvarlist) is specified with more than one

variable in clustvarlist to compute multiway cluster–robust standard errors.

display options: noci, nopvalues, dfci, dfpvalues, noomitted, vsquish, noemptycells,
baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.

dfci specifies that parameter degrees of freedom and confidence intervals be reported in the coeffi-

cient table.

dfpvalues specifies that parameter degrees of freedom and 𝑝-values be reported in the coefficient

table.

https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulas
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions


regress — Linear regression 5

The following options are available with regress but are not shown in the dialog box:

noheader suppresses the display of theANOVA table and summary statistics at the top of the output; only

the coefficient table is displayed. This option is often used in programs and ado-files.

notable suppresses display of the coefficient table.

plus specifies that the output table be made extendable. This option is often used in programs and

ado-files.

mse1 is used only in programs and ado-files that use regress to fit models other than linear regres-

sion and is not allowed with the svy prefix. mse1 sets the mean squared error to 1, forcing the

variance–covariance matrix of the estimators to be (X′X)−1 (see Methods and formulas below) and

affecting calculated standard errors. Degrees of freedom for 𝑡 statistics is calculated as 𝑛 rather than

𝑛 − 𝑘.
coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Ordinary least squares
Treatment of the constant
Robust standard errors
Weighted regression
Video examples

regress performs linear regression, including ordinary least squares and weighted least squares. See

[U] 27 Overview of Stata estimation commands for a list of other regression commands that may be

of interest. For a general discussion of linear regression, see Kutner et al. (2005).

See Stock and Watson (2019) and Wooldridge (2020) for an excellent treatment of estimation, infer-

ence, interpretation, and specification testing in linear regressionmodels. SeeWooldridge (2010, chap. 4)

for a more advanced discussion along the same lines.

See Hamilton (2013, chap. 7) and Cameron and Trivedi (2022, chap. 3) for an introduction to linear

regression using Stata. Dohoo, Martin, and Stryhn (2012, 2010) discuss linear regression using examples

from epidemiology, and Stata datasets and do-files used in the text are available. Cameron and Trivedi

(2022) discuss linear regression using econometric examples with Stata. Mitchell (2021) shows how to

use graphics and postestimation commands to understand a fitted regression model.

Chatterjee and Hadi (2012) explain regression analysis by using examples containing typical prob-

lems that youmight encounter when performing exploratory data analysis. We also recommendWeisberg

(2014), who emphasizes the importance of the assumptions of linear regression and problems resulting

from these assumptions. Becketti (2020) discusses regression analysis with an emphasis on time-series

data. Angrist and Pischke (2009) approach regression as a tool for exploring relationships, estimating

treatment effects, and providing answers to public policy questions. For a mathematically rigorous treat-

ment, see Peracchi (2001, chap. 6). Finally, see Plackett (1972) if you are interested in the history of

regression. Least squares, which dates back to the 1790s, was discovered independently by Legendre

and Gauss.

https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulas
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u27.pdf#u27OverviewofStataestimationcommands
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Ordinary least squares

Example 1: Basic linear regression
Suppose that we have data on the mileage rating and weight of 74 automobiles. The variables in our

data are mpg, weight, and foreign. The last variable assumes the value 1 for foreign and 0 for domestic
automobiles. We wish to fit the model

mpg = 𝛽0 + 𝛽1weight + 𝛽2foreign + 𝜖

This model can be fit with regress by typing

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

regress produces a variety of summary statistics along with the table of regression coefficients. At

the upper left, regress reports an analysis-of-variance (ANOVA) table. The column headings SS, df, and
MS stand for “sum of squares”, “degrees of freedom”, and “mean square”, respectively. In this example,

the total sum of squares is 2,443.5: 1,619.3 accounted for by the model and 824.2 left unexplained.

Because the regression included a constant, the total sum reflects the sum after removal of means, as does

the sum of squares due to the model. The table also reveals that there are 73 total degrees of freedom

(counted as 74 observations less 1 for the mean removal), of which 2 are consumed by the model, leaving

71 for the residual.

To the right of the ANOVA table are presented other summary statistics. The 𝐹 statistic associated

with the ANOVA table is 69.75. The statistic has 2 numerator and 71 denominator degrees of freedom.

The 𝐹 statistic tests the hypothesis that all coefficients excluding the constant are zero. The chance of

observing an 𝐹 statistic that large or larger is reported as 0.0000, which is Stata’s way of indicating a

number smaller than 0.00005. The 𝑅2 for the regression is 0.6627, and the 𝑅2 adjusted for degrees of

freedom (𝑅2
𝑎) is 0.6532. The root mean squared error, labeled Root MSE, is 3.4071. It is the square root

of the mean squared error reported for the residual in the ANOVA table.

Finally, Stata produces a table of the estimated coefficients. The first line of the table indicates that

the left-hand-side variable is mpg. Thereafter follow the estimated coefficients. Our fitted model is

mpg hat = 41.68 − 0.0066 weight − 1.65 foreign

Reported to the right of the coefficients in the output are the standard errors. For instance, the standard

error for the coefficient on weight is 0.0006371. The corresponding 𝑡 statistic is −10.34, which has a

two-sided significance level of 0.000. This number indicates that the significance is less than 0.0005.

The 95% confidence interval for the coefficient is [ −0.0079, −0.0053 ].
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Example 2: Transforming the dependent variable
If we had a graph comparing mpg with weight, we would notice that the relationship is distinctly

nonlinear. This is to be expected because energy usage per distance should increase linearly with weight,

but mpg is measuring distance per energy used. We could obtain a better model by generating a new

variable measuring the number of gallons used per 100 miles (gp100m) and then using this new variable

in our model:

gp100m = 𝛽0 + 𝛽1weight + 𝛽2foreign + 𝜖

We can now fit this model:

. generate gp100m = 100/mpg

. regress gp100m weight foreign
Source SS df MS Number of obs = 74

F(2, 71) = 113.97
Model 91.1761694 2 45.5880847 Prob > F = 0.0000

Residual 28.4000913 71 .400001287 R-squared = 0.7625
Adj R-squared = 0.7558

Total 119.576261 73 1.63803097 Root MSE = .63246

gp100m Coefficient Std. err. t P>|t| [95% conf. interval]

weight .0016254 .0001183 13.74 0.000 .0013896 .0018612
foreign .6220535 .1997381 3.11 0.003 .2237871 1.02032

_cons -.0734839 .4019932 -0.18 0.855 -.8750354 .7280677

Fitting the physically reasonable model increases our 𝑅2 to 0.7625.

Example 3: Obtaining beta coefficients
regress shares the features of all estimation commands. Among other things, this means that after

running a regression, we can use test to test hypotheses about the coefficients, estat vce to examine

the covariance matrix of the estimators, and predict to obtain predicted values, residuals, and influence

statistics. See [U] 20 Estimation and postestimation commands. Options that affect how estimates are

displayed, such as beta or level(), can be used when replaying results.

Suppose that we meant to specify the beta option to obtain beta coefficients (regression coefficients

normalized by the ratio of the standard deviation of the regressor to the standard deviation of the depen-

dent variable). Even though we forgot, we can specify the option now:

. regress, beta
Source SS df MS Number of obs = 74

F(2, 71) = 113.97
Model 91.1761694 2 45.5880847 Prob > F = 0.0000

Residual 28.4000913 71 .400001287 R-squared = 0.7625
Adj R-squared = 0.7558

Total 119.576261 73 1.63803097 Root MSE = .63246

gp100m Coefficient Std. err. t P>|t| Beta

weight .0016254 .0001183 13.74 0.000 .9870255
foreign .6220535 .1997381 3.11 0.003 .2236673

_cons -.0734839 .4019932 -0.18 0.855 .

https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Treatment of the constant
By default, regress includes an intercept (constant) term in the model. The noconstant option

suppresses it, and the hascons option tells regress that the model already has one.

Example 4: Suppressing the constant term
Wewish to fit a regression of the weight of an automobile against its length, and we wish to impose

the constraint that the weight is zero when the length is zero.

If we simply type regress weight length, we are fitting the model

weight = 𝛽0 + 𝛽1 length + 𝜖

Here a length of zero corresponds to a weight of 𝛽0. We want to force 𝛽0 to be zero or, equivalently,

estimate an equation that does not include an intercept:

weight = 𝛽1 length + 𝜖

We do this by specifying the noconstant option:

. regress weight length, noconstant
Source SS df MS Number of obs = 74

F(1, 73) = 3450.13
Model 703869302 1 703869302 Prob > F = 0.0000

Residual 14892897.8 73 204012.299 R-squared = 0.9793
Adj R-squared = 0.9790

Total 718762200 74 9713002.7 Root MSE = 451.68

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 16.29829 .2774752 58.74 0.000 15.74528 16.8513

In our data, length is measured in inches and weight in pounds. We discover that each inch of length

adds 16 pounds to the weight.
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Sometimes there is no need for Stata to include a constant term in the model. Most commonly, this

occurs when the model contains a set of mutually exclusive indicator variables. hascons is a variation

of the noconstant option—it tells Stata not to add a constant to the regression because the regression

specification already has one, either directly or indirectly.

For instance, we now refit ourmodel of weight as a function of length and include separate constants
for foreign and domestic cars by specifying bn.foreign. bn.foreign is factor-variable notation for

“no base for foreign” or “include all levels of variable foreign in the model”; see [U] 11.4.3 Factor

variables.

. regress weight length bn.foreign, hascons
Source SS df MS Number of obs = 74

F(2, 71) = 316.54
Model 39647744.7 2 19823872.3 Prob > F = 0.0000

Residual 4446433.7 71 62625.8268 R-squared = 0.8992
Adj R-squared = 0.8963

Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
Foreign -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Technical note
There is a subtle distinction between the hascons and noconstant options. We can most easily

reveal it by refitting the last regression, specifying noconstant rather than hascons:

. regress weight length bn.foreign, noconstant
Source SS df MS Number of obs = 74

F(3, 71) = 3802.03
Model 714315766 3 238105255 Prob > F = 0.0000

Residual 4446433.7 71 62625.8268 R-squared = 0.9938
Adj R-squared = 0.9936

Total 718762200 74 9713002.7 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
Foreign -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Comparing this output with that produced by the previous regress command, we see that they are

almost, but not quite, identical. The parameter estimates and their associated statistics—the second half

of the output—are identical. The overall summary statistics and the ANOVA table—the first half of the

output—are different, however.

In the first case, the 𝑅2 is shown as 0.8992; here it is shown as 0.9938. In the first case, the 𝐹 statistic

is 316.54; now it is 3,802.03. The numerator degrees of freedom is different as well. In the first case,

the numerator degrees of freedom is 2; now the degrees of freedom is 3. Which is correct?

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesregress_ex
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Both are. Specifying the hascons option causes regress to adjust theANOVA table and its associated
statistics for the explanatory power of the constant. The regression in effect has a constant; it is just

written in such a way that a separate constant is unnecessary. No such adjustment is made with the

noconstant option.

Technical note
When the hascons option is specified, regress checks to make sure that the model does in fact have

a constant term. If regress cannot find a constant term, it automatically adds one. Fitting a model of

weight on length and specifying the hascons option, we obtain

. regress weight length, hascons
note: option hascons false.

Source SS df MS Number of obs = 74
F(1, 72) = 613.27

Model 39461306.8 1 39461306.8 Prob > F = 0.0000
Residual 4632871.55 72 64345.4382 R-squared = 0.8949

Adj R-squared = 0.8935
Total 44094178.4 73 604029.841 Root MSE = 253.66

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 33.01988 1.333364 24.76 0.000 30.36187 35.67789
_cons -3186.047 252.3113 -12.63 0.000 -3689.02 -2683.073

Even though we specified hascons, regress included a constant, anyway. It also added a note to our

output: “note: option hascons false”.

Technical note
Even if the model specification effectively includes a constant term, we need not specify the hascons

option. regress is always on the lookout for collinear variables and omits them from the model. For

instance,

. regress weight length bn.foreign
note: 1.foreign omitted because of collinearity.

Source SS df MS Number of obs = 74
F(2, 71) = 316.54

Model 39647744.7 2 19823872.3 Prob > F = 0.0000
Residual 4446433.7 71 62625.8268 R-squared = 0.8992

Adj R-squared = 0.8963
Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coefficient Std. err. t P>|t| [95% conf. interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
Domestic 133.6775 77.47615 1.73 0.089 -20.80555 288.1605
Foreign 0 (omitted)

_cons -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385
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Robust standard errors
regress with the vce(robust) option substitutes a robust variance matrix calculation for the con-

ventional calculation, or if vce(cluster clustvarlist) is specified, allows relaxing the assumption of

independence within groups. How this method works is explained in [U] 20.22 Obtaining robust vari-

ance estimates. Below, we show how well this approach works.

Example 5: Heteroskedasticity and robust standard errors
Specifying the vce(robust) option is equivalent to requestingWhite-corrected standard errors in the

presence of heteroskedasticity. We use the automobile data and, in the process of looking at the energy

efficiency of cars, analyze a variable with considerable heteroskedasticity.

We will examine the amount of energy—measured in gallons of gasoline—that the cars in the data

need to move 1,000 pounds of their weight 100 miles. We are going to examine the relative efficiency

of foreign and domestic cars.

. generate gpmw = ((1/mpg)/weight)*100*1000

. summarize gpmw
Variable Obs Mean Std. dev. Min Max

gpmw 74 1.682184 .2426311 1.09553 2.30521

In these data, the engines consume between 1.10 and 2.31 gallons of gas to move 1,000 pounds of the

car’s weight 100 miles. If we ran a regression with conventional standard errors of gpmw on foreign,
we would obtain

. regress gpmw foreign
Source SS df MS Number of obs = 74

F(1, 72) = 20.07
Model .936705572 1 .936705572 Prob > F = 0.0000

Residual 3.36079459 72 .046677703 R-squared = 0.2180
Adj R-squared = 0.2071

Total 4.29750017 73 .058869865 Root MSE = .21605

gpmw Coefficient Std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0549487 4.48 0.000 .1366143 .3556909
_cons 1.609004 .0299608 53.70 0.000 1.549278 1.66873

regress with the vce(robust) option, on the other hand, reports

. regress gpmw foreign, vce(robust)
Linear regression Number of obs = 74

F(1, 72) = 13.13
Prob > F = 0.0005
R-squared = 0.2180
Root MSE = .21605

Robust
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0679238 3.62 0.001 .1107489 .3815563
_cons 1.609004 .0234535 68.60 0.000 1.56225 1.655758

https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
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The point estimates are the same (foreign cars need one-quarter gallon more gas), but the standard errors

differ by roughly 20%. Conventional regression reports the 95% confidence interval as [ 0.14, 0.36 ],
whereas the robust standard errors make the interval [ 0.11, 0.38 ].

Which is right? Notice that gpmw is a variable with considerable heteroskedasticity:

. tabulate foreign, summarize(gpmw)
Summary of gpmw

Car origin Mean Std. dev. Freq.

Domestic 1.6090039 .16845182 52
Foreign 1.8551565 .30186861 22

Total 1.6821844 .24263113 74

Thus, here we favor the robust standard errors. In [U] 20.22 Obtaining robust variance estimates,

we show another example using linear regression where it makes little difference whether we specify

vce(robust). The linear-regression assumptions were true, and we obtained nearly linear-regression

results. The advantage of the robust estimate is that in neither case did we have to check assumptions.

Technical note
regress purposefully suppresses displaying the ANOVA table when vce(robust) is specified. This

is done because the sums of squares are no longer appropriate for use in the usual hypothesis tests, even

though computationally the sums of squares remain the same. In the nonrobust setting, the 𝐹 statistic

reported by regress is defined in terms of the sums of squares, as in ANOVA. When vce(robust) is

specified, theANOVA test is not valid, and the 𝐹 statistic corresponds to aWald test based on the robustly

estimated variance matrix.

Some references give formulas for the 𝐹 statistic in terms of either 𝑅2 or the root MSE. It is not

appropriate to use those formulas for the 𝐹 statistic with robust standard errors because the 𝑅2 and root

MSE are calculated from the sums of squares. Moreover, the rootMSE can no longer be used as an estimate

for 𝜎 because there is no longer a single 𝜎 to estimate—the variance of the residual varies observation

by observation. However, regress continues to report the 𝑅2 and the root MSE in the robust setting

because those statistics are still usable in other settings. In particular, 𝑅2 remains valid as a goodness-

of-fit statistic.

Example 6: Alternative robust standard errors
The vce(hc2) and vce(hc3) options modify the robust variance calculation. In the context of linear

regression without clustering, the idea behind the robust calculation is somehow to measure 𝜎2
𝑗 , the

variance of the residual associated with the 𝑗th observation, and then to use that estimate to improve the
estimated variance of β̂. Because residuals have (theoretically and practically) mean 0, one estimate of
𝜎2

𝑗 is the observation’s squared residual itself—𝑢2
𝑗 . A finite-sample correction could improve that by

multiplying 𝑢2
𝑗 by 𝑛/(𝑛 − 𝑘), and, as a matter of fact, vce(robust) uses {𝑛/(𝑛 − 𝑘)}𝑢2

𝑗 as its estimate

of the residual’s variance.

https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
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vce(hc2) and vce(hc3) use alternative estimators of the observation-specific variances. For in-

stance, if the residuals are homoskedastic, we can show that the expected value of 𝑢2
𝑗 is 𝜎2(1 − ℎ𝑗𝑗),

where ℎ𝑗𝑗 is the 𝑗th diagonal element of the projection (hat) matrix. ℎ𝑗𝑗 has average value 𝑘/𝑛, so 1−ℎ𝑗𝑗
has average value 1−𝑘/𝑛 = (𝑛−𝑘)/𝑛. Thus, the default robust estimator �̂�𝑗 = {𝑛/(𝑛−𝑘)}𝑢2

𝑗 amounts

to dividing 𝑢2
𝑗 by the average of the expectation.

vce(hc2) divides 𝑢2
𝑗 by 1 − ℎ𝑗𝑗 itself, so it should yield better estimates if the residuals really are

homoskedastic. vce(hc3) divides 𝑢2
𝑗 by (1− ℎ𝑗𝑗)2 and has no such clean interpretation. Davidson and

MacKinnon (1993) show that 𝑢2
𝑗 /(1−ℎ𝑗𝑗)2 approximates a more complicated estimator that they obtain

by jackknifing (MacKinnon and White 1985). Angrist and Pischke (2009) also illustrate the relative

merits of these adjustments.

Here are the results of refitting our efficiency model using vce(hc2) and vce(hc3):

. regress gpmw foreign, vce(hc2)
Linear regression Number of obs = 74

F(1, 72) = 12.93
Prob > F = 0.0006
R-squared = 0.2180
Root MSE = .21605

Robust HC2
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .0684669 3.60 0.001 .1096662 .3826389
_cons 1.609004 .0233601 68.88 0.000 1.562437 1.655571

. regress gpmw foreign, vce(hc3)
Linear regression Number of obs = 74

F(1, 72) = 12.38
Prob > F = 0.0008
R-squared = 0.2180
Root MSE = .21605

Robust HC3
gpmw Coefficient std. err. t P>|t| [95% conf. interval]

foreign .2461526 .069969 3.52 0.001 .1066719 .3856332
_cons 1.609004 .023588 68.21 0.000 1.561982 1.656026
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Example 7: Standard errors for clustered data
The vce(cluster clustvarlist) and vce(hc2 clustvar) options relax the assumption of indepen-

dence. Below, we have 28,534 observations on 4,711 women aged 14–46 years. Data were collected

on these women between 1968 and 1988. We are going to fit a classic earnings model, and we begin by

ignoring that the majority of the women in the dataset have multiple observations.

. use https://www.stata-press.com/data/r19/regsmpl, clear
(NLS women 14-26 in 1968)
. regress ln_wage age c.age#c.age tenure

Source SS df MS Number of obs = 28,101
F(3, 28097) = 1842.45

Model 1054.52501 3 351.508335 Prob > F = 0.0000
Residual 5360.43962 28,097 .190783344 R-squared = 0.1644

Adj R-squared = 0.1643
Total 6414.96462 28,100 .228290556 Root MSE = .43679

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .0752172 .0034736 21.65 0.000 .0684088 .0820257

c.age#c.age -.0010851 .0000575 -18.86 0.000 -.0011979 -.0009724

tenure .0390877 .0007743 50.48 0.000 .0375699 .0406054
_cons .3339821 .0504413 6.62 0.000 .2351148 .4328495

The number of observations in our model is 28,101 because Stata drops observations that have a missing

value for one or more of the variables in the model. We can be reasonably certain that the standard errors

reported above are meaningless. Without a doubt, a woman with higher-than-average wages in one year

typically has higher-than-average wages in other years, and so the residuals are not independent. One

way to deal with this is to use cluster–robust standard errors. We do this by specifying vce(cluster
id) or vce(hc2 id), which treat only observations with different person ids as truly independent:

. regress ln_wage age c.age#c.age tenure, vce(cluster id)
Linear regression Number of obs = 28,101

F(3, 4698) = 748.82
Prob > F = 0.0000
R-squared = 0.1644
Root MSE = .43679

(Std. err. adjusted for 4,699 clusters in idcode)

Robust
ln_wage Coefficient std. err. t P>|t| [95% conf. interval]

age .0752172 .0045711 16.45 0.000 .0662557 .0841788

c.age#c.age -.0010851 .0000778 -13.94 0.000 -.0012377 -.0009325

tenure .0390877 .0014425 27.10 0.000 .0362596 .0419157
_cons .3339821 .0641918 5.20 0.000 .208136 .4598282

For comparison, we focus on the tenure coefficient, which in economics jargon can be interpreted as the

rate of return for keeping your job. The 95% confidence interval we previously estimated—an interval

we do not believe—is [ 0.038, 0.041 ]. The robust interval is twice as wide, being [ 0.036, 0.042 ]. For
this example, vce(hc2 id) gives standard errors similar to vce(cluster id).
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Another possible way to account for the lack of independence is to fit a random-effects model. Here

is the random-effects result:

. xtreg ln_wage age c.age#c.age tenure, re
Random-effects GLS regression Number of obs = 28,101
Group variable: idcode Number of groups = 4,699
R-squared: Obs per group:

Within = 0.1370 min = 1
Between = 0.2154 avg = 6.0
Overall = 0.1608 max = 15

Wald chi2(3) = 4717.05
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

age .0568296 .0026958 21.08 0.000 .0515459 .0621132

c.age#c.age -.0007566 .0000447 -16.93 0.000 -.0008441 -.000669

tenure .0260135 .0007477 34.79 0.000 .0245481 .0274789
_cons .6136792 .0394611 15.55 0.000 .5363368 .6910216

sigma_u .33542449
sigma_e .29674679

rho .56095413 (fraction of variance due to u_i)

Robust regression estimated the 95% interval [ 0.036, 0.042 ], and xtreg (see [XT] xtreg) estimates

[ 0.025, 0.027 ]. Which is better? The random-effects regression estimator assumes a lot. We can check

some of these assumptions by performing a Hausman test. Using estimates (see [R] estimates store),

we store the random-effects estimation results, and then we run the required fixed-effects regression to

perform the test.

. estimates store random

. xtreg ln_wage age c.age#c.age tenure, fe
Fixed-effects (within) regression Number of obs = 28,101
Group variable: idcode Number of groups = 4,699
R-squared: Obs per group:

Within = 0.1375 min = 1
Between = 0.2066 avg = 6.0
Overall = 0.1568 max = 15

F(3, 23399) = 1243.00
corr(u_i, Xb) = 0.1380 Prob > F = 0.0000

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

age .0522751 .002783 18.78 0.000 .0468202 .05773

c.age#c.age -.0006717 .0000461 -14.56 0.000 -.0007621 -.0005813

tenure .021738 .000799 27.21 0.000 .020172 .023304
_cons .687178 .0405944 16.93 0.000 .6076103 .7667456

sigma_u .38743138
sigma_e .29674679

rho .6302569 (fraction of variance due to u_i)

F test that all u_i=0: F(4698, 23399) = 7.98 Prob > F = 0.0000

https://www.stata.com/manuals/xtxtreg.pdf#xtxtreg
https://www.stata.com/manuals/restimatesstore.pdf#restimatesstore
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. hausman . random
Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
. random Difference Std. err.

age .0522751 .0568296 -.0045545 .0006913
c.age#c.age -.0006717 -.0007566 .0000849 .0000115

tenure .021738 .0260135 -.0042756 .0002816

b = Consistent under H0 and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under H0; obtained from xtreg.

Test of H0: Difference in coefficients not systematic
chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 336.62
Prob > chi2 = 0.0000

The Hausman test casts grave suspicions on the random-effects model we just fit, so we should be careful

in interpreting those results.

Meanwhile, our robust regression results still stand, as long as we are careful about the interpretation.

The correct interpretation is that, if the data collection were repeated (on women sampled the sameway as

in the original sample), and if we were to refit the model, 95% of the time we would expect the estimated

coefficient on tenure to be in the range [ 0.036, 0.042 ].
Evenwith robust regression, wemust be careful about going beyond that statement. Here theHausman

test is probably picking up something that differs within and between person, which would cast doubt

on our robust regression model in terms of interpreting [ 0.036, 0.042 ] to contain the rate of return for

keeping a job, economywide, for all women, without exception.
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Let’s take this example a bit further by also recognizing workers with the same education level, grade,
may be more alike than those with different education levels. Here we will use multiway clustering

(Cameron, Gelbach, andMiller 2008) to account for correlations within individuals over years and within

education levels, assuming observations from different people and different education level are indepen-

dent.

. regress ln_wage age c.age#c.age tenure, vce(cluster idcode grade) clustertable
Linear regression Number of obs = 28,099
Clusters per comb.: Cluster comb. = 3

min = 19 F(3, 18) = 247.23
avg = 3,138 Prob > F = 0.0000
max = 4,697 R-squared = 0.1644

Adj R-squared = 0.1644
Root MSE = 0.4368

Clusters
Cluster combination per comb.

idcode 4,697
grade 19

idcode#grade 4,697

(Std. err. adjusted for multiway clustering)

Robust
ln_wage Coefficient std. err. t P>|t| [95% conf. interval]

age .0751665 .018361 4.09 0.001 .0365914 .1137415

c.age#c.age -.0010842 .0002504 -4.33 0.000 -.0016103 -.0005581

tenure .0391104 .0018302 21.37 0.000 .0352653 .0429554
_cons .334631 .2769961 1.21 0.243 -.2473162 .9165782

Cluster combinations formed by idcode and grade.

With the clustertable option, the output includes a table that describes the cluster combinations and

reports the number of levels for each cluster combination. We clustered on two variables, so there are

three cluster combinations, and, in general, for 𝑝 cluster variables, there are 𝑝2 − 1 cluster combinations.

The 𝑡-statistic degrees of freedom is chosen from the cluster combination that has the smallest number of

levels. In this case, we have 19−1 = 18 degrees of freedom, and theWald test𝐹 statistic, computed from

the cluster–robust VCE, has a denominator degrees of freedom of 18. The 95% confidence interval for

tenure increases slightly to [ 0.035, 0.043 ]. Yet the confidence intervals here are not strictly comparable;
this model is fit to two fewer observations because of missing values in the cluster variable grade, and
we conjecture that observations are correlated within grade.
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Weighted regression
regress can perform weighted and unweighted regression. We indicate the weight by specifying the

[weight] qualifier.

Example 8: Using means as regression variables
We have census data recording the deathrate (drate) and median age (medage) for each state. The

data also record the region of the country in which each state is located and the overall population of the

state:

. use https://www.stata-press.com/data/r19/census9
(1980 Census data by state)
. describe
Contains data from https://www.stata-press.com/data/r19/census9.dta
Observations: 50 1980 Census data by state

Variables: 6 2 Dec 2024 15:22

Variable Storage Display Value
name type format label Variable label

state str13 %-13s State
state2 str2 %-2s Two-letter state abbreviation
drate int %9.0g Deathrate
pop long %12.0gc Population
medage float %9.2f Median age
region byte %-8.0g cenreg Census region

Sorted by:

Wecan use factor variables to include dummy variables for region. Because the variables in the regression

reflect means rather than individual observations, the appropriate method of estimation is analytically

weighted least squares (Davidson andMacKinnon 2004, 261–262), where the weight is total population:

. regress drate medage i.region [aweight=pop]
(sum of wgt is 225,907,472)

Source SS df MS Number of obs = 50
F(4, 45) = 37.21

Model 4096.6093 4 1024.15232 Prob > F = 0.0000
Residual 1238.40987 45 27.5202192 R-squared = 0.7679

Adj R-squared = 0.7472
Total 5335.01916 49 108.877942 Root MSE = 5.246

drate Coefficient Std. err. t P>|t| [95% conf. interval]

medage 4.283183 .5393329 7.94 0.000 3.196911 5.369455

region
N Cntrl .3138738 2.456431 0.13 0.899 -4.633632 5.26138

South -1.438452 2.320244 -0.62 0.538 -6.111663 3.234758
West -10.90629 2.681349 -4.07 0.000 -16.30681 -5.505777

_cons -39.14727 17.23613 -2.27 0.028 -73.86262 -4.431915

Toweight the regression by population, we added the qualifier [aweight=pop] to the end of the regress
command. Stata informed us that the sum of the weight is 2.2591 × 108; there were approximately 226

million people residing in the United States according to our 1980 data.
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In the weighted regression, we see that the coefficient on West is statistically significant but that

the coefficients on N Cntrl and South are not. We use testparm to test the joint significance of the

region variable. Because we fit a weighted regression, testparm uses the appropriately weighted

variance–covariance matrix.

. testparm i.region
( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 45) = 9.84
Prob > F = 0.0000

The results indicate that the region variables are jointly significant. Note that we could have performed

this same test by typing contrast region. You may prefer to use the contrast command because, in

addition to the joint test, you can perform other tests such as comparisons of each region’s mean to the

grand mean; see [R] contrast for more information.

regress also accepts frequency weights (fweights). Frequency weights are appropriate when the

data do not reflect cell means but instead represent replicated observations. Specifying aweights or
fweights will not change the parameter estimates, but it will change the corresponding significance

levels.

For instance, if we specified [fweight=pop] in the weighted regression example above—which

would be statistically incorrect—Stata would treat the data as if the data represented 226 million inde-

pendent observations on death rates and median age. The data most certainly do not represent that—they

represent 50 observations on state averages.

With aweights, Stata treats the number of observations on the process as the number of observations
in the data. When we specify fweights, Stata treats the number of observations as if it were equal to the
sum of the weights; see Methods and formulas below.

Technical note
A frequent inquiry sent to StataCorp Technical Services is to describe the effect of specifying

[aweight=exp] with regress in terms of transformation of the dependent and independent variables.

The mechanical answer is that typing

. regress y x1 x2 [aweight=n]

is equivalent to fitting the model

𝑦𝑗√𝑛𝑗 = 𝛽0√𝑛𝑗 + 𝛽1𝑥1𝑗√𝑛𝑗 + 𝛽2𝑥2𝑗√𝑛𝑗 + 𝑢𝑗√𝑛𝑗

This regression will reproduce the coefficients and covariance matrix produced by the aweighted regres-
sion. The mean squared errors (estimates of the variance of the residuals) will, however, be different.

The transformed regression reports 𝑠2
𝑡 , an estimate of Var(𝑢𝑗

√𝑛𝑗). The aweighted regression reports

𝑠2
𝑎, an estimate of Var(𝑢𝑗

√𝑛𝑗√𝑁/ ∑𝑘 𝑛𝑘), where 𝑁 is the number of observations. Thus,

𝑠2
𝑎 = 𝑁

∑𝑘 𝑛𝑘
𝑠2

𝑡 = 𝑠2
𝑡

𝑛
(1)

The logic for this adjustment is as follows: Consider the model

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑢

https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/rregress.pdf#rregressRemarksandexamplesregress_ex8
https://www.stata.com/manuals/rregress.pdf#rregressMethodsandformulas
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Assume that, were this model fit on individuals, Var(𝑢) = 𝜎2
𝑢, a constant. Assume that individual data

are not available; what is available are averages (𝑦𝑗, 𝑥1𝑗, 𝑥2𝑗) for 𝑗 = 1, . . . , 𝑁, and each average is

calculated over 𝑛𝑗 observations. Then it is still true that

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝑢𝑗

where 𝑢𝑗 is the average of 𝑛𝑗 mean 0, variance 𝜎2
𝑢 deviates and has variance 𝜎2

𝑢 = 𝜎2
𝑢/𝑛𝑗. Thus,

multiplying through by
√𝑛𝑗 produces

𝑦𝑗√𝑛𝑗 = 𝛽0√𝑛𝑗 + 𝛽1𝑥1𝑗√𝑛𝑗 + 𝛽2𝑥2𝑗√𝑛𝑗 + 𝑢𝑗√𝑛𝑗

and Var(𝑢𝑗
√𝑛𝑗) = 𝜎2

𝑢. The mean squared error, 𝑠2
𝑡 , reported by fitting this transformed regression is an

estimate of 𝜎2
𝑢. The coefficients and covariance matrix could also be obtained by aweighted regress.

The only difference would be in the reported mean squared error, which from (1) is 𝜎2
𝑢/𝑛. On average,

each observation in the data reflects the averages calculated over 𝑛 = ∑𝑘 𝑛𝑘/𝑁 individuals, and thus

this reported mean squared error is the average variance of an observation in the dataset. We can retrieve

the estimate of 𝜎2
𝑢 by multiplying the reported mean squared error by 𝑛.

More generally, aweights are used to solve general heteroskedasticity problems. In these cases, we
have the model

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝑢𝑗

and the variance of 𝑢𝑗 is thought to be proportional to 𝑎𝑗. If the variance is proportional to 𝑎𝑗, it is

also proportional to 𝛼𝑎𝑗, where 𝛼 is any positive constant. Not quite arbitrarily, but with no loss of

generality, we could choose 𝛼 = ∑𝑘(1/𝑎𝑘)/𝑁, the average value of the inverse of 𝑎𝑗. We can then

write Var(𝑢𝑗) = 𝑘𝛼𝑎𝑗𝜎2, where 𝑘 is the constant of proportionality that is no longer a function of the

scale of the weights.

Dividing this regression through by the
√𝑎𝑗,

𝑦𝑗/√𝑎𝑗 = 𝛽0/√𝑎𝑗 + 𝛽1𝑥1𝑗/√𝑎𝑗 + 𝛽2𝑥2𝑗/√𝑎𝑗 + 𝑢𝑗/√𝑎𝑗

produces a model with Var(𝑢𝑗/
√𝑎𝑗) = 𝑘𝛼𝜎2, which is the constant part of Var(𝑢𝑗). This variance is a

function of 𝛼, the average of the reciprocal weights; if the weights are scaled arbitrarily, then so is this
variance.

We can also fit this model by typing

. regress y x1 x2 [aweight=1/a]

This input will produce the same estimates of the coefficients and covariance matrix; the reported mean

squared error is, from (1), {𝑁/ ∑𝑘(1/𝑎𝑘)}𝑘𝛼𝜎2 = 𝑘𝜎2. This variance is independent of the scale of

𝑎𝑗.

Video examples
Simple linear regression in Stata

Fitting and interpreting regression models: Linear regression with categorical predictors

Fitting and interpreting regression models: Linear regression with continuous predictors

Fitting and interpreting regression models: Linear regression with continuous and categorical predictors

https://www.youtube.com/watch?v=HafqFSB9x70
https://youtu.be/_ti7Lju1odk
https://youtu.be/D5Szv8SwJN4
https://youtu.be/7f8dQfYoCG8
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Stored results
regress stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood under additional assumption of i.i.d. normal errors

e(ll 0) log likelihood, constant-only model

e(sum w) sum of weights

e(N clust) number of clusters

e(rank) rank of e(V)

Macros

e(cmd) regress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(model) ols
e(title) title in estimation output when vce() is not ols
e(clustvar) names of cluster variables

e(cluster#) cluster combination #

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(beta) standardized coefficients

e(V modelbased) model-based variance

e(adj df) adjusted degrees of freedom when vce(hc2, dfadjust) is specified

e(kcluster) cluster sizes, multiway clustering

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Coefficient estimation and ANOVA table
Weighted regression
A general notation for the robust variance calculation
Robust calculation for regress

Coefficient estimation and ANOVA table
Variables printed in lowercase and not boldfaced (for example, 𝑥) are scalars. Variables printed in

lowercase and boldfaced (for example, x) are column vectors. Variables printed in uppercase and bold-

faced (for example, X) are matrices.

Let X denote the matrix of observations on the right-hand-side variables, y the vector of observations

on the left-hand-side variables. Define A as X′X and a as X′y. The coefficient vector b is defined as

A−1a. Although not shown in the notation, unless hascons is specified, A and a are accumulated in

deviation form and the constant is calculated separately. This comment applies to all statistics listed

below.

The total sum of squares, TSS, equals y′y if there is no intercept and y′y−{(1′y)2/𝑛} otherwise. The

degrees of freedom is 𝑛 − 𝑐, where 𝑛 is the number of observations and 𝑐 = 1 if there is a constant in

the regression and 0 otherwise.

The residual sum of squares, RSS, is defined as (y−Xb)′(y−Xb). The degrees of freedom is 𝑛 − 𝑘,
where 𝑛 is the number of observations and 𝑘 is the number of right-hand-side variables (including the

constant).

The model sum of squares, MSS, equals TSS − RSS. The degrees of freedom is 𝑘 − 𝑐.
The mean squared error, 𝑠2, is defined as RSS/(𝑛 − 𝑘). The root mean squared error is 𝑠, its square

root.

The 𝐹 statistic with 𝑘 − 𝑐 and 𝑛 − 𝑘 degrees of freedom is defined as

𝐹 = MSS

(𝑘 − 𝑐)𝑠2

The 𝑅2 is defined as 𝑅2 = 1 − RSS/TSS.
The adjusted 𝑅2 is defined as 𝑅2

𝑎 = 1 − (1 − 𝑅2)(𝑛 − 𝑐)/(𝑛 − 𝑘).
The conventional estimate of variance is 𝑠2A−1. The calculation of variance estimates when robust

variance estimates are specified is described below.

Weighted regression
Let v be a column vector of weights specified by the user. Let w be a column vector of normalized

weights, w = {v/(1′v)}(1′1). For fweights, w = v. For historical reasons, iweights are treated like
fweights when robust standard errors are not specified. Instead, when vce(robust), vce(cluster
clustvarlist), vce(hc2), or vce(hc3) is specified, iweights are treated like aweights.
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If the user specifies weights, the number of observations, 𝑛, in the above formulas is defined as 1′w.

For iweights, this is truncated to an integer. The sum of the weights is 1′v. X′X, X′y, and y′y are

replaced in the above formulas by X′DX, X′Dy, and y′Dy, respectively, where D is a diagonal matrix

whose diagonal elements are the elements of w.

A general notation for the robust variance calculation
Put aside all context of linear regression and the notation that goes with it—we will return to it. First,

we are going to establish a notation for describing robust variance calculations.

The calculation formula for the robust variance calculation is

𝒱 = 𝑞𝑐V̂(
𝑀

∑
𝑘=1

u
(𝐺)′
𝑘 u

(𝐺)
𝑘 )V̂

where

u
(𝐺)
𝑘 = ∑

𝑗∈𝐺𝑘

𝑤𝑗u𝑗

𝐺1, 𝐺2, . . . , 𝐺𝑀 are the clusters specified by vce(cluster clustvarlist) when clustvarlist contains only
one variable, and 𝑤𝑗 are the user-specified weights, normalized if aweights or pweights are specified
and equal to 1 if no weights are specified.

For fweights without clusters, the variance formula is

𝒱 = 𝑞𝑐V̂(
𝑁

∑
𝑗=1

𝑤𝑗u
′
𝑗u𝑗)V̂

which is the same as expanding the dataset and making the calculation on the unweighted data.

If vce(cluster clustvarlist) is not specified, 𝑀 = 𝑁, and each cluster contains 1 observation. The

inputs into this calculation are

• V̂, which is typically a conventionally calculated variance matrix;

• u𝑗, 𝑗 = 1, . . . , 𝑁, a row vector of scores; and

• 𝑞c, a constant finite-sample adjustment.

Thus, we can now describe how estimators apply the robust calculation formula by defining V̂, u𝑗, and

𝑞c.
Two definitions are popular enough for 𝑞c to deserve a name. The regression-like formula for 𝑞c

(Fuller et al. 1986) is

𝑞c = 𝑁 − 1
𝑁 − 𝑘

𝑀
𝑀 − 1

where 𝑀 is the number of clusters and 𝑁 is the number of observations. For weights, 𝑁 refers to the sum

of the weights if weights are frequency weights and the number of observations in the dataset (ignoring

weights) in all other cases. Also note that, weighted or not, 𝑀 = 𝑁 when vce(cluster clustvarlist) is

not specified, and then 𝑞c = 𝑁/(𝑁 − 𝑘).



regress — Linear regression 24

The asymptotic-like formula for 𝑞c is

𝑞c = 𝑀
𝑀 − 1

where 𝑀 = 𝑁 if vce(cluster clustvarlist) is not specified.

See [U] 20.22 Obtaining robust variance estimates and [P] robust for a discussion of the robust

variance estimator and a development of these formulas.

Robust calculation for regress
For regress, V̂ = A−1. The other terms are vce(robust), but not vce(hc2) or vce(hc3),

u𝑗 = (𝑦𝑗 − x𝑗b)x𝑗

and 𝑞c is given by its regression-like definition. vce(hc2),

u𝑗 = 1
√1 − ℎ𝑗𝑗

(𝑦𝑗 − x𝑗b)x𝑗

where 𝑞c = 1 and ℎ𝑗𝑗 = x𝑗(X′X)−1x𝑗
′. vce(hc3),

u𝑗 = 1
1 − ℎ𝑗𝑗

(𝑦𝑗 − x𝑗b)x𝑗

where 𝑞c = 1 and ℎ𝑗𝑗 = x𝑗(X′X)−1x𝑗
′. vce(hc2 clustvar),

u𝑗 = (y𝑗 − X𝑗b)′(I𝐺𝑗
−H𝑗𝑗)

− 1
2
X𝑗

where 𝑞c = 1, H𝑗𝑗 = X𝑗(X′X)−1X𝑗
′ for cluster 𝑗 of size 𝐺𝑗, 𝐺𝑗 × 𝑘 data matrix X𝑗, and 𝐺𝑗 × 1 vector

y𝑗. (I𝐺𝑗
−H𝑗𝑗)− 1

2 is the inverse of the symmetric square root of (I𝐺𝑗
−H𝑗𝑗) (Bell and McCaffrey 2002).

vce(hc2 [ clustvar ], dfadjust) directs regress to compute the adjusted degrees of freedom de-

scribed by Imbens and Kolesár (2016). Define the 𝑁 × 𝑀 matrix G such that the 𝑗th column is

(I𝑁 −H)𝑗
′ (I𝐺𝑗

−H𝑗𝑗)
− 1

2
X𝑗 (X′X)−1 𝑒𝑙

where 𝑗 = 1, . . . , 𝑀, 𝑒𝑙 is a unary vector for the 𝑙th regressor, 𝑙 = 1, . . . , 𝑘, and (I𝑁 −H)𝑗 is the 𝐺𝑗 × 𝑁
subset of the 𝑁 × 𝑁 matrix (I𝑁 −H) for cluster 𝑗. The Bell and McCaffrey (2002) adjusted degrees of

freedom for the 𝑙th regressor is

𝐾𝑙 = tr (G′G)2

tr ((G′G)2)

=
(∑𝑀

𝑖=1 𝜆𝑖)
2

∑𝑀
𝑖=1 𝜆2

𝑖

where tr(⋅) is the trace function and 𝜆𝑖 are the eigenvalues of G
′G.

https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/p_robust.pdf#p_robust
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When 𝑀 is large, or when there are no clusters and 𝑀 = 𝑁, computing the eigenvalues can be time

consuming. We define

a𝑗 = (I𝐺𝑗
−H𝑗𝑗)

− 1
2
X𝑗 (X′X)−1

e𝐿,𝑘

b𝑗 = H𝑗a𝑗

A = (a′
1a1, . . . , a′

𝑀a𝑀)′ = (𝐴1, 𝐴2, . . . , 𝐴𝑀)′

B = (b1, . . . ,b𝑀) = ⎛⎜
⎝

𝐵1,1 𝐵1,2 · · · 𝐵1,𝑀
⋮ ⋮ ⋱ ⋮

𝐵𝑁,1 𝐵𝑁,2 · · · 𝐵𝑁,𝑀

⎞⎟
⎠

for 𝑗 = 1, . . . , 𝑀 and H𝑗 = X (X′X)−1
X′

𝑗. Then G
′G = diag (A) − B′B (Kolesár 2023).

We now express the adjusted degrees of freedom as

𝐾𝑙 = (∑𝑀
𝑗=1 𝐴𝑗 − ∑𝑁

𝑖=1 ∑𝑀
𝑗=1 𝐵2

𝑖𝑗)
2

∑𝑀
𝑗=1 𝐴2

𝑗 − 2 ∑𝑀
𝑗=1 𝐴𝑗 ∑𝑁

𝑖=1 𝐵2
𝑖𝑗 + ∑𝑀

𝑗1=1 ∑𝑀
𝑗2=1 (b′

𝑗1
b𝑗2

)
2

which can be computed efficiently in Mata and using QR decomposition. For example, by decomposing

X = QR, where Q is 𝑛 × 𝑘 and orthonormal and R is 𝑘 × 𝑘 and upper triangular, we can rewrite the

matrix B so that it has dimension 𝑘 × 𝑀 instead of 𝑁 × 𝑀.

When weights are specified, we use the weighted covariate matrix X̃ = diag (w)
1
2 X and its cor-

responding projection matrix H̃, as well as the cluster covariance matrices X̃𝑗, their projection matrices

H̃𝑗𝑗, and weighted residuals ̃ε𝑗 = diag (w𝑗)
1
2 ̂ε𝑗. When frequency weights are specified without clusters,

we substitute 1/√1 − ℎ𝑗𝑗 with 1/√𝑤𝑗 − ℎ̃𝑗𝑗, where 𝑗 = 1, . . . , 𝑁. Also, when there are no clusters,

the weights are included in the degrees-of-freedom algebra

𝐾𝑙 = (∑𝑁
𝑗=1 𝑤𝑗𝐴𝑗 − ∑𝑘

𝑖=1 ∑𝑁
𝑗=1 𝐵2

𝑖𝑗)
2

∑𝑁
𝑗=1 𝑤𝑗𝐴2

𝑗 − 2 ∑𝑁
𝑗=1 𝐴𝑗 ∑𝑘

𝑖=1 𝐵2
𝑖𝑗 + ∑𝑁

𝑗1=1 ∑𝑁
𝑗2=1 (b′

𝑗1
b𝑗2

)
2

Here we substituted 𝑘 for 𝑁 in the row dimension of B as it is when using QR decomposition to perform

the computations.

With weights, the vce(hc2 clustvar) computation discussed above is modified to

u𝑗 = (diag (w𝑗)
1
2 (y𝑗 − X𝑗b))

′
(I𝐺𝑗

− H̃𝑗𝑗)
− 1

2
X̃𝑗

= (ỹ𝑗 − X̃𝑗b)
′
(I𝐺𝑗

− H̃𝑗𝑗)
− 1

2
X̃𝑗
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Multiway clustering
When you type vce(cluster clustvarlist) with more than one variable, the variance–covariance

estimator uses multiway cluster–robust variance estimation. This is carried out by estimating the robust

VCE for all combinations of the specified cluster variables and summing. For 𝑝 cluster variables, there

will be 𝑃 = 2𝑝 − 1 cluster variable combinations. Let V𝑖 be the 𝑖th robust VCE, 𝑖 = 1, . . . , 𝑃. Define
𝑆𝑗, 𝑗 = 1, . . . , 𝑝, as the set of indices 𝑖 involving 𝑗 cluster variables. The size, or cardinality, of 𝑆𝑗

is |𝑆𝑗| = (𝑝
𝑗) and ∑𝑝

𝑗=1 (𝑝
𝑗) = 2𝑝 − 1. For example, for 𝑝 = 4, |𝑆1| = (41) = 4, |𝑆2| = (42) = 6,

|𝑆3| = (43) = 4, and |𝑆4| = (44) = 1. The multiway cluster–robust VCE is then

V∗ =
𝑝

∑
𝑗=1

(−1)𝑗−1 ∑
𝑖∈𝑆𝑗

V𝑖

You are more likely to cluster on two or, maybe, three variables. In the case of two cluster variables,

the computation would be

V∗ = 𝑉1 + 𝑉2 − 𝑉12

where 𝑉1 corresponds to the variance–covariance computation clustering at the level of the first cluster,

𝑉2 corresponds to the second level, and 𝑉12 corresponds to the variance–covariance computation for the

group formed by the intersection of both clustering levels.

An eigendecomposition on V∗ ensures the matrix to be positive semidefinite. Let the columns of

matrix U contain the eigenvectors of V∗ and the vector contain u, its eigenvalues. If V∗ is not positive

definite, some of the elements of u will be less than 0. Let u+ contain all the nonnegative elements of u

and zeros where 𝑢𝑖 < 0. The matrix V+ = U ⋅ diag(u+) ⋅ U′ will then be positive semidefinite.
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� �
The history of regression is long and complicated: the books by Stigler (1986) and Hald (1998) are

devoted largely to the story. Legendre published first on least squares in 1805. Gauss published later

in 1809, but he had the idea earlier. Gauss, and especially Laplace, tied least squares to a normal

errors assumption. The idea of the normal distribution can itself be traced back to De Moivre in

1733. Laplace discussed a variety of other estimation methods and error assumptions over his long

career, while linear models long predate either innovation. Most of this work was linked to problems

in astronomy and geodesy.

A second wave of ideas started when Galton used graphical and descriptive methods on data bearing

on heredity to develop what he called regression. His term reflects the common phenomenon that

characteristics of offspring are positively correlated with those of parents but with regression slope

such that offspring “regress toward the mean”. Galton’s work was rather intuitive: contributions

from Pearson, Edgeworth, Yule, and others introduced more formal machinery, developed related

ideas on correlation, and extended application into the biological and social sciences. So most of

the elements of regression as we know it were in place by 1900.

Pierre-Simon Laplace (1749–1827) was born in Normandy and was early recognized as a remark-

able mathematician. He weathered a changing political climate well enough to rise to Minister of

the Interior under Napoleon in 1799 (although only for 6 weeks) and to be made a Marquis by Louis

XVIII in 1817. He made many contributions to mathematics and physics, his two main interests

being theoretical astronomy and probability theory (including statistics). Laplace transforms are

named for him.

Adrien-Marie Legendre (1752–1833) was born in Paris (or possibly in Toulouse) and educated in

mathematics and physics. He worked in number theory, geometry, differential equations, calculus,

function theory, applied mathematics, and geodesy. The Legendre polynomials are named for him.

His main contribution to statistics is as one of the discoverers of least squares. He died in poverty,

having refused to bow to political pressures.

Johann Carl Friedrich Gauss (1777–1855) was born in Braunschweig (Brunswick), now in Ger-

many. He studied there and at Göttingen. His doctoral dissertation at the University of Helmstedt

was a discussion of the fundamental theorem of algebra. He made many fundamental contributions

to geometry, number theory, algebra, real analysis, differential equations, numerical analysis, statis-

tics, astronomy, optics, geodesy, mechanics, and magnetism. An outstanding genius, Gauss worked

mostly in isolation in Göttingen.

Francis Galton (1822–1911) was born in Birmingham, England, into a well-to-do family with many

connections: he and Charles Darwin were first cousins. After an unsuccessful foray into medicine,

he became independently wealthy at the death of his father. Galton traveled widely in Europe, the

Middle East, andAfrica, and became celebrated as an explorer and geographer. His pioneering work

on weather maps helped in the identification of anticyclones, which he named. From about 1865,

most of his work was centered on quantitative problems in biology, anthropology, and psychology.

In a sense, Galton (re)invented regression, and he certainly named it. Galton also promoted the nor-

mal distribution, correlation approaches, and the use of median and selected quantiles as descriptive

statistics. He was knighted in 1909.� �

https://www.stata.com/giftshop/bookmarks/series2/legendre/
https://www.stata.com/giftshop/bookmarks/series1/gauss/
https://www.stata.com/giftshop/bookmarks/series2/galton/
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