pkexamine — Calculate pharmacokinetic measures

Description

pkexamine calculates pharmacokinetic measures from concentration-and-time subject-level data. pkexamine computes and displays the maximum measured concentration, the time at the maximum measured concentration, the time of the last measurement, the elimination time, the half-life, and the area under the concentration–time curve ($AUC_{0,t_{\text{max}}}$). Three estimates of the AUC from 0 to infinity ($AUC_{0,\infty}$) are also calculated.

pkexamine is one of the pk commands. Please read [R] pk before reading this entry.

Quick start

Pharmacokinetic measures for concentrations y at times $tvar$ where $idvar = 4$

```
pkexamine tvar y if idvar==4
```

As above, but use trapezoidal rule to calculate $AUC_{0,t_{\text{max}}}$

```
pkexamine tvar y if idvar==4, trapezoid
```

Plot concentration–time curve where $idvar = 2$

```
pkexamine tvar y if idvar==2, graph
```

As above, and save graph as mygraph

```
pkexamine tvar y if idvar==2, graph saving(mygraph)
```

Menu

Statistics > Epidemiology and related > Other > Pharmacokinetic measures
Syntax

\texttt{pkexamine time concentration [if] [in] [, options]}

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td></td>
</tr>
<tr>
<td>\texttt{fit(#)}</td>
<td>use # points to estimate $\text{AUC}_{0,\infty}$; default is \texttt{fit(3)}</td>
</tr>
<tr>
<td>\texttt{trapezoid}</td>
<td>use trapezoidal rule; default is cubic splines</td>
</tr>
<tr>
<td>\texttt{graph}</td>
<td>graph the \text{AUC}</td>
</tr>
<tr>
<td>\texttt{line}</td>
<td>graph the linear extension</td>
</tr>
<tr>
<td>\texttt{log}</td>
<td>graph the log extension</td>
</tr>
<tr>
<td>\texttt{exp(#)}</td>
<td>plot the exponential fit for the $\text{AUC}_{0,\infty}$</td>
</tr>
</tbody>
</table>

\text{AUC plot}

\texttt{cline_options}	affect rendition of plotted points connected by lines
\texttt{marker_options}	change look of markers (color, size, etc.)
\texttt{marker_label_options}	add marker labels; change look or position

Add plots

| \texttt{addplot(plot)} | add other plots to the generated graph |

Y axis, X axis, Titles, Legend, Overall

| \texttt{twoway_options} | any options other than by() documented in [G-3] \texttt{twoway_options} |

by is allowed; see [D] by.

Options

- **Main**
 - \texttt{fit(#)} specifies the number of points, counting back from the last measurement, to use in fitting the extension to estimate the $\text{AUC}_{0,\infty}$. The default is \texttt{fit(3)}, or the last three points. This value should be viewed as a minimum; the appropriate number of points will depend on your data.
 - \texttt{trapezoid} specifies that the trapezoidal rule be used to calculate the $\text{AUC}_{0,\text{t}_{\text{max}}}$. The default is cubic splines, which give better results for most functions. When the curve is irregular, \texttt{trapezoid} may give better results.
 - \texttt{graph} tells \texttt{pkexamine} to graph the concentration–time curve.
 - \texttt{line} and \texttt{log} specify the estimates of the $\text{AUC}_{0,\infty}$ to display when graphing the $\text{AUC}_{0,\infty}$. If the \texttt{graph} option is not also specified, then these options are ignored.
 - \texttt{exp(#)} specifies that the exponential fit for the $\text{AUC}_{0,\infty}$ be plotted. You must specify the maximum time value to which you want to plot the curve, and this time value must be greater than the maximum time measurement in the data. If you specify 0, the curve will be plotted to the point at which the linear extension would cross the x axis. If the \texttt{graph} option is not also specified, then this option is ignored. This option is not valid with the \texttt{line} or \texttt{log} option.

- **AUC plot**
 - \texttt{cline_options} affect the rendition of the plotted points connected by lines; see [G-3] \texttt{cline_options}.
 - \texttt{marker_options} specify the look of markers. This look includes the marker symbol, size, color, and outline; see [G-3] \texttt{marker_options}.
marker_label_options specify if and how the markers are to be labeled; see [G-3] marker_label_options.

Add plots

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall

twoway_options are any of the options documented in [G-3] twoway_options, excluding by(). These include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see [G-3] saving_option).

Remarks and examples

pkexamine computes summary statistics for a given patient in a pharmacokinetic trial. If by idvar: is specified, statistics will be displayed for each subject in the data.

Example 1

Chow and Liu (2009, 13) present data on a study examining primidone concentrations versus time over a 32-hour period after dosing a subject.

. use https://www.stata-press.com/data/r16/auc
. list, abbrev(14)

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>4.7</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>3.6</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>1.6</td>
</tr>
</tbody>
</table>
We use \texttt{pkexamine} to produce the summary statistics:

\begin{verbatim}
. pkexamine time concentration, graph

Maximum concentration = 4.7
Time of maximum concentration = 3
Time of last observation (Tmax) = 32
Elimination rate = 0.0279
Half life = 24.8503
\end{verbatim}

Area under the curve

<table>
<thead>
<tr>
<th></th>
<th>AUC ([0, \text{inf.}])</th>
<th>AUC ([0, \text{inf.}])</th>
<th>AUC ([0, \text{inf.}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC ([0, \text{Tmax}]) Linear of log conc.</td>
<td>85.24</td>
<td>142.603</td>
<td>107.759</td>
</tr>
<tr>
<td>AUC ([0, \text{inf.}]) Linear fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC ([0, \text{inf.}]) Exponential fit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fit based on last 3 points.

The maximum concentration of 4.7 occurs at time 3, and the time of the last observation (Tmax) is 32. In addition to AUC\(_{0,\text{Tmax}}\), which is calculated from 0 to the maximum value of time, \texttt{pkexamine} also reports AUC\(_{0,\text{inf.}}\), the AUC computed by extending the curve with each of three methods: a linear fit to the log of the concentration, a linear regression line, and a decreasing exponential regression line. See \textit{Methods and formulas} for details on these three methods.

By default, all extensions to the AUC are based on the last three points. In looking at the graph for these data, it seems more appropriate to use the last seven points to estimate the AUC\(_{0,\text{inf.}}\):

\begin{verbatim}
. pkexamine time concentration, fit(7)

Maximum concentration = 4.7
Time of maximum concentration = 3
Time of last observation (Tmax) = 32
Elimination rate = 0.0349
Half life = 19.8354
\end{verbatim}

Area under the curve

<table>
<thead>
<tr>
<th></th>
<th>AUC ([0, \text{inf.}])</th>
<th>AUC ([0, \text{inf.}])</th>
<th>AUC ([0, \text{inf.}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC ([0, \text{Tmax}]) Linear of log conc.</td>
<td>85.24</td>
<td>131.027</td>
<td>96.805</td>
</tr>
<tr>
<td>AUC ([0, \text{inf.}]) Linear fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC ([0, \text{inf.}]) Exponential fit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fit based on last 7 points.
This approach decreased the estimate of the $\text{AUC}_{0,\infty}$ for all extensions. To see a graph of the $\text{AUC}_{0,\infty}$ using a linear extension, specify the `graph` and `line` options.

```
pkexamine time concentration, fit(7) graph line
```

Maximum concentration = 4.7
Time of maximum concentration = 3
Time of last observation (Tmax) = 32
Elimination rate = 0.0349
Half life = 19.8354

Area under the curve

<table>
<thead>
<tr>
<th>AUC [0, Tmax]</th>
<th>AUC [0, inf.) Linear of log conc.</th>
<th>AUC [0, inf.) Linear fit</th>
<th>AUC [0, inf.) Exponential fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.24</td>
<td>131.027</td>
<td>96.805</td>
<td>129.181</td>
</tr>
</tbody>
</table>

Fit based on last 7 points.

Stored results

`pkexamine` stores the following in `r()`:

Scalars

- `r(auc)` AUC
- `r(half)` half-life of the drug
- `r(ke)` elimination rate
- `r(tmax)` time at last concentration measurement
- `r(cmax)` maximum concentration
- `r(tomc)` time of maximum concentration
- `r(auc_line)` $\text{AUC}_{0,\infty}$ estimated with a linear fit
- `r(auc_exp)` $\text{AUC}_{0,\infty}$ estimated with an exponential fit
- `r(auc_ln)` $\text{AUC}_{0,\infty}$ estimated with a linear fit of the natural log
Methods and formulas

Let i index the observations sorted by time, let k be the number of observations, and let f be the number of points specified in the `fit(#)` option.

The $AUC_{0,t_{\text{max}}}$ is defined as

$$ AUC_{0,t_{\text{max}}} = \int_0^{t_{\text{max}}} C_t \, dt $$

where C_t is the concentration at time t. By default, the integral is calculated numerically using cubic splines. However, if the trapezoidal rule is used, the $AUC_{0,t_{\text{max}}}$ is given as

$$ AUC_{0,t_{\text{max}}} = \sum_{i=2}^{k} \frac{C_{i-1} + C_i}{2} (t_i - t_{i-1}) $$

The $AUC_{0,\infty}$ is the $AUC_{0,t_{\text{max}}} + AUC_{t_{\text{max}},\infty}$, or

$$ AUC_{0,\infty} = \int_0^{t_{\text{max}}} C_t \, dt + \int_{t_{\text{max}}}^{\infty} C_t \, dt $$

When using the linear extension to the $AUC_{0,t_{\text{max}}}$, the integration is cut off when the line crosses the x axis. The log extension is a linear extension on the log concentration scale. The area for the exponential extension is

$$ AUC_{t_{\text{max}},\infty} = \int_{t_{\text{max}}}^{\infty} e^{\beta_0 + t \beta_1} \, dt = \frac{e^{\beta_0 + t_{\text{max}} \beta_1} - e^{\beta_1}}{-\beta_1} $$

where $\beta_0 > 0$ and $\beta_1 < 0$ are the intercept and slope, respectively, of an exponential accelerated failure-time regression of concentration on time.

The elimination rate K_{eq} is the negative of the slope from a linear regression of log concentration on time fit to the number of points specified in the `fit(#)` option:

$$ K_{eq} = -\frac{\sum_{i=k-f+1}^{k} (t_i - \bar{t}) (\ln C_i - \ln \bar{C})}{\sum_{i=k-f+1}^{k} (t_i - \bar{t})^2} $$

The half-life is

$$ t_{\text{half}} = \frac{\ln 2}{K_{eq}} $$

Reference

Also see

[R] pk — Pharmacokinetic (biopharmaceutical) data