
poisson — Poisson regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
poisson fits a Poisson regression of depvar on indepvars, where depvar is a nonnegative count vari-

able.

If you have panel data, see [XT] xtpoisson.

Quick start
Poisson regression of y on x

poisson y x

Add categorical variable a
poisson y x i.a

Add exposure variable v
poisson y x i.a, exposure(v)

With robust standard errors

poisson y x i.a, vce(robust)

Report results as incidence-rate ratios

poisson y x i.a, irr

Replace data in memory with the results of running a Poisson regression model on each level of catvar
statsby, by(catvar) clear: poisson y x

Menu
Statistics > Count outcomes > Poisson regression
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Syntax
poisson depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, varname𝑒, and varname𝑜 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, bayesboot, bootstrap, by, fmm, fp, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise,
and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: poisson and
[FMM] fmm: poisson.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-

mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rpoisson.pdf#rpoissonSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/rpoisson.pdf#rpoissonOptionsdisplay_options
https://www.stata.com/manuals/rpoisson.pdf#rpoissonOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/bayesbayespoisson.pdf#bayesbayespoisson
https://www.stata.com/manuals/fmmfmmpoisson.pdf#fmmfmmpoisson
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
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� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-

ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with poisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
The basic idea of Poisson regression was outlined by Coleman (1964, 378–379). See Cameron and

Trivedi (2013; 2022, chap. 20) and Johnson, Kemp, and Kotz (2005, chap. 4) for information about the

Poisson distribution. See Cameron and Trivedi (2013), Long (1997, chap. 8), Long and Freese (2014,

chap. 9), McNeil (1996, chap. 6), and Selvin (2011, chap. 6) for an introduction to Poisson regression.

Also see Selvin (2004, chap. 5) for a discussion of the analysis of spatial distributions, which includes a

discussion of the Poisson distribution. An early example of Poisson regression was Cochran (1940).

Poisson regression fits models of the number of occurrences (counts) of an event. The Poisson dis-

tribution has been applied to diverse events, such as the number of soldiers kicked to death by horses

in the Prussian army (von Bortkiewicz 1898); the pattern of hits by buzz bombs launched against Lon-

don during World War II (Clarke 1946); telephone connections to a wrong number (Thorndike 1926);

and disease incidence, typically with respect to time, but occasionally with respect to space. The basic

assumptions are as follows:

1. There is a quantity called the incidence rate that is the rate at which events occur. Examples are 5

per second, 20 per 1,000 person-years, 17 per square meter, and 38 per cubic centimeter.

2. The incidence rate can bemultiplied by exposure to obtain the expected number of observed events.

For example, a rate of 5 per second multiplied by 30 seconds means that 150 events are expected;

a rate of 20 per 1,000 person-years multiplied by 2,000 person-years means that 40 events are

expected; and so on.

3. Over very small exposures 𝜖, the probability of finding more than one event is small compared

with 𝜖.

4. Nonoverlapping exposures are mutually independent.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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With these assumptions, to find the probability of 𝑘 events in an exposure of size 𝐸, you divide 𝐸 into

𝑛 subintervals 𝐸1, 𝐸2, . . . , 𝐸𝑛, and approximate the answer as the binomial probability of observing 𝑘
successes in 𝑛 trials. If you let 𝑛 → ∞, you obtain the Poisson distribution.

In the Poisson regression model, the incidence rate for the 𝑗th observation is assumed to be given by

𝑟𝑗 = 𝑒𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

If 𝐸𝑗 is the exposure, the expected number of events, 𝐶𝑗, will be

𝐶𝑗 = 𝐸𝑗𝑒𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

= 𝑒 ln(𝐸𝑗)+𝛽0+𝛽1𝑥1,𝑗+···+𝛽𝑘𝑥𝑘,𝑗

This model is fit by poisson. Without the exposure() or offset() options, 𝐸𝑗 is assumed to be 1

(equivalent to assuming that exposure is unknown), and controlling for exposure, if necessary, is your

responsibility.

Comparing rates is most easily done by calculating incidence-rate ratios (IRRs). For instance, what

is the relative incidence rate of chromosome interchanges in cells as the intensity of radiation increases;

the relative incidence rate of telephone connections to a wrong number as load increases; or the relative

incidence rate of deaths due to cancer for females relative to males? That is, you want to hold all the 𝑥’s
in the model constant except one, say, the 𝑖th. The IRR for a one-unit change in 𝑥𝑖 is

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖(𝑥𝑖+1)+···+𝛽𝑘𝑥𝑘

𝑒 ln(𝐸)+𝛽1𝑥1+···+𝛽𝑖𝑥𝑖+···+𝛽𝑘𝑥𝑘
= 𝑒𝛽𝑖

More generally, the IRR for a Δ𝑥𝑖 change in 𝑥𝑖 is 𝑒𝛽𝑖Δ𝑥𝑖 . The lincom command can be used after

poisson to display incidence-rate ratios for any group relative to another; see [R] lincom.

Example 1
Chatterjee and Hadi (2012, 174) give the number of injury incidents and the proportion of flights for

each airline out of the total number of flights from New York for nine major US airlines in one year:

. use https://www.stata-press.com/data/r19/airline

. list

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

https://www.stata.com/manuals/rlincom.pdf#rlincom
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To their data, we have added a fictional variable, XYZowned. We will imagine that an accusation is made

that the airlines owned by XYZ Company have a higher injury rate.

. poisson injuries XYZowned, exposure(n) irr
Iteration 0: Log likelihood = -23.027197
Iteration 1: Log likelihood = -23.027177
Iteration 2: Log likelihood = -23.027177
Poisson regression Number of obs = 9

LR chi2(1) = 1.77
Prob > chi2 = 0.1836

Log likelihood = -23.027177 Pseudo R2 = 0.0370

injuries IRR Std. err. z P>|z| [95% conf. interval]

XYZowned 1.463467 .406872 1.37 0.171 .8486578 2.523675
_cons 58.04416 8.558145 27.54 0.000 43.47662 77.49281
ln(n) 1 (exposure)

Note: _cons estimates baseline incidence rate.

We specified irr to see the IRRs rather than the underlying coefficients. We estimate that XYZAirlines’

injury rate is 1.46 times larger than that for other airlines, but the 95% confidence interval is 0.85 to 2.52;

we cannot even reject the hypothesis that XYZAirlines has a lower injury rate.

Technical note
In example 1, we assumed that each airline’s exposure was proportional to its fraction of flights out of

New York. What if “large” airlines, however, also used larger planes, and so had even more passengers

than would be expected, given this measure of exposure? A better measure would be each airline’s

fraction of passengers on flights out of New York, a number that we do not have. Even so, we suppose

that n represents this number to some extent, so a better estimate of the effect might be

. generate lnN=ln(n)

. poisson injuries XYZowned lnN
Iteration 0: Log likelihood = -22.333875
Iteration 1: Log likelihood = -22.332276
Iteration 2: Log likelihood = -22.332276
Poisson regression Number of obs = 9

LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries Coefficient Std. err. z P>|z| [95% conf. interval]

XYZowned .6840667 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154285

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

Here rather than specifying the exposure() option, we explicitly included the variable that would nor-

malize for exposure in the model. We did not specify the irr option, so we see coefficients rather than

IRRs. We started with the model

rate = 𝑒𝛽0+𝛽1XYZowned

https://www.stata.com/manuals/rpoisson.pdf#rpoissonRemarksandexamplesex1
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The observed counts are therefore

count = 𝑛𝑒𝛽0+𝛽1XYZowned = 𝑒 ln(𝑛)+𝛽0+𝛽1XYZowned

which amounts to constraining the coefficient on ln(n) to 1. This is what was estimated when we speci-
fied the exposure(n) option. In the above model, we included the normalizing exposure ourselves and,

rather than constraining the coefficient to be 1, estimated the coefficient.

The estimated coefficient is 1.42, a respectable distance away from 1, and is consistent with our

speculation that larger airlines also use larger airplanes. With this small amount of data, however, we

also have a wide confidence interval that includes 1.

Our estimated coefficient on XYZowned is now 0.684, and the implied IRR is 𝑒0.684 ≈ 1.98 (which we

could also see by typing poisson, irr). The 95% confidence interval for the coefficient still includes

0 (the interval for the IRR includes 1), so although the point estimate is now larger, we still cannot be

certain of our results.

Our expert opinion would be that, although there is not enough evidence to support the charge, there

is enough evidence to justify collecting more data.

Example 2
In a famous age-specific study of coronary disease deaths among male British doctors, Doll and Hill

(1966) reported the following data (reprinted in Lash et al. [2021, 417]):

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462

The first step is to enter these data into Stata, which we have done:

. use https://www.stata-press.com/data/r19/dollhill3, clear
(Doll and Hill (1966))
. list

agecat smokes deaths pyears

1. 35--44 1 32 52,407
2. 45--54 1 104 43,248
3. 55--64 1 206 28,612
4. 65--74 1 186 12,663
5. 75--84 1 102 5,317

6. 35--44 0 2 18,790
7. 45--54 0 12 10,673
8. 55--64 0 28 5,710
9. 65--74 0 28 2,585

10. 75--84 0 31 1,462



poisson — Poisson regression 7

The most “natural” analysis of these data would begin by introducing indicator variables for each age

category and one indicator for smoking:

. poisson deaths smokes i.agecat, exposure(pyears) irr
Iteration 0: Log likelihood = -33.823284
Iteration 1: Log likelihood = -33.600471
Iteration 2: Log likelihood = -33.600153
Iteration 3: Log likelihood = -33.600153
Poisson regression Number of obs = 10

LR chi2(5) = 922.93
Prob > chi2 = 0.0000

Log likelihood = -33.600153 Pseudo R2 = 0.9321

deaths IRR Std. err. z P>|z| [95% conf. interval]

smokes 1.425519 .1530638 3.30 0.001 1.154984 1.759421

agecat
45--54 4.410584 .8605197 7.61 0.000 3.009011 6.464997
55--64 13.8392 2.542638 14.30 0.000 9.654328 19.83809
65--74 28.51678 5.269878 18.13 0.000 19.85177 40.96395
75--84 40.45121 7.775511 19.25 0.000 27.75326 58.95885

_cons .0003636 .0000697 -41.30 0.000 .0002497 .0005296
ln(pyears) 1 (exposure)

Note: _cons estimates baseline incidence rate.

In the above, we specified irr to obtain IRRs. We estimate that smokers have 1.43 times the mortality

rate of nonsmokers. See, however, example 1 in [R] poisson postestimation.

Stored results
poisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(r2 p) pseudo-𝑅2

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) poisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

https://www.stata.com/manuals/rpoissonpostestimation.pdf#rpoissonpostestimationRemarksandexamplesex1_poissonpost
https://www.stata.com/manuals/rpoissonpostestimation.pdf#rpoissonpostestimation
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e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset) linear offset variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The log likelihood (with weights 𝑤𝑗 and offsets) is given by

Pr(𝑌 = 𝑦) = 𝑒−𝜆𝜆𝑦

𝑦!

𝜉𝑗 = x𝑗β + offset𝑗

𝑓(𝑦𝑗) = 𝑒−exp(𝜉𝑗)𝑒𝜉𝑗𝑦𝑗

𝑦𝑗!

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 {−𝑒𝜉𝑗 + 𝜉𝑗𝑦𝑗 − ln(𝑦𝑗!)}

This command supports the Huber/White/sandwich estimator of the variance and its clustered version

using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum

likelihood estimators and Methods and formulas.

https://www.stata.com/manuals/p_robust.pdf#p_robust
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
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poisson also supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.� �
Siméon-Denis Poisson (1781–1840) was a French mathematician and physicist who contributed to

several fields: his name is perpetuated in Poisson brackets, Poisson’s constant, Poisson’s differential

equation, Poisson’s integral, and Poisson’s ratio. Among many other results, he produced a version

of the law of large numbers. His rather misleadingly titled Recherches sur la probabilité des juge-

ments embraces a complete treatise on probability, as the subtitle indicates, including what is now

known as the Poisson distribution. That, however, was discovered earlier by the Huguenot–British

mathematician Abraham de Moivre (1667–1754).� �
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