probit — Probit regression

Description

probit fits a probit model for a binary dependent variable, assuming that the probability of a positive outcome is determined by the standard normal cumulative distribution function. probit can compute robust and cluster–robust standard errors and adjust results for complex survey designs.

Quick start

Probit model of \(y \) on continuous variable \(x_1 \)
probit \(y \) \(x_1 \)

Add square of \(x_1 \)
probit \(y \) \(c.x1##c.x1 \)

As above, but report bootstrap standard errors
probit \(y \) \(c.x1##c.x1 \), vce(bootstrap)

Bootstrap estimates of coefficients
bootstrap _b: probit \(y \) \(c.x1##c.x1 \)

Adjust for complex survey design using svyset data and add \(x_2 \)
svy: probit \(y \) \(c.x1##c.x1 \) \(x_2 \)

Menu

Statistics > Binary outcomes > Probit regression
Syntax

probit depvar [indepvars] [if] [in] [weight] [, options]

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>noconstant</td>
<td>suppress constant term</td>
</tr>
<tr>
<td>offset(varname)</td>
<td>include varname in model with coefficient constrained to 1</td>
</tr>
<tr>
<td>asis</td>
<td>retain perfect predictor variables</td>
</tr>
<tr>
<td>constraints(constraints)</td>
<td>apply specified linear constraints</td>
</tr>
<tr>
<td>SE/Robust</td>
<td></td>
</tr>
<tr>
<td>vce(vcetype)</td>
<td>vcetype may be oim, robust, cluster clustvar, bootstrap, or jackknife</td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is level(95)</td>
</tr>
<tr>
<td>nocnsreport</td>
<td>do not display constraints</td>
</tr>
<tr>
<td>display_options</td>
<td>control columns and column formats, row spacing, line width, display of omitted variables and base and empty cells, and factor-variable labeling</td>
</tr>
<tr>
<td>Maximization</td>
<td></td>
</tr>
<tr>
<td>maximize_options</td>
<td>control the maximization process; seldom used</td>
</tr>
<tr>
<td>nocoef</td>
<td>do not display the coefficient table; seldom used</td>
</tr>
<tr>
<td>collinear</td>
<td>keep collinear variables</td>
</tr>
<tr>
<td>coeflegend</td>
<td>display legend instead of statistics</td>
</tr>
</tbody>
</table>

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, bootstrap, by, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: probit and [FMM] fmm: probit.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocnsreport, collinear, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

noconstant, offset(varname), constraints(constraints); see [R] Estimation options.

asis specifies that all specified variables and observations be retained in the maximization process. This option is typically not specified and may introduce numerical instability. Normally probit drops variables that perfectly predict success or failure in the dependent variable along with their associated observations. In those cases, the effective coefficient on the dropped variables is infinity (negative infinity) for variables that completely determine a success (failure). Dropping the variable
and perfectly predicted observations has no effect on the likelihood or estimates of the remaining coefficients and increases the numerical stability of the optimization process. Specifying this option forces retention of perfect predictor variables and their associated observations.

`vce(vcetype)` specifies the type of standard error reported, which includes types that are derived from asymptotic theory (`oim`), that are robust to some kinds of misspecification (`robust`), that allow for intragroup correlation (`cluster clustvar`), and that use bootstrap or jackknife methods (`bootstrap`, `jackknife`); see [R] `vce` option.

The following options are available with `probit` but are not shown in the dialog box:

- `nocoeff` specifies that the coefficient table not be displayed. This option is sometimes used by programmers but is of no use interactively.
- `collinear`, `coeflegend`; see [R] `Estimation options`.

Remarks and examples

stata.com

Remarks are presented under the following headings:

- Robust standard errors
- Model identification
- Video examples

`probit` fits maximum likelihood models with dichotomous dependent (left-hand-side) variables coded as 0/1 (more precisely, coded as 0 and not 0).

For grouped data or data in binomial form, a probit model can be fit using `glm` with the `family(binomial)` and `link(probit)` options.

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles. We wish to fit a probit model explaining whether a car is foreign based on its weight and mileage. Here is an overview of our data:
. use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
. keep make mpg weight foreign
. describe
Contains data from https://www.stata-press.com/data/r16/auto.dta
obs: 74 1978 Automobile Data
vars: 4 13 Apr 2018 17:45
(_dta has notes)
storage display value
variable name type format label variable label
make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car type
Sorted by: foreign
Note: Dataset has changed since last saved.
. inspect foreign
foreign: Car type Number of Observations
<table>
<thead>
<tr>
<th>Total</th>
<th>Integers</th>
<th>Nonintegers</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Negative</td>
<td>-</td>
</tr>
<tr>
<td>#</td>
<td>Zero</td>
<td>52</td>
</tr>
<tr>
<td>#</td>
<td>Positive</td>
<td>22</td>
</tr>
<tr>
<td>#</td>
<td>Total</td>
<td>74</td>
</tr>
<tr>
<td>#</td>
<td>Missing</td>
<td>-</td>
</tr>
</tbody>
</table>
(2 unique values)
foreign is labeled and all values are documented in the label.

The foreign variable takes on two unique values, 0 and 1. The value 0 denotes a domestic car, and 1 denotes a foreign car.

The model that we wish to fit is

$$\Pr(\text{foreign} = 1) = \Phi(\beta_0 + \beta_1 \text{weight} + \beta_2 \text{mpg})$$

where Φ is the cumulative normal distribution.

To fit this model, we type

. probit foreign weight mpg
Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -27.914626
(output omitted)
Iteration 5: log likelihood = -26.844189
Probit regression
Log likelihood = -26.844189

Number of obs = 74
LR chi2(2) = 36.38
Prob > chi2 = 0.0000
Pseudo R2 = 0.4039

| foreign | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|---------|-----------|-------|------|---------------------|
| weight | -.0023355 | .0005661 | -4.13 | 0.000 | -.003445 -.0012261 |
| mpg | -.1039503 | .0515689 | -2.02 | 0.044 | -.2050235 -.0028772 |
| _cons | 8.275464 | 2.554142 | 3.24 | 0.001 | 3.269437 13.28149 |
We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are also less likely to be foreign, at least holding the weight of the car constant.

See [R] Maximize for an explanation of the output.

Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and 1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type `probit y x`, Stata fits the model

$$Pr(y_j \neq 0 \mid x_j) = \Phi(x_j \beta)$$

where Φ is the standard cumulative normal.

Robust standard errors

If you specify the `vce(robust)` option, `probit` reports robust standard errors; see [U] 20.22 Obtaining robust variance estimates.

Example 2

For the model from example 1, the robust calculation increases the standard error of the coefficient on `mpg` by almost 15%:

```
. probit foreign weight mpg, vce(robust) nolog
Probit regression                       Number of obs = 74
                                     Wald chi2(2) = 30.26
                                     Prob > chi2 = 0.0000
Log pseudolikelihood = -26.844189   Pseudo R2 = 0.4039

                      Robust          z     P>|z|      [95% Conf. Interval]
                      Coef.   Std. Err.
foreign              -.0023355   .0004934   -4.73     0.000    -.0033025   -.0013686
weight            -.1039503   .0593548    -1.75     0.080    -.2202836    .0123829
mpg                 .2754646   2.539177     3.26     0.001     3.298769    13.25216
_cons
```

Without `vce(robust)`, the standard error for the coefficient on `mpg` was reported to be 0.052 with a resulting confidence interval of $[-0.21, -0.00]$.

Example 3

The `vce(cluster clustvar)` option can relax the independence assumption required by the probit estimator to independence between clusters. To demonstrate, we will switch to a different dataset.

We are studying unionization of women in the United States and have a dataset with 26,200 observations on 4,434 women between 1970 and 1988. We will use the variables `age` (the women were 14–26 in 1968, and our data span the age range of 16–46), `grade` (years of schooling completed, ranging from 0 to 18), `not_smsa` (28% of the person-time was spent living outside an SMSA—standard metropolitan statistical area), `south` (41% of the person-time was in the South), and `year`. Each of
these variables is included in the regression as a covariate along with the interaction between south and year. This interaction, along with the south and year variables, is specified in the probit command using factor-variables notation, south##c.year. We also have variable union, indicating union membership. Overall, 22% of the person-time is marked as time under union membership, and 44% of these women have belonged to a union.

We fit the following model, ignoring that the women are observed an average of 5.9 times each in these data:

```
. use https://www.stata-press.com/data/r16/union, clear
(NLS Women 14-24 in 1968)
. probit union age grade not_smsa south##c.year
Iteration 0: log likelihood = -13864.23
Iteration 1: log likelihood = -13545.541
Iteration 2: log likelihood = -13544.385
Iteration 3: log likelihood = -13544.385
Probit regression
Number of obs = 26,200
LR chi2(6) = 639.69
Prob > chi2 = 0.0000
Log likelihood = -13544.385 Pseudo R2 = 0.0231

union                  Coef.     Std. Err.     z    P>|z|     [95% Conf. Interval]
-------------    -------------    --------    ------    -----------------------------
    age        0.0118481    0.0029072    4.08   0.000    0.0061502    0.017546
   grade      0.0267365    0.0036689    7.29   0.000    0.0195457    0.0339273
  not_smsa   -0.1293525    0.0202595   -6.38   0.000   -0.1690604   -0.0896445
     1.south  -0.8281077    0.2472219   -3.35   0.001   -1.312654   -0.3435618
       year  -0.0080931    0.0033469   -2.42   0.016   -0.0146529   -0.0015333
south#c.year
       1      0.0057369    0.0030917    1.86   0.064   -0.0003226    0.0117965
   _cons   -0.6542487    0.2007777   -3.26   0.001   -1.047766   -0.2607316
```

The reported standard errors in this model are probably meaningless. Women are observed repeatedly, and so the observations are not independent. Looking at the coefficients, we find a large southern effect against unionization and a time trend for the south that is almost significantly different from the overall downward trend. The vce(cluster clustvar) option provides a way to fit this model and obtains correct standard errors:
```
. probit union age grade not_smsa south##c.year, vce(cluster id)
Iteration 0:  log pseudolikelihood = -13864.23
Iteration 1:  log pseudolikelihood = -13545.541
Iteration 2:  log pseudolikelihood = -13544.385
Iteration 3:  log pseudolikelihood = -13544.385
Probit regression  Number of obs = 26,200
Wald chi2(6) = 166.53
Prob > chi2 = 0.0000
Log pseudolikelihood = -13544.385  Pseudo R2 = 0.0231
(Std. Err. adjusted for 4,434 clusters in idcode)

|      | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------|--------|-----------|-------|------|----------------------|
| age  | 0.0118481  | 0.0056625 | 2.09  | 0.036 | 0.0007499 - 0.0229463 |
| grade| 0.0267365  | 0.0078124 | 3.42  | 0.001 | 0.0114244 - 0.0404866 |
| not_smsa| -.1293525  | 0.0403885 | -3.20 | 0.001 | -.2085125 - -.0501925 |
| 1.south| -.8281077  | .3201584 | -2.59 | 0.010 | -1.455607 - -.200689 |
| year  | -.0080931  | 0.0060829 | -1.33 | 0.183 | -.0200153 - .0038292 |
| south#c.year | 0.0057369 | 0.0040133 | 1.43  | 0.153 | -.002129 - .0136029 |
| _cons| -.6542487  | .3485976 | -1.88 | 0.061 | -1.337487 - .02899 |

These standard errors are larger than those reported by the inappropriate conventional calculation. By comparison, another model we could fit is an equal-correlation population-averaged probit model:
```
```
. xtprobit union age grade not_smsa south##c.year, pa
Iteration 1:  tolerance = .12544249
Iteration 2:  tolerance = .0034686
Iteration 3:  tolerance = .00017448
Iteration 4:  tolerance = 8.382e-06
Iteration 5:  tolerance = 3.997e-07
GEE population-averaged model  Number of obs = 26,200
Group variable: idcode  Number of groups = 4,434
Link: probit  Obs per group:
Family: binomial  min = 1
Correlation: exchangeable  avg = 5.9
              max = 12
Wald chi2(6) = 242.57
Prob > chi2 = 0.0000
Scale parameter:  1

|      | Coef.  | Std. Err. | z     | P>|z|  | [95% Conf. Interval] |
|------|--------|-----------|-------|------|----------------------|
| age  | .0089699  | .0053208 | 1.69  | 0.092 | -.0014586 .0193985 |
| grade| .0333174  | .0062352 | 5.34  | 0.000 | .0210966 .0455382 |
| not_smsa| -.0715717  | .027543 | -2.60 | 0.009 | -.1255551 -.0175884 |
| 1.south| -.1017368  | .207931 | -4.89 | 0.000 | -1.424905 -.6098308 |
| year  | -.0062708  | .0055314 | -1.13 | 0.257 | -.0171122 .0045706 |
| south#c.year | 0.0086294 | 0.00258 | 3.34  | 0.001 | .0035727 .013686 |
| _cons| -.8670997  | .294771 | -2.94 | 0.003 | -1.44484 -.2893592 |
```
The coefficient estimates are similar, but these standard errors are smaller than those produced by `probit, vce(cluster clustvar)`, as we would expect. If the equal-correlation assumption is valid, the population-averaged probit estimator above should be more efficient.

Is the assumption valid? That is a difficult question to answer. The default population-averaged estimates correspond to an assumption of exchangeable correlation within person. It would not be unreasonable to assume an AR(1) correlation within person or to assume that the observations are correlated but that we do not wish to impose any structure. See [XT] `xtprobit` and [XT] `xtgee` for full details.

`probit, vce(cluster clustvar)` is robust to assumptions about within-cluster correlation. That is, it inefficiently sums within cluster for the standard error calculation rather than attempting to exploit what might be assumed about the within-cluster correlation.

Model identification

The `probit` command has one more feature that is probably the most useful. It will automatically check the model for identification and, if the model is underidentified, drop whatever variables and observations are necessary for estimation to proceed.

Example 4

Have you ever fit a probit model where one or more of your independent variables perfectly predicted one or the other outcome?

For instance, consider the following data:

<table>
<thead>
<tr>
<th>Outcome y</th>
<th>Independent variable x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Say that we wish to predict the outcome on the basis of the independent variable. The outcome is always zero when the independent variable is one. In our data, \(\Pr(y = 0 \mid x = 1) = 1 \), which means that the probit coefficient on \(x \) must be minus infinity with a corresponding infinite standard error. At this point, you may suspect that we have a problem.

Unfortunately, not all such problems are so easily detected, especially if you have many independent variables in your model. If you have ever had such difficulties, then you have experienced one of the more unpleasant aspects of computer optimization. The computer has no idea that it is trying to solve for an infinite coefficient as it begins its iterative process. All it knows is that, at each step, making the coefficient a little bigger, or a little smaller, works wonders. It continues on its merry way until either 1) the whole thing comes crashing to the ground when a numerical overflow error occurs or 2) it reaches some predetermined cutoff that stops the process. Meanwhile, you have been waiting. And the estimates that you finally receive, if any, may be nothing more than numerical roundoff.

Stata watches for these sorts of problems, alerts you, fixes them, and then properly fits the model.

Let’s return to our automobile data. Among the variables we have in the data is one called `repair` that takes on three values. A value of 1 indicates that the car has a poor repair record, 2 indicates an average record, and 3 indicates a better-than-average record. Here is a tabulation of our data:
. use https://www.stata-press.com/data/r16/repair
(1978 Automobile Data)
. tabulate foreign repair

<table>
<thead>
<tr>
<th>Car type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>10</td>
<td>27</td>
<td>9</td>
<td>46</td>
</tr>
<tr>
<td>Foreign</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>30</td>
<td>18</td>
<td>58</td>
</tr>
</tbody>
</table>

All the cars with poor repair records (repair = 1) are domestic. If we were to attempt to predict foreign on the basis of the repair records, the predicted probability for the repair = 1 category would have to be zero. This in turn means that the probit coefficient must be minus infinity, and that would set most computer programs buzzing.

Let’s try using Stata on this problem.

. probit foreign b3.repair
 note: 1.repair != 0 predicts failure perfectly
 1.repair dropped and 10 obs not used
 Iteration 0: log likelihood = -26.992087
 Iteration 1: log likelihood = -22.276479
 Iteration 2: log likelihood = -22.229184
 Iteration 3: log likelihood = -22.229138
 Iteration 4: log likelihood = -22.229138

Probit regression
 Number of obs = 48
 LR chi2(1) = 9.53
 Prob > chi2 = 0.0020
 Log likelihood = -22.229138
 Pseudo R2 = 0.1765

| foreign | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|-------|-------|----------------------|
| repair | | | | | |
| 1 | 0 | | | | (empty) |
| 2 | -1.281552 | .4297326 | -2.98 | 0.003 | -2.123812 - .4392911 |
| _cons | 1.16e-16 | .295409 | 0.00 | 1.000 | -.578991 .578991 |

Remember that all the cars with poor repair records (repair = 1) are domestic, so the model cannot be fit, or at least it cannot be fit if we restrict ourselves to finite coefficients. Stata noted that fact “note: 1.repair != 0 predicts failure perfectly”. This is Stata’s mathematically precise way of saying what we said in English. When repair is 1, the car is domestic.

Stata then went on to say, “1.repair dropped and 10 obs not used”. This is Stata eliminating the problem. First, 1.repair had to be removed from the model because it would have an infinite coefficient. Then the 10 observations that led to the problem had to be eliminated, as well, so as not to bias the remaining coefficients in the model. The 10 observations that are not used are the 10 domestic cars that have poor repair records.

Stata then fit what was left of the model, using the remaining observations. Because no observations remained for cars with poor repair records, Stata reports “(empty)” in the row for repair = 1.
Technical note

Stata is pretty smart about catching these problems. It will catch “one-way causation by a dummy variable”, as we demonstrated above.

Stata also watches for “two-way causation”, that is, a variable that perfectly determines the outcome, both successes and failures. Here Stata says that the variable “predicts outcome perfectly” and stops. Statistics dictate that no model can be fit.

Stata also checks your data for collinear variables; it will say “so-and-so omitted because of collinearity”. No observations need to be eliminated here and model fitting will proceed without the offending variable.

It will also catch a subtle problem that can arise with continuous data. For instance, if we were estimating the chances of surviving the first year after an operation, and if we included in our model age, and if all the persons over 65 died within the year, Stata will say, “age > 65 predicts failure perfectly”. It will then inform us about how it resolves the issue and fit what can be fit of our model.

probit (and logit, logistic, and ivprobit) will also occasionally fail to converge and then display messages such as

Note: 4 failures and 0 successes completely determined.

The cause of this message and what to do if you see it are described in [R] logit.

Video examples

Probit regression with categorical covariates
Probit regression with continuous covariates
Probit regression with categorical and continuous covariates

Stored results

probit stores the following in e():

Scalars
 e(N) number of observations
 e(N_cds) number of completely determined successes
 e(N_cdf) number of completely determined failures
 e(k) number of parameters
 e(k_eq) number of equations in e(b)
 e(k_eq_model) number of equations in overall model test
 e(kv) number of dependent variables
 e(df_m) model degrees of freedom
 e(r2_p) pseudo-R-squared
 e(ll) log likelihood
 e(ll_0) log likelihood, constant-only model
 e(N_clust) number of clusters
 e(chi2) χ^2
 e(p) p-value for model test
 e(rank) rank of e(V)
 e(ic) number of iterations
 e(rc) return code
 e(converged) 1 if converged, 0 otherwise
Methods and formulas

Probit analysis originated in connection with bioassay, and the word probit, a contraction of “probability unit”, was suggested by Bliss (1934a, 1934b). For an introduction to probit and logit, see, for example, Aldrich and Nelson (1984), Cameron and Trivedi (2010), Long (1997), Pampel (2000), or Powers and Xie (2008). Long and Freese (2014, chap. 5 and 6) and Jones (2007, chap. 3) provide introductions to probit and logit, along with Stata examples.

The log-likelihood function for probit is

$$\ln L = \sum_{j \in S} w_j \ln \Phi(x_j \beta) + \sum_{j \not\in S} w_j \ln \left\{ 1 - \Phi(x_j \beta) \right\}$$

where Φ is the cumulative normal and w_j denotes the optional weights. $\ln L$ is maximized, as described in [R] Maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas. The scores are calculated as $u_j = \left\{ \phi(x_j \beta) / \Phi(x_j \beta) \right\} x_j$ for the positive outcomes and $-\left[\phi(x_j \beta) / \{ 1 - \Phi(x_j \beta) \} \right] x_j$ for the negative outcomes, where ϕ is the normal density.
probit also supports estimation with survey data. For details on VCEs with survey data, see \[SVY\] Variance estimation.

Chester Ittner Bliss (1899–1979) was born in Ohio. He was educated as an entomologist, earning degrees from Ohio State and Columbia, and was employed by the United States Department of Agriculture until 1933. When he lost his job because of the Depression, Bliss then worked with R. A. Fisher in London and at the Institute of Plant Protection in Leningrad before returning to a post at the Connecticut Agricultural Experiment Station in 1938. He was also a lecturer at Yale for 25 years. Among many contributions to biostatistics, his development and application of probit methods to biological problems are outstanding.

References

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.

Long, J. S., and J. Freese. 2014. Regression Models for Categorical Dependent Variables Using Stata. 3rd ed. College Station, TX: Stata Press.

Also see

[R] probit postestimation — Postestimation tools for probit
[R] biprobit — Bivariate probit regression
[R] brier — Brier score decomposition
[R] glm — Generalized linear models
[R] heckoprobit — Ordered probit model with sample selection
[R] hetprobit — Heteroskedastic probit model
[R] ivprobit — Probit model with continuous endogenous covariates
[R] logistic — Logistic regression, reporting odds ratios
[R] logit — Logistic regression, reporting coefficients
[R] mprobit — Multinomial probit regression
[R] npregress kernel — Nonparametric kernel regression
[R] npregress series — Nonparametric series regression
[R] roc — Receiver operating characteristic (ROC) analysis
[R] scobit — Skewed logistic regression
[BAYES] bayes: probit — Bayesian probit regression
[CM] cmmprobit — Multinomial probit choice model
[ERM] eprobit — Extended probit regression
[FMM] fmm: probit — Finite mixtures of probit regression models
[LASSO] Lasso intro — Introduction to lasso
[ME] meprobit — Multilevel mixed-effects probit regression
[MJ] Estimation — Estimation commands for use with mi estimate
[SVY] svy estimation — Estimation commands for survey data
[XT] xtprobit — Random-effects and population-averaged probit models
[U] 20 Estimation and postestimation commands