proportion — Estimate proportions

Description	Quick start
Options	Remarks and examples
References	Also see

Menu Stored results Syntax Methods and formulas

Description

proportion produces estimates of proportions, along with standard errors, for the categories identified by the values in each variable of *varlist*.

Quick start

Proportions, standard errors, and 95% CIs for each level of v1

proportion v1

Also compute statistics for v2

proportion v1 v2

Same as above, for each subpopulation defined by the levels of catvar proportion v1 v2, over(catvar)

Standardizing across strata defined by svar with stratum weight wvar1
 proportion v1, stdize(svar) stdweight(wvar1)

Weighting by sampling weight wvar2

proportion v1 [pweight=wvar2]

Menu

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Proportions

Syntax

proportion varlist	[if]	[in]	weight	[, options]
--------------------	------	------	--------	---------------------

options	Description
Model	
<u>std</u> ize(<i>varname</i>)	variable identifying strata for standardization
<u>stdw</u> eight(<i>varname</i>)	weight variable for standardization
<u>nostdr</u> escale	do not rescale the standard weight variable
if/in/over	
$over(varlist_o)$	group over subpopulations defined by varlist _o
SE/Cluster	
vce(<i>vcetype</i>)	<i>vcetype</i> may be analytic, <u>cl</u> uster <i>clustvar</i> , <u>boot</u> strap, or <u>jack</u> knife
Reporting	
<u>l</u> evel(#)	set confidence level; default is level(95)
<pre>citype(citype)</pre>	method to compute limits of confidence intervals; default is citype(logit)
percent	report estimated proportions as percentages
<u>noh</u> eader	suppress table header
display_options	control column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling
<u>coefl</u> egend	display legend instead of statistics

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

Only numeric, nonnegative, integer-valued variables are allowed in varlist.

bayesboot, bootstrap, collect, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

citype	Description
logit	calculate logit-transformed confidence intervals; the default
agresti	calculate Agresti-Coull confidence intervals
exact	calculate exact (Clopper-Pearson) confidence intervals
jeffreys	calculate Jeffreys confidence intervals
normal	calculate normal (Wald) confidence intervals
wald	synonym for normal
wilson	calculate Wilson confidence intervals

Options

Model
<pre>stdize(varname) specifies that the point estimates be adjusted by direct standardization across the strata identified by varname. This option requires the stdweight() option.</pre>
<pre>stdweight(varname) specifies the weight variable associated with the standard strata identified in the stdize() option. The standardization weights must be constant within the standard strata.</pre>
nostdrescale prevents the standardization weights from being rescaled within the over() groups. This option requires stdize() but is ignored if the over() option is not specified.
if/in/over

over $(varlist_o)$ specifies that estimates be computed for multiple subpopulations, which are identified by the different values of the variables in $varlist_o$. Only numeric, nonnegative, integer-valued variables are allowed in over $(varlist_o)$.

SE/Cluster

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from asymptotic theory (analytic), that allow for intragroup correlation (cluster *clustvar*), and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the sample proportion.

Reporting

level(#); see [R] Estimation options.

citype(*citype*) specifies how to compute the limits of confidence intervals. *citype* may be one of logit (default), agresti, exact, jeffreys, normal, wald, or wilson.

percent specifies that the proportions be reported as percentages.

noheader prevents the table header from being displayed.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with proportion but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Example 1

We can estimate the proportion of each repair rating in auto2.dta:

```
. use https://www.stata-press.com/data/r19/auto2
(1978 automobile data)
. proportion rep78
Proportion estimation
                                             Number of obs = 69
```

			Logit
	Proportion	Std. err.	[95% conf. interval]
rep78			
Poor	.0289855	.0201966	.0070794 .1110924
Fair	.115942	.0385422	.058317 .2173648
Average	.4347826	.0596787	.3214848 .5553295
Good	.2608696	.0528625	.1695907 .3788629
Excellent	.1594203	.0440694	.0895793 .267702

marginsplot will produce a graph of the results from proportion:

```
. marginsplot
```

Variables that uniquely identify proportions: rep78

Estimated proportions of rep78 with 95% CIs

Example 2

We can also estimate proportions over groups:

```
. proportion rep78, over(foreign)
```

```
Proportion estimation
```

Number of obs = 69

Number of obs = 69

			Logit
	Proportion	Std. err.	[95% conf. interval]
rep78@foreign			
Poor Domestic	.0416667	.0288424	.0101825 .1552326
Poor Foreign	0	(no observa	tions)
Fair Domestic	.1666667	.0537914	.084534 .3022522
Fair Foreign	0	(no observa	tions)
Average Domestic	. 5625	.0716027	.4184154 .6967587
Average Foreign	.1428571	.0763604	.0458191 .3664757
Good Domestic	.1875	.0563367	.0993684 .3255432
Good Foreign	.4285714	.1079898	.2372889 .6438783
Excellent Domestic	.0416667	.0288424	.0101825 .1552326
Excellent Foreign	.4285714	.1079898	.2372889 .6438783

To see the results as percentages instead of proportions, we add the percent option:

. proportion rep78, over(foreign) percent

Percent estimation

Logit Percent Std. err. [95% conf. interval] rep78@foreign 15.52 Poor Domestic 4.17 2.88 1.02 Poor Foreign 0.00 (no observations) Fair Domestic 16.67 5.38 8.45 30.23 (no observations) Fair Foreign 0.00 56.25 7.16 41.84 69.68 Average Domestic Average Foreign 14.29 7.64 4.58 36.65 Good Domestic 18.75 5.63 9.94 32.55 Good Foreign 42.86 10.80 23.73 64.39 Excellent Domestic 4.17 2.88 1.02 15.52 Excellent Foreign 42.86 10.80 23.73 64.39

We can now use marginsplot to graph the percentages for each group. bydimension(foreign) option to plot the groups in separate graph panels. angle(30)) option prevents the x-axis labels from running into each other.

We add the The xlabel(,

We estimate that only 19% of domestic cars have good repair records and only 4% have excellent repair records. For foreign cars, however, we find that 43% have good repair records and 43% have excellent repair records.

Example 3

Instead of estimating percentages within the foreign and domestic groupings, we might want to know overall percentages. For instance, what percentage of all cars are foreign and have excellent repair records? What percentage are domestic and have average records? We can obtain all such percentages by specifying an interaction between rep78 and foreign.

Percent estimation			Number o	f obs = 69
			Log	it
	Percent	Std. err.	[95% conf.	interval]
rep78#foreign				
Poor#Domestic	2.90	2.02	0.71	11.11
Poor#Foreign	0.00	(no observati	.ons)	
Fair#Domestic	11.59	3.85	5.83	21.74
Fair#Foreign	0.00	(no observati	.ons)	
Average#Domestic	39.13	5.88	28.21	51.26
Average#Foreign	4.35	2.46	1.38	12.86
Good#Domestic	13.04	4.05	6.85	23.44
Good#Foreign	13.04	4.05	6.85	23.44
Excellent#Domestic	2.90	2.02	0.71	11.11
Excellent#Foreign	13.04	4.05	6.85	23.44

. proportion rep78#foreign, percent

Looking at the last line of this output, we estimate that 13% of all cars are foreign with excellent repair records.

4

4

Stored results

proportion stores the following in e(): Scalars number of observations e(N) number of subpopulations e(N_over) number of standard strata e(N_stdize) number of clusters e(N_clust) e(k_eq) number of equations in e(b) sample degrees of freedom e(df_r) e(rank) rank of e(V)Macros e(cmd) proportion e(cmdline) command as typed e(varlist) varlist e(stdize) varname from stdize() e(stdweight) varname from stdweight() e(wtype) weight type e(wexp) weight expression e(title) title in estimation output e(clustvar) name of cluster variable e(over) varlist from over() ~

e(vce)	<i>vcetype</i> specified in vce()
e(vcetype)	title used to label Std. err.
e(properties)	b V
e(estat_cmd)	program used to implement estat
e(marginsnotok)	predictions disallowed by margins
Matrices	
e(b)	vector of proportion estimates
e(V)	(co)variance estimates
e(_N)	vector of numbers of nonmissing observations
e(_N_stdsum)	number of nonmissing observations within the standard strata
e(_p_stdize)	standardizing proportions
e(freq)	vector of frequency estimates
e(error)	error code corresponding to e(b)
Functions	
e(sample)	marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table)

matrix containing the coefficients with their standard errors, test statistics, *p*-values, and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any r-class command is run after the estimation command.

Methods and formulas

The point estimate of a proportion, \hat{p} , is computed as the mean of an indicator variable; see [R] mean.

Methods and formulas are presented under the following headings:

Confidence intervals Survey data and sampling weights

Confidence intervals

For an overview of confidence interval methods for binomial proportions, see Dean and Pagano (2015).

Given k successes of n trials, the estimated proportion (probability of a success) is $\hat{p} = k/n$ with estimated standard error $\hat{s} = \sqrt{\hat{p}(1-\hat{p})/n}$.

For weighted data, $k = \sum_{i=1}^{N} w_i \mathbf{1}(\text{obs } i \text{ is a success})$ and $n = \sum_{i=1}^{N} w_i$, where N is the total number of observations, w_i is the weight for the *i*th observation, and $\mathbf{1}(\cdot)$ denotes the indicator function that evaluates to 1 if observation *i* is a success and 0 otherwise.

The logit-transformed confidence interval is given by

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) \pm t_{1-\alpha/2,\nu}\frac{\hat{s}}{\hat{p}(1-\hat{p})}$$

where $t_{p,\nu}$ is the *p*th quantile of Student's *t* distribution with ν degrees of freedom.

The endpoints of this confidence interval are transformed back to the proportion metric by using the inverse of the logit transform

$$f^{-1}(y) = \frac{e^y}{1 + e^y}$$

Hence, the displayed confidence intervals for proportions are

$$f^{-1}\left\{\ln\left(\frac{\hat{p}}{1-\hat{p}}\right)\pm t_{1-\alpha/2,\nu}\frac{\hat{s}}{\hat{p}(1-\hat{p})}\right\}$$

The Wald-type $100(1 - \alpha)\%$ confidence interval is given by

$$\hat{p} \pm t_{1-\alpha/2,\nu} \hat{s}$$

The formulas below (for the Wilson, exact, Jeffreys, and Agresti-Coull intervals) are slightly different when using the svy prefix, pweights, or the vce(cluster *clustvar*) option; see Survey data and sampling weights below.

The Wilson interval is given by

$$\frac{\hat{p} + z_{1-\alpha/2}^2/2n \pm z_{1-\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n + z_{1-\alpha/2}^2/4n^2}}{1 + z_{1-\alpha/2}^2/n}$$

where z_p is the *p*th quantile of the standard normal distribution.

The exact (Clopper-Pearson) interval is given by

$$\left\{\frac{\nu_1 F_{\alpha/2,\nu_1,\nu_2}}{\nu_2 + \nu_1 F_{\alpha/2,\nu_1,\nu_2}}; \ \frac{\nu_3 F_{1-\alpha/2,\nu_3,\nu_4}}{\nu_4 + \nu_3 F_{\alpha/2,\nu_3,\nu_4}}\right\}$$

where $\nu_1 = 2k$, $\nu_2 = 2(n - k + 1)$, $\nu_3 = 2(k + 1)$, $\nu_4 = 2(n - k)$, and F_{p,ν_1,ν_2} is the *p*th quantile of an *F* distribution with ν_1 and ν_2 degrees of freedom.

The Jeffreys interval is given by

{Beta_{$$\alpha/2,\alpha_1,\beta_1$$}; Beta_{1- $\alpha/2,\alpha_1,\beta_1$} }

where $\alpha_1 = k + 0.5$, $\beta_1 = n - k + 0.5$, and $\text{Beta}_{p,\alpha_1,\beta_1}$ is the *p*th quantile of a Beta distribution with α_1 and β_1 degrees of freedom.

The Agresti-Coull interval is given by

$$\tilde{p}\pm z_{1-\alpha/2}\sqrt{\tilde{p}(1-\tilde{p})/\tilde{n}}$$

where $\tilde{k} = k + z_{1-\alpha/2}^2/2$, $\tilde{n} = n + z_{1-\alpha/2}^2$, and $\tilde{p} = \tilde{k}/\tilde{n}$.

Survey data and sampling weights

With the svy prefix, pweights, or the vce(cluster *clustvar*) option, the Wilson, exact, Jeffreys, and Agresti-Coull intervals use k^* in place of k and n^* in place of n, where $k^* = n^*\hat{p}$,

$$n^{*} = \frac{\hat{p}(1-\hat{p})}{\hat{s}^{2}} \left\{ \frac{z_{1-\alpha/2}}{t_{1-\alpha/2,\nu}} \right\}^{2}$$

and \hat{s} is the linearized standard error estimate. For more details about the linearized standard error estimate, see *Ratios and other functions of survey data* in [SVY] **Variance estimation**.

References

Cochran, W. G. 1977. Sampling Techniques. 3rd ed. New York: Wiley.

- Dean, N., and M. Pagano. 2015. Evaluating confidence interval methods for binomial proportions in clustered surveys. Journal of Survey Statistics and Methodology 3: 484–503. https://doi.org/10.1093/jssam/smv024.
- Stuart, A., and J. K. Ord. 1994. Distribution Theory. Vol. 1 of Kendall's Advanced Theory of Statistics, 6th ed. London: Arnold.

Also see

- [R] proportion postestimation Postestimation tools for proportion
- [R] mean Estimate means
- [R] **ratio** Estimate ratios
- [R] total Estimate totals
- [MI] Estimation Estimation commands for use with mi estimate
- [SVY] Direct standardization Direct standardization of means, proportions, and ratios
- [SVY] Poststratification Poststratification for survey data
- [SVY] Subpopulation estimation Subpopulation estimation for survey data
- [SVY] svy estimation Estimation commands for survey data
- [SVY] Variance estimation Variance estimation for survey data
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.