These commands provide standard quality-control charts. `cchart` draws a c chart; `pchart`, a p (fraction-defective) chart; `rchart`, an R (range or dispersion) chart; `xchart`, an \overline{X} (control line) chart; and `shewhart`, vertically aligned \overline{X} and R charts.

Quick start

- c chart for `dvar` defects per unit identified by `uvar`
 - `cchart dvar uvar`

- p chart for `dvar` defective items out of `nvar` items inspected from each unit identified by `uvar`
 - `pchart dvar uvar nvar`

 As above, but stabilize the p chart for unequal numbers of items inspected per unit
 - `pchart dvar uvar nvar, stabilized`

- R chart for the range of measurements `m1`, `m2`, `m3`, and `m4`
 - `rchart m1 m2 m3 m4, connect(l)`

 As above, but use known process standard deviation of 0.5 for control limits
 - `rchart m1 m2 m3 m4, connect(l) std(.5)`

- \overline{X} chart for measurements `m1`, `m2`, `m3`, and `m4`
 - `xchart m1 m2 m3 m4, connect(l)`

 As above, but use known process standard deviation of 0.5 and grand mean of 10 for control limits
 - `xchart m1 m2 m3 m4, connect(l) std(.5) mean(10)`

- Shewhart chart with vertically aligned R and \overline{X} charts
 - `shewhart m1 m2 m3 m4, connect(l) std(.5) mean(10)`
Menu

cchart
Statistics > Other > Quality control > C chart

pchart
Statistics > Other > Quality control > P chart

rchart
Statistics > Other > Quality control > R chart

xchart
Statistics > Other > Quality control > X-bar chart

shewhart
Statistics > Other > Quality control > Vertically aligned X-bar and R chart
Syntax

Draw a c chart

```bash
cchart defect_var unit_var [, cchart_options]
```

Draw a p (fraction-defective) chart

```bash
pchart reject_var unit_var ssize_var [, pchart_options]
```

Draw an R (range or dispersion) chart

```bash
rchart varlist [if] [in] [, rchart_options]
```

Draw an \(\bar{X} \) (control line) chart

```bash
xchart varlist [if] [in] [, xchart_options]
```

Draw vertically aligned \(\bar{X} \) and R charts

```bash
shewhart varlist [if] [in] [, shewhart_options]
```

cchart_options

<table>
<thead>
<tr>
<th>Main</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nograph</code></td>
<td>suppress graph</td>
</tr>
</tbody>
</table>

Plot

- `connect_options` - affect rendition of the plotted points
- `marker_options` - change look of markers (color, size, etc.)
- `marker_label_options` - add marker labels; change look or position

Control limits

- `cloops(cline_options)` - affect rendition of the control limits

Add plots

- `addplot(plot)` - add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

- `twoway_options` - any options other than by(()) documented in [G-3] `twoway_options`
pchart_options

<table>
<thead>
<tr>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>stabilized</td>
<td>stabilize the p chart when sample sizes are unequal</td>
</tr>
<tr>
<td>nograph</td>
<td>suppress graph</td>
</tr>
<tr>
<td>generate(newvar_f newvar_lcl newvar_ucl)</td>
<td>store the fractions of defective elements and the lower and upper control limits</td>
</tr>
<tr>
<td>Plot</td>
<td></td>
</tr>
<tr>
<td>connect_options</td>
<td>affect rendition of the plotted points</td>
</tr>
<tr>
<td>marker_options</td>
<td>change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td>marker_label_options</td>
<td>add marker labels; change look or position</td>
</tr>
<tr>
<td>Control limits</td>
<td></td>
</tr>
<tr>
<td>clopts(cline_options)</td>
<td>affect rendition of the control limits</td>
</tr>
<tr>
<td>Add plots</td>
<td></td>
</tr>
<tr>
<td>addplot(plot)</td>
<td>add other plots to the generated graph</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
<td>any options other than by() documented in [G-3] twoway_options</td>
</tr>
</tbody>
</table>

rchart_options

<table>
<thead>
<tr>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>std(#)</td>
<td>user-specified standard deviation</td>
</tr>
<tr>
<td>nograph</td>
<td>suppress graph</td>
</tr>
<tr>
<td>Plot</td>
<td></td>
</tr>
<tr>
<td>connect_options</td>
<td>affect rendition of the plotted points</td>
</tr>
<tr>
<td>marker_options</td>
<td>change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td>marker_label_options</td>
<td>add marker labels; change look or position</td>
</tr>
<tr>
<td>Control limits</td>
<td></td>
</tr>
<tr>
<td>clopts(cline_options)</td>
<td>affect rendition of the control limits</td>
</tr>
<tr>
<td>Add plots</td>
<td></td>
</tr>
<tr>
<td>addplot(plot)</td>
<td>add other plots to the generated graph</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
<td>any options other than by() documented in [G-3] twoway_options</td>
</tr>
</tbody>
</table>
xchart_options

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td><code>std(#)</code> user-specified standard deviation</td>
</tr>
<tr>
<td><code>mean(#)</code> user-specified mean</td>
</tr>
<tr>
<td><code>lower(#)</code> <code>upper(#)</code> lower and upper limits of the X-bar limits</td>
</tr>
<tr>
<td><code>nograph</code> suppress graph</td>
</tr>
<tr>
<td>Plot</td>
</tr>
<tr>
<td><code>connect_options</code> affect rendition of the plotted points</td>
</tr>
<tr>
<td><code>marker_options</code> change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td><code>marker_label_options</code> add marker labels; change look or position</td>
</tr>
<tr>
<td>Control limits</td>
</tr>
<tr>
<td><code>clopts(cline_options)</code> affect rendition of the control limits</td>
</tr>
<tr>
<td>Add plots</td>
</tr>
<tr>
<td><code>addplot(plot)</code> add other plots to the generated graph</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
</tr>
<tr>
<td><code>twoway_options</code> any options other than by() documented in [G-3] <code>twoway_options</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shewhart_options</td>
</tr>
<tr>
<td>Main</td>
</tr>
<tr>
<td><code>std(#)</code> user-specified standard deviation</td>
</tr>
<tr>
<td><code>mean(#)</code> user-specified mean</td>
</tr>
<tr>
<td><code>nograph</code> suppress graph</td>
</tr>
<tr>
<td>Plot</td>
</tr>
<tr>
<td><code>connect_options</code> affect rendition of the plotted points</td>
</tr>
<tr>
<td><code>marker_options</code> change look of markers (color, size, etc.)</td>
</tr>
<tr>
<td><code>marker_label_options</code> add marker labels; change look or position</td>
</tr>
<tr>
<td>Control limits</td>
</tr>
<tr>
<td><code>clopts(cline_options)</code> affect rendition of the control limits</td>
</tr>
<tr>
<td>Y axis, X axis, Titles, Legend, Overall</td>
</tr>
<tr>
<td><code>combine_options</code> any options documented in [G-2] <code>graph combine</code></td>
</tr>
</tbody>
</table>

Options

Main

- `stabilized` stabilizes the p chart when sample sizes are unequal.

- `std(#)` specifies the standard deviation of the process. The R chart is calculated (based on the range) if this option is not specified.

- `mean(#)` specifies the grand mean, which is calculated if not specified.
lower(#) and upper(#) must be specified together or not at all. They specify the lower and upper limits of the X chart. Calculations based on the mean and standard deviation (whether specified by option or calculated) are used otherwise.

nograph suppresses the graph.

generate(newvar f newvar lcl newvar ucl) stores the plotted values in the p chart. newvar f will contain the fractions of defective elements; newvar lcl and newvar ucl will contain the lower and upper control limits, respectively.

connect_options affect whether lines connect the plotted points and the rendition of those lines; see [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size, color, and outline; see [G-3] marker_options.

marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.

clopts(cline_options) affects the rendition of the control limits; see [G-3] cline_options.

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot_option.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

combine_options (shewhart only) are any of the options documented in [G-2] graph combine. These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Remarks and examples

Control charts may be used to define the goal of a repetitive process, to control that process, and to determine if the goal has been achieved. Walter A. Shewhart of Bell Telephone Laboratories devised the first control chart in 1924. In 1931, Shewhart published *Economic Control of Quality of Manufactured Product*. According to Burr, “Few fields of knowledge have ever been so completely explored and charted in the first exposition” (1976, 29). Shewhart states that “a phenomenon will be said to be controlled when, through the use of past experience, we can predict, at least within limits, how the phenomenon may be expected to vary in the future. Here it is understood that prediction within limits means that we can state, at least approximately, the probability that the observed phenomenon will fall within given limits” (1931, 6).

For more information on quality-control charts, see Burr (1976), Duncan (1986), Harris (1999), or Ryan (2011).
Example 1: cchart

cchart graphs a c chart showing the number of nonconformities in a unit, where `defect_var` records the number of defects in each inspection unit and `unit_var` records the unit number. The unit numbers need not be in order. For instance, consider the following example dataset from Ryan (2011, 186):

```stata
use https://www.stata-press.com/data/r16/ncu
describe
Contains data from https://www.stata-press.com/data/r16/ncu.dta
obs: 30
vars: 2 Dec 2018 15:15

<table>
<thead>
<tr>
<th>variable name</th>
<th>type</th>
<th>format</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>day</td>
<td>byte</td>
<td>%9.0g</td>
<td>Day in April</td>
</tr>
<tr>
<td>defects</td>
<td>byte</td>
<td>%9.0g</td>
<td>Number of nonconforming units</td>
</tr>
</tbody>
</table>

Sorted by:
list in 1/5

<table>
<thead>
<tr>
<th>day</th>
<th>defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>
```

```
cchart defects day, title(c Chart for Nonconforming Transistors)
```

![c Chart for Nonconforming Transistors](image)

The expected number of defects is 10.6, with lower and upper control limits of 0.8327 and 20.37, respectively. No units are out of control.
Example 2: pchart

pchart graphs a p chart, which shows the fraction of nonconforming items in a subgroup, where *reject_var* records the number rejected in each inspection unit, *unit_var* records the inspection unit number, and *ssize_var* records the number inspected in each unit.

Consider the example dataset from Ryan (2011, 186) of the number of nonconforming transistors out of 1,000 inspected each day during the month of April:

```
. use https://www.stata-press.com/data/r16/ncu2
. describe
Contains data from https://www.stata-press.com/data/r16/ncu2.dta
obs: 30
vars: 3 2 Dec 2018 15:16

storage  display value
variable name type format label variable label

    day    byte %9.0g Day in April
reject   byte %9.0g Number of nonconforming units
ssize   int   %9.0g Sample size

Sorted by:
. list in 1/5

<table>
<thead>
<tr>
<th>day</th>
<th>rejects</th>
<th>ssize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1000</td>
</tr>
</tbody>
</table>
```

. pchart rejects day ssize

All the points are within the control limits, which are 0.0009 for the lower limit and 0.0203 for the upper limit.

Here the sample sizes are fixed at 1,000, so the *ssize* variable contains 1,000 for each observation. Sample sizes need not be fixed, however. Say that our data were slightly different:
. use https://www.stata-press.com/data/r16/ncu3
. list in 1/5

<table>
<thead>
<tr>
<th>day</th>
<th>rejects</th>
<th>ssize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>920</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>920</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>920</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>950</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>950</td>
</tr>
</tbody>
</table>

. pchart rejects day ssize

Here the control limits are, like the sample size, no longer constant. The `stabilize` option will stabilize the control chart:

. pchart rejects day ssize, stabilize

Stabilized p Chart, average number of defects = .0119
Example 3: rchart

rchart displays an R chart showing the range for repeated measurements at various times. Variables within observations record measurements. Observations represent different samples.

For instance, say that we take five samples of 5 observations each. In our first sample, our measurements are 10, 11, 10, 11, and 12. The data are

```
. list

<table>
<thead>
<tr>
<th></th>
<th>m1</th>
<th>m2</th>
<th>m3</th>
<th>m4</th>
<th>m5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
```

```
. rchart m1-m5, connect(l)
```

The expected range in each sample is 2 with lower and upper control limits of 0 and 4.23, respectively. If we know that the process standard deviation is 0.3, we could specify
Example 4: xchart

xchart graphs an \bar{X} chart for repeated measurements at various times. Variables within observations record measurements, and observations represent different samples. Using the same data as in the previous example, we type

```
   . xchart m1-m5, connect(l)
```

The average measurement in the sample is 10.64, and the lower and upper control limits are 9.486 and 11.794, respectively. Suppose that we knew from prior information that the mean of the process is 11. Then, we would type

```
               . xchart m1-m5, connect(l)
```

1 unit is out of control
If we also know that the standard deviation of the process is 0.3, we could type

`. xchart m1-m5, connect(l) mean(11) std(.3)

Finally, \texttt{xchart} allows us to specify our own control limits:
Example 5: shewhart

shewhart displays a vertically aligned \bar{X} and R chart in the same image. To produce the best-looking combined image possible, you will want to use the xchart and rchart commands separately and then combine the graphs. shewhart, however, is more convenient.

Using the same data as previously, but realizing that the standard deviation should have been 0.4, we type

```
.shewhart m1-m5, connect(l) mean(11) std(.4)
```

![QC — Quality control charts](image)
Stored results

cchart stores the following in $r()$:

Scalars
- $r(cbar)$: expected number of nonconformities
- $r(lcl_c)$: lower control limit
- $r(ucl_c)$: upper control limit
- $r(N)$: number of observations
- $r(out_c)$: number of units out of control
- $r(below_c)$: number of units below the lower limit
- $r(above_c)$: number of units above the upper limit

pchart stores the following in $r()$:

Scalars
- $r(pbar)$: average fraction of nonconformities
- $r(lcl_p)$: lower control limit
- $r(ucl_p)$: upper control limit
- $r(N)$: number of observations
- $r(out_p)$: number of units out of control
- $r(below_p)$: number of units below the lower limit
- $r(above_p)$: number of units above the upper limit

rchart stores the following in $r()$:

Scalars
- $r(central_line)$: ordinate of the central line
- $r(lcl_r)$: lower control limit
- $r(ucl_r)$: upper control limit
- $r(N)$: number of observations
- $r(out_r)$: number of units out of control
- $r(below_r)$: number of units below the lower limit
- $r(above_r)$: number of units above the upper limit

xchart stores the following in $r()$:

Scalars
- $r(xbar)$: grand mean
- $r(lcl_x)$: lower control limit
- $r(ucl_x)$: upper control limit
- $r(N)$: number of observations
- $r(out_x)$: number of units out of control
- $r(below_x)$: number of units below the lower limit
- $r(above_x)$: number of units above the upper limit

shewhart stores in $r()$ the combination of stored results from xchart and rchart.
Methods and formulas

For the c chart, the number of defects per unit, C, is taken to be a value of a random variable having a Poisson distribution. If k is the number of units available for estimating λ, the parameter of the Poisson distribution, and if C_i is the number of defects in the ith unit, then λ is estimated by $\overline{C} = \sum_i C_i / k$. Then

$$\text{central line} = \overline{C}$$
$$\text{UCL} = \overline{C} + 3\sqrt{\overline{C}}$$
$$\text{LCL} = \overline{C} - 3\sqrt{\overline{C}}$$

Control limits for the p chart are based on the sampling theory for proportions, using the normal approximation to the binomial. If k samples are taken, the estimator of p is given by $\overline{p} = \sum_i \hat{p}_i / k$, where $\hat{p}_i = x_i / n_i$, and x_i is the number of defects in the ith sample of size n_i. The central line and the control limits are given by

$$\text{central line} = \overline{p}$$
$$\text{UCL} = \overline{p} + 3\sqrt{\overline{p}(1 - \overline{p}) / n_i}$$
$$\text{LCL} = \overline{p} - 3\sqrt{\overline{p}(1 - \overline{p}) / n_i}$$

Control limits for the R chart are based on the distribution of the range of samples of size n from a normal population. If the standard deviation of the process, σ, is known,

$$\text{central line} = d_2 \sigma$$
$$\text{UCL} = D_2 \sigma$$
$$\text{LCL} = D_1 \sigma$$

where d_2, D_1, and D_2 are functions of the number of observations in the sample and are obtained from the table published in Beyer (1976).

When σ is unknown,

$$\text{central line} = \overline{R}$$
$$\text{UCL} = (D_2 / d_2) \overline{R}$$
$$\text{LCL} = (D_1 / d_2) \overline{R}$$

where $\overline{R} = \sum_i R_i / k$ is the range of the k sample ranges R_i.

Control limits for the \overline{X} chart are given by

$$\text{central line} = \overline{x}$$
$$\text{UCL} = \overline{x} + (3 / \sqrt{n}) \sigma$$
$$\text{LCL} = \overline{x} - (3 / \sqrt{n}) \sigma$$
if \(\sigma \) is known. If \(\sigma \) is unknown,

\[
\text{central line} = \bar{x} \\
\text{UCL} = \bar{x} + A_2 \bar{R} \\
\text{LCL} = \bar{x} - A_2 \bar{R}
\]

where \(\bar{R} \) is the average range as defined above and \(A_2 \) is a function (op. cit.) of the number of observations in the sample.

Isobel Loutit (1909–2009) is known for her work during World War II to improve the accuracy of targeting for anti-aircraft guns and as a contributor to the field of quality control. Loutit was born in Selkirk Manitoba, Canada. She graduated from the University of Manitoba in 1929 with a degree in mathematics and was one of the first women to work as a professional statistician in Canada. After graduation, she obtained a job teaching French. However, because of her training, she served as a substitute math teacher when needed.

When World War II started, Loutit took a job as a quality control statistician at Northern Electric. Shortly after that, the Canadian government advertised for women with technical training to fill jobs that had been vacated by men who had gone to war. She took a position testing equipment for the military. This job eventually returned her to Northern Electric, this time as a government employee verifying the accuracy of Northern Electric’s Vickers anti-aircraft gun predictor, which was used to aim artillery at incoming planes. Recognizing the quality of her work, the CEO of Northern Electric rehired Loutit as an engineer, the only position for which her pay would not be capped as a woman. She later became the first female manager at Northern Electric and the first woman to chair the Montreal Section of the American Society for Quality Control.

References

Also see

[R] serrbar — Graph standard error bar chart