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Description
qreg fits quantile (includingmedian) regressionmodels, also known as least absolute value, minimum

absolute deviation, or minimum L1-norm value. The quantile regression models fit by qreg express the

quantiles of the conditional distribution as linear functions of the independent variables.

iqreg estimates interquantile range regressions, regressions of the difference in quantiles. The esti-

mated variance–covariance matrix of the estimators (VCE) is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for each

quantile. Reported standard errors will be similar, but sqreg obtains an estimate of the VCE via boot-

strapping, and the VCE includes between-quantile blocks. Thus, you can test and construct confidence

intervals comparing coefficients describing different quantiles.

bsqreg is equivalent to sqreg with one quantile.

Quick start
Quantile regression

Median regression of y on x1 and x2
qreg y x1 x2

Add categorical covariate a using factor-variable syntax

qreg y x1 x2 i.a

Same as above, but with standard errors using a biweight kernel for the nonparametric density estimator

qreg y x1 x2 i.a, vce(, kernel(biweight))

Quantile regression of the 75th percentile of y on x1, x2, and a
qreg y x1 x2 i.a, quantile(.75)

Interquantile range regression

Difference between the 90th and 10th quantiles of y on x1, x2, and a with bootstrap standard errors

iqreg y x1 x2 i.a, quantiles(.1 .9)
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Simultaneous-quantile regression

Simultaneous estimation of quantile regressions for the 10th and 90th quantiles of y with bootstrap stan-

dard errors

sqreg y x1 x2 i.a, quantiles(.1 .9)

Same as above, but for the 25th, 50th, and 75th quantiles of y
sqreg y x1 x2 i.a, quantiles(.25 .5 .75)

Same as above, but increase the number of bootstrap replications to 500

sqreg y x1 x2 i.a, quantiles(.25 .5 .75) reps(500)

Bootstrapped quantile regression

Single quantile regression for the 25th quantile with bootstrap standard errors

bsqreg y x1 x2 i.a, quantile(.25)

Menu
qreg
Statistics > Nonparametric analysis > Quantile regression

iqreg
Statistics > Nonparametric analysis > Interquantile regression

sqreg
Statistics > Nonparametric analysis > Simultaneous-quantile regression

bsqreg
Statistics > Nonparametric analysis > Bootstrapped quantile regression
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Syntax
Quantile regression

qreg depvar [ indepvars ] [ if ] [ in ] [weight ] [ , qreg options ]

Interquantile range regression

iqreg depvar [ indepvars ] [ if ] [ in ] [ , iqreg options ]

Simultaneous-quantile regression

sqreg depvar [ indepvars ] [ if ] [ in ] [ , sqreg options ]

Bootstrapped quantile regression

bsqreg depvar [ indepvars ] [ if ] [ in ] [ , bsqreg options ]

qreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

SE/Robust

vce([ vcetype ], [ vceopts ]) technique used to estimate standard errors

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

wlsiter(#) attempt # weighted least-squares iterations before doing linear
programming iterations

vcetype Description

iid compute the VCE assuming the residuals are i.i.d.

robust compute the robust VCE

vceopts Description

denmethod nonparametric density estimation technique

bwidth bandwidth method used by the density estimator

denmethod Description

fitted use the empirical quantile function using fitted values; the default

residual use the empirical residual quantile function

kernel[ (kernel) ] use a nonparametric kernel density estimator; default is
epanechnikov

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxweight
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxqreg_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxiqreg_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxsqreg_options
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxbsqreg_options
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxvcetype
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxvceopts
https://www.stata.com/manuals/rqreg.pdf#rqregOptionsforqregdisplay_options
https://www.stata.com/manuals/rqreg.pdf#rqregOptionsforqregoptopts
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxdenmethod
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxbwidth
https://www.stata.com/manuals/rqreg.pdf#rqregSyntaxkernel
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bwidth Description

hsheather Hall–Sheather’s bandwidth; the default

bofinger Bofinger’s bandwidth

chamberlain Chamberlain’s bandwidth

kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

iqreg options Description

Model

quantiles(# #) interquantile range; default is quantiles(.25 .75)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
nodots suppress display of the replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

sqreg options Description

Model

quantiles(# [ # [ # ... ] ]) estimate # quantiles; default is quantiles(.5)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
nodots suppress display of the replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

https://www.stata.com/manuals/rqreg.pdf#rqregOptionsforiqregdisplay_options
https://www.stata.com/manuals/rqreg.pdf#rqregOptionsforsqregdisplay_options
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bsqreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)
reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, mi estimate, rolling, and statsby, are allowed by qreg, iqreg, sqreg, and bsqreg; bayes, bayesboot,
mfp, nestreg, and stepwise are allowed only with qreg; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: qreg.

qreg allows fweights, iweights, and pweights; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for qreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.

Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the

median.

� � �
SE/Robust �

vce([ vcetype ], [ vceopts ]) specifies the type of VCE to compute and the density estimation method to

use in computing the VCE.

vcetype specifies the type of VCE to compute. Available types are iid and robust.

vce(iid), the default, computes the VCE under the assumption that the residuals are independent
and identically distributed (i.i.d.).

vce(robust) computes the robust VCE under the assumption that the residual density is contin-

uous and bounded away from 0 and infinity at the specified quantile(); see Koenker (2005,
sec. 4.2).

vceopts consists of available denmethod and bwidth options.

denmethod specifies themethod to use for the nonparametric density estimator. Available methods

are fitted, residual, or kernel[ (kernel) ], where the optional kernel must be one of the
kernel choices listed below.

fitted and residual specify that the nonparametric density estimator use some of the struc-

ture imposed by quantile regression. The default fitted uses a function of the fitted values

and residual uses a function of the residuals. vce(robust, residual) is not allowed.

kernel() specifies that the nonparametric density estimator use a kernel method. The avail-

able kernel functions are epanechnikov, epan2, biweight, cosine, gaussian, parzen,
rectangle, and triangle. The default is epanechnikov. See [R] kdensity for the kernel
function forms.

https://www.stata.com/manuals/rqreg.pdf#rqregOptionsforbsqregdisplay_options
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayesqreg.pdf#bayesbayesqreg
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
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bwidth specifies the bandwidth method to use by the nonparametric density estimator. Available

methods are hsheather for the Hall–Sheather bandwidth, bofinger for the Bofinger band-

width, and chamberlain for the Chamberlain bandwidth.

See Koenker (2005, sec. 3.4 and 4.10) for a description of the sparsity estimation techniques and the

Hall–Sheather and Bofinger bandwidth formulas. See Chamberlain (1994, eq. 2.2) for the Chamber-

lain bandwidth.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace. iterate() specifies the maximum number of

iterations; log/nolog specifies whether to show the iteration log (see set iterlog in [R] set iter);

and trace specifies that the iteration log should include the current parameter vector. These options

are seldom used.

wlsiter(#) specifies the number of weighted least-squares iterations that will be attempted before the

linear programming iterations are started. The default is wlsiter(1). If there are convergence prob-
lems, increasing this number should help.

Options for iqreg

� � �
Model �

quantiles(# #) specifies the quantiles to be compared. The first number must be less than the second,

and both should be between 0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages.

Not specifying this option is equivalent to specifying quantiles(.25 .75), meaning the interquan-
tile range.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably

too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Options for sqreg

� � �
Model �

quantiles(# [ # [ # ... ] ]) specifies the quantiles to be estimated and should contain numbers between
0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages. The default value of 0.5

corresponds to the median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably

too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for bsqreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.

Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the

median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the vari-

ance–covariance matrix of the estimators (standard errors). reps(20) is the default and is arguably

too small. reps(100) would perform 100 bootstrap replications. reps(1000) would perform 1,000

replications.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Median regression
Quantile regression
Estimated standard errors
Interquantile and simultaneous-quantile regression
What are the parameters?

Median regression
qreg fits quantile regression models. The default form is median regression, where the objective is

to estimate the median of the dependent variable, conditional on the values of the independent variables.

This method is similar to ordinary regression, where the objective is to estimate the conditional mean of

the dependent variable. Simply put, median regression finds a line through the data that minimizes the

sum of the absolute residuals rather than the sum of the squares of the residuals, as in ordinary regression.

Equivalently, median regression expresses the median of the conditional distribution of the dependent

variable as a linear function of the conditioning (independent) variables. Cameron and Trivedi (2022,

chap. 15) provide a nice introduction to quantile regression using Stata.

Example 1: Estimating the conditional median
Consider a two-group experimental design with 5 observations per group:

. use https://www.stata-press.com/data/r19/twogrp

. list

x y

1. 0 0
2. 0 1
3. 0 3
4. 0 4
5. 0 95

6. 1 14
7. 1 19
8. 1 20
9. 1 22

10. 1 23

. qreg y x
Iteration 1: WLS sum of weighted deviations = 60.941342
Iteration 1: Sum of abs. weighted deviations = 55.5
Iteration 2: Sum of abs. weighted deviations = 55
Median regression Number of obs = 10

Raw sum of deviations 78.5 (about 14)
Min sum of deviations 55 Pseudo R2 = 0.2994

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 17 18.23213 0.93 0.378 -25.04338 59.04338
_cons 3 12.89207 0.23 0.822 -26.72916 32.72916
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We have estimated the equation

ymedian = 3 + 17 x

We look back at our data. x takes on the values 0 and 1, so the median for the x = 0 group is 3, whereas

for x = 1 it is 3 + 17 = 20. The output reports that the raw sum of absolute deviations about 14 is 78.5;

that is, the sum of |y−14| is 78.5. Fourteen is the unconditional median of y, although in these data, any
value between 14 and 19 could also be considered an unconditional median (we have an even number

of observations, so the median is bracketed by those two values). In any case, the raw sum of deviations

of y about the median would be the same no matter what number we choose between 14 and 19. (With

a “median” of 14, the raw sum of deviations is 78.5. Now think of choosing a slightly larger number for

the median and recalculating the sum. Half the observations will have larger negative residuals, but the

other half will have smaller positive residuals, resulting in no net change.)

We turn now to the actual estimated equation. The sum of the absolute deviations about the solution

ymedian = 3 + 17x is 55. The pseudo-𝑅2 is calculated as 1 − 55/78.5 ≈ 0.2994. This result is based

on the idea that the median regression is the maximum likelihood estimate for the double-exponential

distribution.

Technical note
qreg is an alternative to regular regression or robust regression—see [R] regress and [R] rreg. Let’s

compare the results:

. regress y x
Source SS df MS Number of obs = 10

F(1, 8) = 0.00
Model 2.5 1 2.5 Prob > F = 0.9586

Residual 6978.4 8 872.3 R-squared = 0.0004
Adj R-squared = -0.1246

Total 6980.9 9 775.655556 Root MSE = 29.535

y Coefficient Std. err. t P>|t| [95% conf. interval]

x -1 18.6794 -0.05 0.959 -44.07477 42.07477
_cons 20.6 13.20833 1.56 0.157 -9.858465 51.05847

Unlike qreg, regress fits ordinary linear regression and is concerned with predicting the mean rather

than the median, so both results are, in a technical sense, correct. Putting aside those technicalities,

however, we tend to use either regression to describe the central tendency of the data, of which the mean

is one measure and the median another. Thus, we can ask, “which method better describes the central

tendency of these data?”

Means—and therefore ordinary linear regression—are sensitive to outliers, and our data were pur-

posely designed to contain two such outliers: 95 for x = 0 and 14 for x = 1. These two outliers dom-

inated the ordinary regression and produced results that do not reflect the central tendency well—you

are invited to enter the data and graph y against x.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rrreg.pdf#rrreg
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Robust regression attempts to correct the outlier-sensitivity deficiency in ordinary regression:

. rreg y x, genwt(wt)
Huber iteration 1: Maximum difference in weights = .7311828
Huber iteration 2: Maximum difference in weights = .17695779
Huber iteration 3: Maximum difference in weights = .03149585

Biweight iteration 4: Maximum difference in weights = .1979335
Biweight iteration 5: Maximum difference in weights = .23332905
Biweight iteration 6: Maximum difference in weights = .09960067
Biweight iteration 7: Maximum difference in weights = .02691458
Biweight iteration 8: Maximum difference in weights = .0009113
Robust regression Number of obs = 10

F( 1, 8) = 80.63
Prob > F = 0.0000

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 18.16597 2.023114 8.98 0.000 13.50066 22.83128
_cons 2.000003 1.430558 1.40 0.200 -1.298869 5.298875

Here rreg discarded the first outlier completely. (We know this because we included the genwt()
option on rreg and, after fitting the robust regression, examined the weights.) For the other “outlier”,

rreg produced a weight of 0.47.

In any case, the answers produced by qreg and rreg to describe the central tendency are similar, but

the standard errors are different. In general, robust regression will have smaller standard errors because

it is not as sensitive to the exact placement of observations near the median. You are welcome to try

removing the first outlier in the qreg estimation to observe an improvement in the standard errors by

typing

. qreg y x if _n!=5

Also, some authors (Rousseeuw and Leroy 1987, 11) have noted that quantile regression, unlike the

unconditional median, may be sensitive to even one outlier if its leverage is high enough. Rousseeuw

and Leroy (1987) discuss estimators that are more robust to perturbations to the data than either mean

regression or quantile regression.

In the end, quantile regression may be more useful for the interpretation of the parameters that it

estimates than for its robustness to perturbations to the data.
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Example 2: Median regression
Let’s now consider a less artificial example using the automobile data described in [U] 1.2.2 Example

datasets. Using median regression, we will regress each car’s price on its weight and length and whether

it is of foreign manufacture:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. qreg price weight length foreign
Iteration 1: WLS sum of weighted deviations = 56397.829
Iteration 1: Sum of abs. weighted deviations = 55950.5
Iteration 2: Sum of abs. weighted deviations = 55264.718
Iteration 3: Sum of abs. weighted deviations = 54762.283
Iteration 4: Sum of abs. weighted deviations = 54734.152
Iteration 5: Sum of abs. weighted deviations = 54552.638
note: alternate solutions exist.
Iteration 6: Sum of abs. weighted deviations = 54465.511
Iteration 7: Sum of abs. weighted deviations = 54443.699
Iteration 8: Sum of abs. weighted deviations = 54411.294
Median regression Number of obs = 74

Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 1.328718 2.96 0.004 1.283543 6.583632
length -41.25191 45.46469 -0.91 0.367 -131.9284 49.42456

foreign 3377.771 885.4198 3.81 0.000 1611.857 5143.685
_cons 344.6489 5182.394 0.07 0.947 -9991.31 10680.61

The estimated equation is

price
median

= 3.93 weight − 41.25 length + 3377.8 foreign + 344.65

The output may be interpreted in the same way as linear regression output; see [R] regress. The variables

weight and foreign are significant, but length is not significant. The median price of the cars in these

data is $4,934. This value is a median (one of the two center observations), not the median, which would

typically be defined as the midpoint of the two center observations.

Quantile regression
Quantile regression is similar to median regression in that it estimates an equation expressing a quan-

tile of the conditional distribution, albeit one that generally differs from the 0.5 quantile that is themedian.

For example, specifying quantile(.25) estimates the parameters that describe the 25th percentile (first

quartile) of the conditional distribution.

Quantile regression allows for effects of the independent variables to differ over the quantiles. For

example, Chamberlain (1994) finds that union membership has a larger effect on the lower quantiles than

on the higher quantiles of the conditional distribution of US wages. That the effects of the independent

variables may vary over quantiles of the conditional distribution is an important advantage of quantile

regression over mean regression.

https://www.stata.com/manuals/u1.pdf#u1.2.2Exampledatasets
https://www.stata.com/manuals/u1.pdf#u1.2.2Exampledatasets
https://www.stata.com/manuals/rregress.pdf#rregress
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Example 3: Estimating quantiles other than the median
Returning to real data, the equation for the 25th percentile of price conditional on weight, length,

and foreign in our automobile data is

. use https://www.stata-press.com/data/r19/auto
(1978 automobile data)
. qreg price weight length foreign, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 49469.235
Iteration 1: Sum of abs. weighted deviations = 49728.883
Iteration 2: Sum of abs. weighted deviations = 45669.89
Iteration 3: Sum of abs. weighted deviations = 43416.646
Iteration 4: Sum of abs. weighted deviations = 41947.221
Iteration 5: Sum of abs. weighted deviations = 41093.025
Iteration 6: Sum of abs. weighted deviations = 37623.424
Iteration 7: Sum of abs. weighted deviations = 35721.453
Iteration 8: Sum of abs. weighted deviations = 35226.308
Iteration 9: Sum of abs. weighted deviations = 34823.319
Iteration 10: Sum of abs. weighted deviations = 34801.777
.25 Quantile regression Number of obs = 74

Raw sum of deviations 41912.75 (about 4187)
Min sum of deviations 34801.78 Pseudo R2 = 0.1697

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 1.831789 .6328903 2.89 0.005 .5695289 3.094049
length 2.84556 21.65558 0.13 0.896 -40.34514 46.03626

foreign 2209.925 421.7401 5.24 0.000 1368.791 3051.059
_cons -1879.775 2468.46 -0.76 0.449 -6802.963 3043.413

Compared with our previous median regression, the coefficient on length now has a positive sign, and

the coefficients on foreign and weight are reduced. The actual lower quartile is $4,187, substantially

less than the median $4,934.

We can also estimate the upper quartile as a function of the same three variables:

. qreg price weight length foreign, quantile(.75)
Iteration 1: WLS sum of weighted deviations = 55465.741
Iteration 1: Sum of abs. weighted deviations = 55652.957
Iteration 2: Sum of abs. weighted deviations = 52994.785
Iteration 3: Sum of abs. weighted deviations = 50189.446
Iteration 4: Sum of abs. weighted deviations = 49898.245
Iteration 5: Sum of abs. weighted deviations = 49398.106
Iteration 6: Sum of abs. weighted deviations = 49241.835
Iteration 7: Sum of abs. weighted deviations = 49197.967
.75 Quantile regression Number of obs = 74

Raw sum of deviations 79860.75 (about 6342)
Min sum of deviations 49197.97 Pseudo R2 = 0.3840

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 9.22291 1.785767 5.16 0.000 5.66131 12.78451
length -220.7833 61.10352 -3.61 0.001 -342.6504 -98.91616

foreign 3595.133 1189.984 3.02 0.004 1221.785 5968.482
_cons 20242.9 6965.02 2.91 0.005 6351.61 34134.2
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This result tells a different story: weight is much more important, and length is now significant—with

a negative coefficient! The prices of high-priced cars seem to be determined by factors different from

those affecting the prices of low-priced cars.

Technical note
One explanation for having substantially different regression functions for different quantiles is that

the data are heteroskedastic, as we will demonstrate below. The following statements create a sharply

heteroskedastic set of data:

. drop _all

. set obs 10000
Number of observations (_N) was 0, now 10,000.
. set seed 50550
. generate x = .1 + .9 * runiform()
. generate y = x * runiform()^2

Let’s now fit the regressions for the 5th and 95th quantiles:

. qreg y x, quantile(.05)
Iteration 1: WLS sum of weighted deviations = 555.44181
Iteration 1: Sum of abs. weighted deviations = 555.25622
Iteration 2: Sum of abs. weighted deviations = 115.02628
Iteration 3: Sum of abs. weighted deviations = 89.617883
Iteration 4: Sum of abs. weighted deviations = 89.61679
.05 Quantile regression Number of obs = 10,000

Raw sum of deviations 89.68001 (about .00105493)
Min sum of deviations 89.61679 Pseudo R2 = 0.0007

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .0028667 .0004395 6.52 0.000 .0020052 .0037283
_cons -.0001135 .0002661 -0.43 0.670 -.0006352 .0004081

. qreg y x, quantile(.95)
Iteration 1: WLS sum of weighted deviations = 624.91903
Iteration 1: Sum of abs. weighted deviations = 621.88928
Iteration 2: Sum of abs. weighted deviations = 182.03243
Iteration 3: Sum of abs. weighted deviations = 170.42588
Iteration 4: Sum of abs. weighted deviations = 169.05915
Iteration 5: Sum of abs. weighted deviations = 169.05911
.95 Quantile regression Number of obs = 10,000

Raw sum of deviations 275.9779 (about .60579139)
Min sum of deviations 169.0591 Pseudo R2 = 0.3874

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .9010814 .008758 102.89 0.000 .883914 .9182488
_cons -.0004053 .0053028 -0.08 0.939 -.0107999 .0099893

The coefficient on x, in particular, differs markedly between the two estimates. For the mathematically
inclined, it is not too difficult to show that the theoretical lines are y = 0.0025 x for the 5th percentile

and y = 0.9025 x for the 95th, numbers in close agreement with our numerical results.
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The estimator for the standard errors computed by qreg assumes that the sample is independent and

identically distributed (i.i.d.); see Estimated standard errors and Methods and formulas for details. Be-

cause the data are conditionally heteroskedastic, we should have used bsqreg to consistently estimate

the standard errors using a bootstrap method.

Estimated standard errors
The variance–covariance matrix of the estimator (VCE) depends on the reciprocal of the density of the

dependent variable evaluated at the quantile of interest. This function, known as the “sparsity function”,

is hard to estimate.

The default method, which uses the fitted values for the predicted quantiles, generally performs well,

but other methods may be preferred in larger samples. The vce() suboptions denmethod and bwidth

provide other estimators of the sparsity function, the details of which are described in Methods and

formulas.

For models with heteroskedastic errors, option vce(robust) computes a Huber (1967) form of sand-

wich estimate (Koenker 2005). Alternatively, Gould (1992, 1997b) introduced generalized versions of

qreg that obtain estimates of the standard errors by using bootstrap resampling (see Efron and Tibshirani

[1993] or Wu [1986] for an introduction to bootstrap standard errors). The iqreg, sqreg, and bsqreg
commands provide a bootstrapped estimate of the entire variance–covariance matrix of the estimators.

Example 4: Obtaining robust standard errors
Example 2 of qreg on real data above was a median regression of price on weight, length, and

foreign using auto.dta. Suppose, after investigation, we are convinced that car price observations are
not independent. We decide that standard errors robust to non-i.i.d. errors would be appropriate and use

the option vce(robust).
. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. qreg price weight length foreign, vce(robust)
Iteration 1: WLS sum of weighted deviations = 56397.829
Iteration 1: Sum of abs. weighted deviations = 55950.5
Iteration 2: Sum of abs. weighted deviations = 55264.718
Iteration 3: Sum of abs. weighted deviations = 54762.283
Iteration 4: Sum of abs. weighted deviations = 54734.152
Iteration 5: Sum of abs. weighted deviations = 54552.638
note: alternate solutions exist.
Iteration 6: Sum of abs. weighted deviations = 54465.511
Iteration 7: Sum of abs. weighted deviations = 54443.699
Iteration 8: Sum of abs. weighted deviations = 54411.294
Median regression Number of obs = 74

Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

Robust
price Coefficient std. err. t P>|t| [95% conf. interval]

weight 3.933588 1.694477 2.32 0.023 .55406 7.313116
length -41.25191 51.73571 -0.80 0.428 -144.4355 61.93171

foreign 3377.771 728.5115 4.64 0.000 1924.801 4830.741
_cons 344.6489 5096.528 0.07 0.946 -9820.055 10509.35

https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexamplesEstimatedstandarderrors
https://www.stata.com/manuals/rqreg.pdf#rqregMethodsandformulas
https://www.stata.com/manuals/rqreg.pdf#rqregMethodsandformulas
https://www.stata.com/manuals/rqreg.pdf#rqregMethodsandformulas
https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexamplesex2
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We see that the robust standard error for weight increases, making it less significant in modifying the

median automobile price. The standard error for length also increases, but the standard error for the

foreign indicator decreases.

For comparison, we repeat the estimation using bootstrap standard errors:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. set seed 1001
. bsqreg price weight length foreign
(fitting base model)
Bootstrap replications (20): .........10.........20 done
Median regression, bootstrap(20) SEs Number of obs = 74

Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 2.941839 1.34 0.186 -1.933726 9.800901
length -41.25191 73.47105 -0.56 0.576 -187.7853 105.2815

foreign 3377.771 1352.518 2.50 0.015 680.2582 6075.284
_cons 344.6489 5927.045 0.06 0.954 -11476.47 12165.77

The coefficient estimates are the same—indeed, they are obtained using the same technique. Only the

standard errors differ. Therefore, the 𝑡 statistics, significance levels, and confidence intervals also differ.
Because bsqreg (as well as sqreg and iqreg) obtains standard errors by randomly resampling the

data, the standard errors it produces will not be the same from run to run unless we first set the random-

number seed to the same number; see [R] set seed.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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By default, bsqreg, sqreg, and iqreg use 20 replications. We can control the number of replications

by specifying the reps() option:

. bsqreg price weight length i.foreign, reps(1000)
(fitting base model)
Bootstrap replications (1,000): .........10.........20.........30.........40...
> ......50.........60.........70.........80.........90.........100.........110.
> ........120.........130.........140.........150.........160.........170......
> ...180.........190.........200.........210.........220.........230.........24
> 0.........250.........260.........270.........280.........290.........300....
> .....310.........320.........330.........340.........350.........360.........
> 370.........380.........390.........400.........410.........420.........430..
> .......440.........450.........460.........470.........480.........490.......
> ..500.........510.........520.........530.........540.........550.........560
> .........570.........580.........590.........600.........610.........620.....
> ....630.........640.........650.........660.........670.........680.........6
> 90.........700.........710.........720.........730.........740.........750...
> ......760.........770.........780.........790.........800.........810........
> .820.........830.........840.........850.........860.........870.........880.
> ........890.........900.........910.........920.........930.........940......
> ...950.........960.........970.........980.........990.........1,000 done
Median regression, bootstrap(1000) SEs Number of obs = 74

Raw sum of deviations 71102.5 (about 4934)
Min sum of deviations 54411.29 Pseudo R2 = 0.2347

price Coefficient Std. err. t P>|t| [95% conf. interval]

weight 3.933588 2.58771 1.52 0.133 -1.227437 9.094613
length -41.25191 68.02626 -0.61 0.546 -176.926 94.42219

foreign
Foreign 3377.771 1070.777 3.15 0.002 1242.174 5513.368

_cons 344.6489 5862.991 0.06 0.953 -11348.72 12038.02

A comparison of the standard errors is informative.

qreg bsqreg bsqreg
Variable qreg vce(robust) reps(20) reps(1000)

weight 1.329 1.694 2.942 2.588
length 45.46 51.74 73.47 68.03
1.foreign 885.4 728.5 1353. 1071.
cons 5182. 5097. 5927. 5863.

The results shown above are typical for models with heteroskedastic errors. (Our dependent variable is

price; if our model had been in terms of ln(price), the standard errors estimated by qreg and bsqreg
would have been nearly identical.) Also, even for heteroskedastic errors, 20 replications is generally

sufficient for hypothesis tests against 0.
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Interquantile and simultaneous-quantile regression
Consider a quantile regression model where the 𝑞th quantile is given by

𝑄𝑞(𝑦) = 𝑎𝑞 + 𝑏𝑞,1𝑥1 + 𝑏𝑞,2𝑥2

For instance, the 75th and 25th quantiles are given by

𝑄0.75(𝑦) = 𝑎0.75 + 𝑏0.75,1𝑥1 + 𝑏0.75,2𝑥2

𝑄0.25(𝑦) = 𝑎0.25 + 𝑏0.25,1𝑥1 + 𝑏0.25,2𝑥2

The difference in the quantiles is then

𝑄0.75(𝑦) − 𝑄0.25(𝑦) = (𝑎0.75 − 𝑎0.25) + (𝑏0.75,1 − 𝑏0.25,1)𝑥1 + (𝑏0.75,2 − 𝑏0.25,2)𝑥2

qreg fits models such as 𝑄0.75(𝑦) and 𝑄0.25(𝑦). iqreg fits interquantile models, such as 𝑄0.75(𝑦) −
𝑄0.25(𝑦). The relationships of the coefficients estimated by qreg and iqreg are exactly as shown:

iqreg reports coefficients that are the difference in coefficients of two qreg models, and, of course,

iqreg reports the appropriate standard errors, which it obtains by bootstrapping.

sqreg is like qreg in that it estimates the equations for the quantiles

𝑄0.75(𝑦) = 𝑎0.75 + 𝑏0.75,1𝑥1 + 𝑏0.75,2𝑥2

𝑄0.25(𝑦) = 𝑎0.25 + 𝑏0.25,1𝑥1 + 𝑏0.25,2𝑥2

The coefficients it obtains are the same that would be obtained by estimating each equation separately

using qreg. sqreg differs from qreg in that it estimates the equations simultaneously and obtains an

estimate of the entire variance–covariance matrix of the estimators by bootstrapping. Thus, you can

perform hypothesis tests concerning coefficients both within and across equations.

For example, to fit the above model, you could type

. qreg y x1 x2, quantile(.25)

. qreg y x1 x2, quantile(.75)

By doing this, you would obtain estimates of the parameters, but you could not test whether 𝑏0.25,1 =
𝑏0.75,1 or, equivalently, 𝑏0.75,1 − 𝑏0.25,1 = 0. If your interest really is in the difference of coefficients,

you could type

. iqreg y x1 x2, quantiles(.25 .75)

The “coefficients” reported would be the difference in quantile coefficients. You could also estimate both

quantiles simultaneously and then test the equality of the coefficients:

. sqreg y x1 x2, quantiles(.25 .75)

. test [q25]x1 = [q75]x1

Whether you use iqreg or sqreg makes no difference for this test. sqreg, however, because it esti-
mates the quantiles simultaneously, allows you to test other hypotheses. iqreg, by focusing on quantile
differences, presents results in a way that is easier to read.

Finally, sqreg can estimate quantiles singly,

. sqreg y x1 x2, quantiles(.5)

and can thereby be used as a substitute for the slower bsqreg. (Gould [1997b] presents timings demon-
strating that sqreg is faster than bsqreg.) sqreg can also estimate more than two quantiles simultane-

ously:

. sqreg y x1 x2, quantiles(.25 .5 .75)
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Example 5: Simultaneous quantile estimation
In demonstrating qreg, we performed quantile regressions using auto.dta. We discovered that the

regression of price on weight, length, and foreign produced vastly different coefficients for the

0.25, 0.5, and 0.75 quantile regressions. Here are the coefficients that we obtained:

25th 50th 75th
Variable percentile percentile percentile

weight 1.83 3.93 9.22
length 2.85 −41.25 −220.8
foreign 2209.9 3377.8 3595.1
cons −1879.8 344.6 20242.9

All we can say, having estimated these equations separately, is that price seems to depend differently

on the weight, length, and foreign variables depending on the portion of the price distribution we

examine. We cannot be more precise because the estimates have been made separately. With sqreg,
however, we can estimate all the effects simultaneously:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. set seed 1001
. sqreg price weight length foreign, q(.25 .5 .75) reps(100)
(fitting base model)
Bootstrap replications (100): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100 done
Simultaneous quantile regression Number of obs = 74

bootstrap(100) SEs .25 Pseudo R2 = 0.1697
.50 Pseudo R2 = 0.2347
.75 Pseudo R2 = 0.3840

Bootstrap
price Coefficient std. err. t P>|t| [95% conf. interval]

q25
weight 1.831789 1.206151 1.52 0.133 -.573803 4.237381
length 2.84556 26.775 0.11 0.916 -50.55549 56.24661

foreign 2209.925 946.9585 2.33 0.022 321.2762 4098.575
_cons -1879.775 3243.182 -0.58 0.564 -8348.097 4588.548

q50
weight 3.933588 2.34028 1.68 0.097 -.7339531 8.601129
length -41.25191 59.58361 -0.69 0.491 -160.0877 77.58386

foreign 3377.771 1081.475 3.12 0.003 1220.836 5534.706
_cons 344.6489 5062.804 0.07 0.946 -9752.795 10442.09

q75
weight 9.22291 2.631084 3.51 0.001 3.975378 14.47044
length -220.7833 89.54754 -2.47 0.016 -399.3802 -42.18635

foreign 3595.133 1208.769 2.97 0.004 1184.319 6005.947
_cons 20242.9 9682.24 2.09 0.040 932.2846 39553.52

The coefficient estimates above are the same as those previously estimated, although the standard error

estimates are a little different. sqreg obtains estimates of variance by bootstrapping. The important

thing here, however, is that the full covariance matrix of the estimators has been estimated and stored,

and thus it is now possible to perform hypothesis tests. Are the effects of weight the same at the 25th

and 75th percentiles?
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. test [q25]weight = [q75]weight
( 1) [q25]weight - [q75]weight = 0

F( 1, 70) = 8.57
Prob > F = 0.0046

It appears that they are not. We can obtain a confidence interval for the difference by using lincom:

. lincom [q75]weight-[q25]weight
( 1) - [q25]weight + [q75]weight = 0

price Coefficient Std. err. t P>|t| [95% conf. interval]

(1) 7.391121 2.524626 2.93 0.005 2.355914 12.42633

Indeed, we could test whether the weight and length sets of coefficients are equal at the three quantiles

estimated:

. quietly test [q25]weight = [q50]weight

. quietly test [q25]weight = [q75]weight, accumulate

. quietly test [q25]length = [q50]length, accumulate

. test [q25]length = [q75]length, accumulate
( 1) [q25]weight - [q50]weight = 0
( 2) [q25]weight - [q75]weight = 0
( 3) [q25]length - [q50]length = 0
( 4) [q25]length - [q75]length = 0

F( 4, 70) = 2.25
Prob > F = 0.0727

iqreg focuses on one quantile comparison but presents results that are more easily interpreted:

. set seed 1001

. iqreg price weight length foreign, q(.25 .75) reps(100) nolog

.75-.25 Interquantile regression Number of obs = 74
bootstrap(100) SEs .75 Pseudo R2 = 0.3840

.25 Pseudo R2 = 0.1697

Bootstrap
price Coefficient std. err. t P>|t| [95% conf. interval]

weight 7.391121 2.524626 2.93 0.005 2.355914 12.42633
length -223.6288 84.21504 -2.66 0.010 -391.5904 -55.66724

foreign 1385.208 1321.832 1.05 0.298 -1251.103 4021.519
_cons 22122.68 9329.178 2.37 0.020 3516.219 40729.14

Looking only at the 0.25 and 0.75 quantiles (the interquartile range), the iqreg command output

is easily interpreted. Increases in weight correspond significantly to increases in price dispersion.

Increases in length correspond to decreases in price dispersion. The foreign variable does not sig-

nificantly change price dispersion.

Do not make too much of these results; the purpose of this example is simply to illustrate the sqreg
and iqreg commands and to do so in a context that suggests why analyzing dispersion might be of

interest.
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lincom after sqreg produced the same 𝑡 statistic for the interquartile range of weight, as did the

iqreg command above. In general, they will not agree exactly because of the randomness of boot-

strapping, unless the random-number seed is set to the same value before estimation (as was done here).

Gould (1997a) presents simulation results showing that the coverage—the actual percentage of con-

fidence intervals containing the true value—for iqreg is appropriate.

What are the parameters?
In this section, we use a specific data-generating process (DGP) to illustrate the interpretation of the

parameters estimated by qreg. If simulation experiments are not intuitive to you, skip this section.

In general, quantile regression parameterizes the quantiles of the distribution of 𝑦 conditional on the

independent variables x as xβ, where β is a vector of estimated parameters. In our example, we include

a constant term and a single independent variable, and we express quantiles of the distribution of 𝑦
conditional on 𝑥 as 𝛽0 + 𝛽1𝑥.

We use simulated data to illustrate what we mean by a conditional distribution and how to interpret

the parameters β estimated by qreg. We also note how we could change our example to illustrate a DGP

for which the estimator in qreg would be misspecified.

We suppose that the distribution of 𝑦 conditional on 𝑥 has aWeibull form. If 𝑦 has aWeibull distribu-

tion, the distribution function is 𝐹(𝑦) = 1 − exp{−(𝑦/𝜆)𝑘}, where the scale parameter 𝜆 > 0 and the

shape parameter 𝑘 > 0. We can make 𝑦 have aWeibull distribution function conditional on 𝑥 by making

the scale parameter or the shape parameter functions of 𝑥. In our example, we specify a particular DGP by
supposing that 𝜆 = (1+𝛼𝑥), 𝛼 = 1.5, 𝑥 = 1+

√
𝜈, and that 𝜈 has a 𝜒2(1) distribution. For the moment,

we leave the parameter 𝑘 as is so that we can discuss how this decision relates to model specification.

Plugging in for 𝜆 yields the functional form for the distribution of 𝑦 conditional on 𝑥, which is known
as the conditional distribution function and is denoted 𝐹(𝑦|𝑥). 𝐹(𝑦|𝑥) is the distribution for 𝑦 for each

given value of 𝑥.
Some algebra yields that 𝐹(𝑦|𝑥) = 1 − exp[−{𝑦/(1 + 𝛼𝑥)}𝑘]. Letting 𝜏 = 𝐹(𝑦|𝑥) implies that

0 ≤ 𝜏 ≤ 1, because probabilities must be between 0 and 1.

To obtain the 𝜏 quantile of the distribution of 𝑦 conditional on 𝑥, we solve

𝜏 = 1 − exp[−{𝑦/(1 + 𝛼𝑥)}𝑘]

for 𝑦 as a function of 𝜏, 𝑥, 𝛼, and 𝑘. The solution is

𝑦 = (1 + 𝛼𝑥){− ln(1 − 𝜏)}(1/𝑘) (1)

For any value of 𝜏 ∈ (0, 1), expression (1) gives the 𝜏 quantile of the distribution of 𝑦 conditional on

𝑥. To use qreg, we must rewrite (1) as a function of 𝑥, 𝛽0, and 𝛽1. Some algebra yields that (1) can be

rewritten as

𝑦 = 𝛽0 + 𝛽1 ∗ 𝑥
where 𝛽0 = {− ln(1− 𝜏)}(1/𝑘) and 𝛽1 = 𝛼{− ln(1− 𝜏)}(1/𝑘). We can express the conditional quantiles

as linear combinations of 𝑥, which is a property of the estimator implemented in qreg.

If we parameterize 𝑘 as a nontrivial function of 𝑥, the conditional quantiles will not be linear in 𝑥.
If the conditional quantiles cannot be represented as linear functions of 𝑥, we cannot estimate the true
parameters of the DGP. This restriction illustrates the limits of the estimator implemented in qreg.
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We set 𝑘 = 2 for our example.

Conditional quantile regression allows the coefficients to change with the specified quantile. For

our DGP, the coefficients 𝛽0 and 𝛽1 increase as 𝜏 gets larger. Substituting in for 𝛼 and 𝑘 yields that

𝛽0 = √− ln(1 − 𝜏) and 𝛽1 = 1.5√− ln(1 − 𝜏). Table 1 presents the true values for 𝛽0 and 𝛽1 implied

by our DGP when 𝜏 ∈ {0.25, 0.5, 0.8}.

Table 1: True values for 𝛽0 and 𝛽1

𝜏 𝛽0 𝛽1

0.25 0.53636 0.80454

0.5 0.8325546 1.248832

0.8 1.268636 1.902954

We can also use (1) to generate data from the specified distribution of 𝑦 conditional on 𝑥 by plugging

in random uniform numbers for 𝜏. Each random uniform number substituted in for 𝜏 in (1) yields a draw
from the conditional distribution of 𝑦 given 𝑥.

Example 6
In this example, we generate 100,000 observations from our specified DGP by substituting random

uniform numbers for 𝜏 in (1), with 𝛼 = 1.5, 𝑘 = 2, 𝑥 = 1+
√

𝜈, and 𝜈 coming from a 𝜒2(1) distribution.
We begin by executing the code that implements this method; below, we discuss each line of the

output produced.

. clear // drop existing variables

. set seed 1234571 // set random-number seed

. set obs 100000 // set number of observations
Number of observations (_N) was 0, now 100,000.
. generate double tau = runiform() // generate uniform variate
. generate double x = 1 + sqrt(rchi2(1)) // generate values for x
. generate double lambda = 1 + 1.5*x // lambda is 1 + alpha*x
. generate double k = 2 // fix value of k
. // generate random values for y
. // given x
. generate double y = lambda*((-ln(1-tau))^(1/k))

Although the comments at the end of each line briefly describe what each line is doing, we provide a

more careful description. The first line drops any variables in memory. The second sets the seed of the

random-number generator so that we will always get the same sequence of random uniform numbers.

The third line sets the sample size to 100,000 observations, and the fourth line reports the change in

sample size.

The fifth line substitutes random uniform numbers for 𝜏. This line is the key to the algorithm. This

standard method, known as inverse-probability transforms, for computing random numbers is discussed

by Cameron and Trivedi (2022, 220–221), among others.

Lines 6–8 generate 𝑥, 𝜆, and 𝑘 per our specified DGP. Lines 9–11 implement (1) using the previously

generated 𝜆, 𝑥, and 𝑘.
At the end, we have 100,000 observations on 𝑦 and 𝑥, with 𝑦 coming from the conditional distribution

that we specified above.

https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexampleseq1
https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexampleseq1
https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexampleseq1
https://www.stata.com/manuals/rqreg.pdf#rqregRemarksandexampleseq1
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Example 7
In the example below, we use qreg to estimate 𝛽1 and 𝛽0, the parameters from the conditional quantile

function, for the 0.5 quantile from our simulated data.

. qreg y x, quantile(.5)
Iteration 1: WLS sum of weighted deviations = 68573.243
Iteration 1: Sum of abs. weighted deviations = 68571.918
Iteration 2: Sum of abs. weighted deviations = 68308.342
Iteration 3: Sum of abs. weighted deviations = 68241.17
Iteration 4: Sum of abs. weighted deviations = 68232.043
Iteration 5: Sum of abs. weighted deviations = 68230.304
Iteration 6: Sum of abs. weighted deviations = 68229.643
Iteration 7: Sum of abs. weighted deviations = 68229.532
Iteration 8: Sum of abs. weighted deviations = 68229.514
Iteration 9: Sum of abs. weighted deviations = 68229.508
Iteration 10: Sum of abs. weighted deviations = 68229.506
Iteration 11: Sum of abs. weighted deviations = 68229.505
Median regression Number of obs = 100,000

Raw sum of deviations 73861.64 (about 2.9443724)
Min sum of deviations 68229.51 Pseudo R2 = 0.0763

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 1.266062 .0117759 107.51 0.000 1.242981 1.289143
_cons .8083315 .0222972 36.25 0.000 .7646291 .8520338

In the qreg output, the results for x correspond to the estimate of 𝛽1, and the results for cons
correspond to the estimate of 𝛽0. The reported estimates are close to their true values of 1.248832 and

0.8325546, which are given in table 1.

The intuition in this example comes from the ability of qreg to recover the true parameters of our

specified DGP. As we increase the number of observations in our sample size, the qreg estimates will get

closer to the true values.
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Example 8
In the example below, we estimate the parameters of the conditional quantile function for the 0.25

quantile and compare them with the true values.

. qreg y x, quantile(.25)
Iteration 1: WLS sum of weighted deviations = 65395.359
Iteration 1: Sum of abs. weighted deviations = 65397.892
Iteration 2: Sum of abs. weighted deviations = 52640.481
Iteration 3: Sum of abs. weighted deviations = 50706.508
Iteration 4: Sum of abs. weighted deviations = 49767.356
Iteration 5: Sum of abs. weighted deviations = 49766.98
Iteration 6: Sum of abs. weighted deviations = 49765.818
Iteration 7: Sum of abs. weighted deviations = 49765.589
Iteration 8: Sum of abs. weighted deviations = 49765.549
Iteration 9: Sum of abs. weighted deviations = 49765.533
Iteration 10: Sum of abs. weighted deviations = 49765.528
Iteration 11: Sum of abs. weighted deviations = 49765.527
Iteration 12: Sum of abs. weighted deviations = 49765.527
Iteration 13: Sum of abs. weighted deviations = 49765.527
.25 Quantile regression Number of obs = 100,000

Raw sum of deviations 51945.91 (about 1.8560913)
Min sum of deviations 49765.53 Pseudo R2 = 0.0420

y Coefficient Std. err. t P>|t| [95% conf. interval]

x .8207143 .0106425 77.12 0.000 .799855 .8415735
_cons .5075988 .0201512 25.19 0.000 .4681026 .547095

Same as above, qreg reports the estimates of 𝛽1 and 𝛽0 in the output table for x and cons, respec-
tively. The reported estimates are close to their true values of 0.80454 and 0.53636, which are given in

table 1. As expected, the estimates are close to their true values. Also as expected, the estimates for the

0.25 quantile are smaller than the estimates for the 0.5 quantile.
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Example 9
We finish this section by estimating the parameters of the conditional quantile function for the 0.8

quantile and comparing them with the true values.

. qreg y x, quantile(.8)
Iteration 1: WLS sum of weighted deviations = 66126.751
Iteration 1: Sum of abs. weighted deviations = 66130.001
Iteration 2: Sum of abs. weighted deviations = 55084.287
Iteration 3: Sum of abs. weighted deviations = 52914.276
Iteration 4: Sum of abs. weighted deviations = 52101.59
Iteration 5: Sum of abs. weighted deviations = 51899.426
Iteration 6: Sum of abs. weighted deviations = 51898.269
Iteration 7: Sum of abs. weighted deviations = 51898.268
Iteration 8: Sum of abs. weighted deviations = 51898.267
.8 Quantile regression Number of obs = 100,000

Raw sum of deviations 60129.76 (about 4.7060381)
Min sum of deviations 51898.27 Pseudo R2 = 0.1369

y Coefficient Std. err. t P>|t| [95% conf. interval]

x 1.911771 .014834 128.88 0.000 1.882697 1.940846
_cons 1.254583 .0280877 44.67 0.000 1.199531 1.309634

Same as above, qreg reports the estimates of 𝛽1 and 𝛽0 in the output table for x and cons, respec-
tively. The reported estimates are close to their true values of 1.902954 and 1.268636, which are given

in table 1. As expected, the estimates are close to their true values. Also as expected, the estimates for

the 0.8 quantile are larger than the estimates for the 0.5 quantile.

Stored results
qreg stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(q) quantile requested

e(q v) value of the quantile

e(r2 p) pseudo-𝑅2

e(sum adev) sum of absolute deviations

e(sum rdev) sum of raw deviations

e(sum w) sum of weights

e(f r) density estimate

e(sparsity) sparsity estimate

e(bwidth) bandwidth

e(kbwidth) kernel bandwidth

e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) qreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(bwmethod) bandwidth method; hsheather, bofinger, or chamberlain
e(denmethod) density estimation method; fitted, residual, or kernel
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e(kernel) kernel function

e(wtype) weight type

e(wexp) weight expression

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

iqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(q0) lower quantile requested

e(q1) upper quantile requested

e(reps) number of replications

e(r2 p q0) lower quantile pseudo-𝑅2

e(r2 p q1) upper quantile pseudo-𝑅2

e(sumrdev0) lower quantile sum of raw deviations

e(sumrdev1) upper quantile sum of raw deviations

e(sumadev0) lower quantile sum of absolute deviations

e(sumadev1) upper quantile sum of absolute deviations

e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) iqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

sqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(n q) number of quantiles requested

e(q#) the quantiles requested

e(reps) number of replications

e(r2 p q#) pseudo-𝑅2 for q#
e(sumrdv#) sum of raw deviations for q#
e(sumadv#) sum of absolute deviations for q#
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) sqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(eqnames) names of equations

e(vcetype) title used to label Std. err.

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

bsqreg stores the following in e():

Scalars

e(N) number of observations

e(df r) residual degrees of freedom

e(q) quantile requested

e(q v) value of the quantile

e(reps) number of replications

e(r2 p) pseudo-𝑅2

e(sum adev) sum of absolute deviations

e(sum rdev) sum of raw deviations
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e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros

e(cmd) bsqreg
e(cmdline) command as typed

e(depvar) name of dependent variable

e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Linear programming formulation of quantile regression
Standard errors when residuals are i.i.d.
Pseudo-𝑅2

Introduction
According to Stuart and Ord (1991, 1084), the method of minimum absolute deviations was first

proposed by Boscovich in 1757 and was later developed by Laplace; Stigler (1986, 39–55) and Hald

(1998, 97–103, 112–116) provide historical details. According to Bloomfield and Steiger (1980), Harris

(1950) later observed that the problem of minimum absolute deviations could be turned into the linear

programming problem that was first implemented by Wagner (1959). Interest has grown in this method

because robust methods and extreme value modeling have become more popular. Statistical and com-

putational properties of minimum absolute deviation estimators are surveyed by Narula and Wellington

(1982). Cameron and Trivedi (2005), Hao and Naiman (2007), and Wooldridge (2010) provide excel-

lent introductions to quantile regression methods, while Koenker (2005) gives an in-depth review of the

topic.
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Linear programming formulation of quantile regression
Define 𝜏 as the quantile to be estimated; the median is 𝜏 = 0.5. For each observation 𝑖, let 𝜀𝑖 be the

residual

𝜀𝑖 = 𝑦𝑖 − x′
𝑖β̂𝜏

The objective function to be minimized is

𝑐𝜏(𝜀𝑖) = (𝜏1 {𝜀𝑖 ≥ 0} + (1 − 𝜏)1 {𝜀𝑖 < 0}) |𝜀𝑖|
= (𝜏1 {𝜀𝑖 ≥ 0} − (1 − 𝜏)1 {𝜀𝑖 < 0}) 𝜀𝑖

= (𝜏 − 1 {𝜀𝑖 < 0}) 𝜀𝑖 (2)

where 1{⋅} is the indicator function. This function is sometimes referred to as the check function because
it resembles a check mark (Wooldridge 2010, 450); the slope of 𝑐𝜏(𝜀𝑖) is 𝜏 when 𝜀𝑖 > 0 and is 𝜏 − 1

when 𝜀𝑖 < 0, but is undefined for 𝜀𝑖 = 0. Choosing the β̂𝜏 that minimize 𝑐𝜏(𝜀𝑖) is equivalent to finding
the β̂𝜏 that make xβ̂𝜏 best fit the quantiles of the distribution of 𝑦 conditional on x.

This minimization problem is set up as a linear programming problem and is solved with linear pro-

gramming techniques, as suggested by Armstrong, Frome, and Kung (1979) and described in detail by

Koenker (2005). Here 2𝑛 slack variables, u𝑛×1 and v𝑛×1, are introduced, where 𝑢𝑖 ≥ 0, 𝑣𝑖 ≥ 0, and

𝑢𝑖 × 𝑣𝑖 = 0, reformulating the problem as

minβ𝜏,u,v {𝜏1′
𝑛u + (1 − 𝜏)1′

𝑛v | y − Xβ𝜏 = u − v}

where 1𝑛 is a vector of 1s. This is a linear objective function on a polyhedral constraint set with (𝑛
𝑘)

vertices, and our goal is to find the vertex that minimizes (2). Each step in the search is described by

a set of 𝑘 observations through which the regression plane passes, called the basis. A step is taken by

replacing a point in the basis if the linear objective function can be improved. If this occurs, a line is

printed in the iteration log. The definition of convergence is exact in the sense that no amount of added

iterations could improve the objective function.

A series of weighted least-squares (WLS) regressions is used to identify a set of observations as a

starting basis. TheWLS algorithm for 𝜏 = 0.5 is taken from Schlossmacher (1973) with a generalization

for 0 < 𝜏 < 1 implied from Hunter and Lange (2000).

Standard errors when residuals are i.i.d.
The estimator for the VCE implemented in qreg assumes that the errors of the model are independent

and identically distributed (i.i.d.). When the errors are i.i.d., the large-sample VCE is

cov(β𝜏) = 𝜏(1 − 𝜏)
𝑓2

𝑌(𝜉𝜏)
{𝐸(x𝑖x

′
𝑖)}

−1
(3)

where 𝜉𝜏 = 𝐹 −1
𝑌 (𝜏) and 𝐹𝑌(𝑦) is the distribution function of 𝑌 with density 𝑓𝑌(𝑦). See Koenker (2005,

73) for this result. From (3), we see that the regression precision depends on the inverse of the density

function, termed the sparsity function, 𝑠𝜏 = 1/𝑓𝑌(𝜉𝜏).
While 1/𝑛 ∑𝑛

𝑖=1 x𝑖x
′
𝑖 estimates 𝐸(x𝑖x

′
𝑖), estimating the sparsity function is more difficult. qreg

provides several methods to estimate the sparsity function. The different estimators are specified through

the suboptions of vce(iid, denmethod bwidth). The suboption denmethod specifies the functional form

for the sparsity estimator. The default is fitted.
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Here we outline the logic underlying the fitted estimator. Because 𝐹𝑌(𝑦) is the distribution function
for 𝑌, we have 𝑓𝑌(𝑦) = {𝑑𝐹𝑦(𝑦)}/𝑑𝑦, 𝜏 = 𝐹𝑌(𝜉𝜏), and 𝜉𝜏 = 𝐹 −1

𝑌 (𝜏). When differentiating the identity

𝐹𝑌{𝐹 −1
𝑌 (𝜏)} = 𝜏, the sparsity function can be written as 𝑠𝜏 = {𝐹 −1

𝑌 (𝜏)}/𝑑𝑡. Numerically, we can

approximate the derivative using the centered difference,

𝐹 −1
𝑌 (𝜏)
𝑑𝑡

≈ 𝐹 −1
𝑌 (𝜏 + ℎ) − 𝐹 −1

𝑌 (𝜏 − ℎ)
2ℎ

=
𝜉𝜏+ℎ − 𝜉𝜏−ℎ

2ℎ
= ̂𝑠𝜏 (4)

where ℎ is the bandwidth.

The empirical quantile function is computed by first estimating β𝜏+ℎ and β𝜏−ℎ, and then computing

̂𝐹 −1
𝑌 (𝜏 + ℎ) = x′β̂𝜏+ℎ and ̂𝐹 −1

𝑌 (𝜏 − ℎ) = x′β̂𝜏−ℎ, where x is the sample mean of the independent

variables x. These quantities are then substituted into (4).

Alternatively, as the option suggests, vce(iid, residual) specifies that qreg use the empirical

quantile function of the residuals to estimate the sparsity. Here we substitute 𝐹𝜖, the distribution of the

residuals, for 𝐹𝑌, which only differ by their first moments.

The 𝑘 residuals associated with the linear programming basis will be zero, where 𝑘 is the number of

regression coefficients. These zero residuals are removed before computing the 𝜏 +ℎ and 𝜏 −ℎ quantiles,

𝜀(𝜏+ℎ) = ̂𝐹 −1
𝜖 (𝜏 + ℎ) and 𝜀(𝜏−ℎ) = ̂𝐹 −1

𝜖 (𝜏 − ℎ). The ̂𝐹 −1
𝜖 estimates are then substituted for 𝐹 −1

𝑌 in (4).

Each of the estimators for the sparsity function depends on a bandwidth. The vce() suboption bwidth

specifies the bandwidth method to use. The three bandwidth options and their citations are hsheather
(Hall and Sheather 1988), bofinger (Bofinger 1975), and chamberlain (Chamberlain 1994).

Their formulas are

ℎ𝑠 = 𝑛−1/3Φ−1 (1 − 𝛼
2

)
2/3

[3
2

× 𝜙{Φ−1(𝜏)}2

2Φ−1(𝜏)2 + 1
]

1/3

ℎ𝑏 = 𝑛−1/5 [
9
2 𝜙{Φ−1(𝜏)}4

{2Φ−1(𝜏)2 + 1}2 ]
1/5

ℎ𝑐 = Φ−1 (1 − 𝛼
2

) √𝜏(1 − 𝜏)
𝑛

where ℎ𝑠 is the Hall–Sheather bandwidth, ℎ𝑏 is the Bofinger bandwidth, ℎ𝑐 is the Chamberlain band-

width, Φ() and 𝜙() are the standard normal distribution and density functions, 𝑛 is the sample size, and

100(1 − 𝛼) is the confidence level set by the level() option. Koenker (2005) discusses the derivation

of the Hall–Sheather and the Bofinger bandwidth formulas. You should avoid modifying the confidence

level when replaying estimates that use the Hall–Sheather or Chamberlain bandwidths because these

methods use the confidence level to estimate the coefficient standard errors.

Finally, the vce() suboption kernel(kernel) specifies that qreg use one of several kernel density

estimators to estimate the sparsity function. kernel allows you to choose which kernel function to use,

where the default is the Epanechnikov kernel. See [R] kdensity for the functional form of the eight

kernels.

The kernel bandwidth is computed using an adaptive estimate of scale

ℎ𝑘 = min(�̂�,
𝑟𝑞

1.34
) × {Φ−1(𝜏 + ℎ) − Φ−1(𝜏 − ℎ)}
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where ℎ is one of ℎ𝑠, ℎ𝑏, or ℎ𝑐; 𝑟𝑞 is the interquartile range; and �̂� is the standard deviation of y; see

Silverman (1986, 47) and Koenker (2005, 81) for discussions. Let ̂𝑓𝜖(𝜀𝑖) be the kernel density estimate
for the 𝑖th residual, and then the kernel estimator for the sparsity function is

̂𝑠𝜏 = 𝑛ℎ𝑘

∑𝑛
𝑖=1

̂𝑓𝜖(𝜀𝑖)

Finally, substituting your choice of sparsity estimate into (3) results in the i.i.d. variance–covariance

matrix

V𝑛 = ̂𝑠2
𝜏𝜏(1 − 𝜏) (

𝑛
∑
𝑖=1

x𝑖x
′
𝑖)

−1

Pseudo-R2

The pseudo-𝑅2 is calculated as

1 − sum of weighted deviations about estimated quantile

sum of weighted deviations about raw quantile

This is based on the likelihood for a double-exponential distribution 𝑒𝑣𝑖|𝜀𝑖|, where 𝑣𝑖 are multipliers

𝑣𝑖 = {𝜏 if 𝜀𝑖 > 0
(1 − 𝜏) otherwise

Minimizing the objective function (2) with respect to β𝜏 also minimizes ∑𝑖 |𝜀𝑖|𝑣𝑖, the sum of weighted

least absolute deviations. For example, for the 50th percentile 𝑣𝑖 = 1, for all 𝑖, and we have median

regression. If we want to estimate the 75th percentile, we weight the negative residuals by 0.25 and the

positive residuals by 0.75. It can be shown that the criterion is minimized when 75% of the residuals are

negative.
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