pcorr — Partial and semipartial correlation coefficients

Description

pcorr displays the partial and semipartial correlation coefficients of a specified variable with each variable in a varlist after removing the effects of all other variables in the varlist. The squared correlations and corresponding significance are also reported.

Quick start

Partial and semipartial correlations of v1 with v2, v3, and v4
 pcorr v1 v2 v3 v4

As above, but for each level of categorical variable catvar
 by catvar: pcorr v1 v2 v3 v4

Partial and semipartial correlations of v5 with v6, v7, and v8, and a one-period lag of v5 using
tsset data
 pcorr v5 L.v5 v6 v7 v8

Menu

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Partial correlations
Syntax

```
pcorr varname varlist [if] [in] [weight]
```

* varlist may contain factor variables; see [U] 11.4.3 Factor variables.
* varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
* by is allowed; see [D] by.
* aweights and fweights are allowed; see [U] 11.1.6 weight.

Remarks and examples

Assume that \(y \) is determined by \(x_1, x_2, \ldots, x_k \). The partial correlation between \(y \) and \(x_1 \) is an attempt to estimate the correlation that would be observed between \(y \) and \(x_1 \) if the other \(x \)'s did not vary. The semipartial correlation, also called part correlation, between \(y \) and \(x_1 \) is an attempt to estimate the correlation that would be observed between \(y \) and \(x_1 \) after the effects of all other \(x \)'s are removed from \(x_1 \) but not from \(y \).

Both squared correlations estimate the proportion of the variance of \(y \) that is explained by each predictor. The squared semipartial correlation between \(y \) and \(x_1 \) represents the proportion of variance in \(y \) that is explained by \(x_1 \) only. This squared correlation can also be interpreted as the decrease in the model’s \(R^2 \) value that results from removing \(x_1 \) from the full model. Thus, one could use the squared semipartial correlations as criteria for model selection. The squared partial correlation between \(y \) and \(x_1 \) represents the proportion of variance in \(y \) not associated with any other \(x \)'s that is explained by \(x_1 \). Thus, the squared partial correlation gives an estimate of how much of the variance of \(y \) not explained by the other \(x \)'s is explained by \(x_1 \).

Example 1

Using our automobile dataset (described in [U] 1.2.2 Example datasets), we can obtain the simple correlations between `price`, `mpg`, `weight`, and `foreign` from `correlate` (see [R] correlate):

```stata
use https://www.stata-press.com/data/r16/auto
(1978 Automobile Data)
ocorr price mpg weight foreign
(obs=74)
```

<table>
<thead>
<tr>
<th></th>
<th>price</th>
<th>mpg</th>
<th>weight</th>
<th>foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>1.0000</td>
<td>-0.4686</td>
<td>0.5386</td>
<td>0.0487</td>
</tr>
<tr>
<td>mpg</td>
<td></td>
<td>1.0000</td>
<td>-0.8072</td>
<td>0.3934</td>
</tr>
<tr>
<td>weight</td>
<td></td>
<td></td>
<td>1.0000</td>
<td>-0.5928</td>
</tr>
<tr>
<td>foreign</td>
<td></td>
<td></td>
<td></td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Although `correlate` gave us the full correlation matrix, our interest is in just the first column. We find, for instance, that the higher the `mpg`, the lower the `price`. We obtain the partial and semipartial correlation coefficients by using `pcorr`:

```
.pcorr price mpg weight foreign
(obs=74)
```

Partial and semipartial correlations of price with

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>0.0352</td>
<td>0.0249</td>
<td>0.0012</td>
<td>0.0006</td>
<td>0.7693</td>
</tr>
<tr>
<td>weight</td>
<td>0.5488</td>
<td>0.4644</td>
<td>0.3012</td>
<td>0.2157</td>
<td>0.0000</td>
</tr>
<tr>
<td>foreign</td>
<td>0.5402</td>
<td>0.4541</td>
<td>0.2918</td>
<td>0.2062</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
We now find that the partial and semipartial correlations of *price* with *mpg* are near 0. In the simple correlations, we found that *price* and *foreign* were virtually uncorrelated. In the partial and semipartial correlations, we find that *price* and *foreign* are positively correlated. The nonsignificance of *mpg* tells us that the amount in which R^2 decreases by removing *mpg* from the model is not significant. We find that removing either *weight* or *foreign* results in a significant drop in the R^2 of the model.

- **Technical note**

 Use caution when interpreting the above results. As we said at the outset, the partial and semipartial correlation coefficients are an attempt to estimate the correlation that would be observed if the effects of all other variables were taken out of both y and x or only x. `pcorr` makes it too easy to ignore the fact that we are fitting a model. In the example above, the model is

 $$\text{price} = \beta_0 + \beta_1 \text{mpg} + \beta_2 \text{weight} + \beta_3 \text{foreign} + \epsilon$$

 which is, in all honesty, a rather silly model. Even if we accept the implied economic assumptions of the model—that consumers value *mpg*, *weight*, and *foreign*—do we really believe that consumers place equal value on every extra 1,000 pounds of weight? That is, have we correctly parameterized the model? If we have not, then the estimated partial and semipartial correlation coefficients may not represent what they claim to represent. Partial and semipartial correlation coefficients are a reasonable way to summarize data if we are convinced that the underlying model is reasonable. We should not, however, pretend that there is no underlying model and that these correlation coefficients are unaffected by the assumptions and parameterization.

- **Stored results**

 `pcorr` stores the following in `r()`:

 Scalars
 - `r(N)` number of observations
 - `r(df)` degrees of freedom

 Matrices
 - `r(p_corr)` partial correlation coefficient vector
 - `r(sp_corr)` semipartial correlation coefficient vector

- **Methods and formulas**

 Results are obtained by fitting a linear regression of *varname* on *varlist*; see [R] `regress`. The partial correlation coefficient between *varname* and each variable in *varlist* is then calculated as

 $$\frac{t}{\sqrt{t^2 + n - k}}$$

 (Greene 2018, 39), where t is the t statistic, n is the number of observations, and k is the number of independent variables, including the constant but excluding any dropped variables.
The semipartial correlation coefficient between `varname` and each variable in `varlist` is calculated as

\[
\text{sign}(t) \sqrt{\frac{t^2(1 - R^2)}{n - k}}
\]

(Cohen et al. 2003, 89), where \(R^2\) is the model \(R^2\) value, and \(t\), \(n\), and \(k\) are as described above.

The significance is given by \(2\Pr(t_{n-k} > |t|)\), where \(t_{n-k}\) follows a Student’s \(t\) distribution with \(n - k\) degrees of freedom.

Acknowledgment

The addition of semipartial correlation coefficients to `pcorr` is based on the `pcorr2` command by Richard Williams of the Department of Sociology at the University of Notre Dame.

References

Also see

[R] `correlate` — Correlations of variables

[R] `spearman` — Spearman’s and Kendall’s correlations