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Description
npregress series performs nonparametric series estimation using aB-spline, piecewise polynomial

spline, or polynomial basis. Like linear regression, nonparametric regression models the mean of the

outcome conditional on the covariates, but unlike linear regression, it makes no assumptions about the

functional form of the relationship between the outcome and the covariates. npregress series may be

used to model the mean of a continuous, count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the default B-spline basis

npregress series y x i.a

Same as above, but use a polynomial basis

npregress series y x i.a, polynomial

Same as above, but use a piecewise polynomial spline basis

npregress series y x i.a, spline

Same as above, but use AIC to find the optimal basis function

npregress series y x i.a, criterion(aic) spline

Interpolate using three knots

npregress series y x i.a, knots(3)

Specify values of knots in matrix K
npregress series y x i.a, knotsmat(K)

Menu
Statistics > Nonparametric analysis > Nonparametric series regression
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Syntax
npregress series depvar indepvarsseries [ if ] [ in ] [weight ] [ , options ]

indepvarsseries is the list of independent variables for which a basis function will be formed.

options Description

Model

bspline use a third-order B-spline basis; the default

bspline(#) use a B-spline basis of order #

spline use a third-order piecewise polynomial spline basis

spline(#) use a piecewise polynomial spline basis of order #

polynomial use a polynomial basis

polynomial(#) use a polynomial basis of order #

asis(varlist) include varlist in model as specified; do not use in basis

nointeract(seriesvarlist) use seriesvarlist in basis without interactions

criterion(crittype) criterion to use; crittype may be cv, gcv, aic, bic, or mallows
knots(#) use a piecewise polynomial spline or B-spline basis function

with # knots

knotsmat(matname) use knots in matrix matname for piecewise polynomial spline
or B-spline estimation

distinct(#) minimum number of distinct values allowed in continuous
covariates; default is distinct(10)

basis(stub [ , replace ]) store elements of piecewise polynomial spline or B-spline basis
function using stub

rescale(stub [ , replace ]) store rescaled values of covariates using stub

SE

vce(vcetype) vcetype may be robust, ols, or bootstrap

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary regression coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, and jackknife are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesOptionsseriesvarlist
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesOptionscrittype
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesOptionsdisplay_options
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands


npregress series — Nonparametric series regression 3

Options

� � �
Model �

bspline specifies that a third-order B-spline be selected. It is the default basis.

bspline(#) specifies that a B-spline of order # be used as the basis. The order may be 1, 2, or 3.

spline specifies that a third-order piecewise polynomial spline be selected as the basis.

spline(#) specifies that a piecewise polynomial spline of order # be used as the basis. The order may

be 1, 2, or 3.

polynomial specifies that a polynomial be selected as the basis.

polynomial(#) specifies that a polynomial of order # be used as the basis. The order may be an integer

between 1 and 16.

asis(varlist) specifies that variables in varlist be included as independent variables in themodel without
any transformation. No B-spline, piecewise polynomial spline, or polynomial basis function will be

formed from these variables. Variables in varlist may not be specified in indepvarsseries.

nointeract(seriesvarlist) specifies that the terms in the basis function formed from variables in se-

riesvarlist not be interacted with the terms of the basis function formed from other variables in inde-

pvarsseries. Covariates specified in seriesvarlist must be in indepvarsseries.

criterion(crittype) specifies that crittype be used to select the optimal number of terms in the ba-

sis function. crittype may be one of the following: cv (cross-validation), gcv (generalized cross-

validation), aic (Akaike’s information criterion), bic (Schwarz’s Bayesian information criterion), or

mallows (Mallows’s 𝐶𝑝). The default is criterion(cv).

knots(#) specifies that a piecewise polynomial spline or B-spline basis function with # knots be used.

The minimum number of knots must be an integer greater than or equal to 1. The maximum number

of knots is either 4,096 or two-thirds of the sample size, whichever is smaller.

knotsmat(matname) specifies that the knots for each continuous covariate be the values in each row

of matname. The number of knots should be the same for each covariate, and there must be as many

rows as there are continuous covariates. If rows ofmatname are not labeled with varnames, then rows

are assumed to be in the order of indepvarsseries.

distinct(#) specifies the minimum number of distinct values allowed in continuous variables. By

default, continuous variables that enter the basis through either indepvarsseries or seriesvarlist are

required to have at least 10 distinct values. Continuous variables with few distinct values provide

little information for determining an appropriate basis function and may produce unreliable estimates.

basis(stub [ , replace ]) specifies that the elements of the basis function generated by npregress
series be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variables for each element of the

basis.

When replace is used, existing variables named with stub are replaced by those from the new com-

putation.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesOptionsseriesvarlist
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rescale(stub [ , replace ]) specifies that the rescaled covariates used to generate the basis function

be stored with the specified names.

The option argument stub is the prefix used to generate enumerated variable names for the covariates.

When replace is used, existing covariates named with stub are replaced by those from the new

computation.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that assume homoskedasticity (ols), and that use bootstrap meth-
ods (bootstrap); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the auxiliary regression coefficients be reported. By default, only the average

marginal effects of the covariates on the outcome are reported.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, tolerance(#); see [R]Maximize. These options are seldom

used.

The following option is available with npregress series but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
This entry assumes that you are already familiar with nonparametric regression. Below, we discuss

nonparametric series estimation; see [R] npregress intro for an overview of nonparametric regression

and the models fit by npregress series and npregress kernel.

Remarks are presented under the following headings:

Overview
Estimation and effects

Overview
npregress series implements nonparametric series estimation using a B-spline, piecewise poly-

nomial spline, or polynomial basis. The covariates may be continuous or discrete. npregress series
allows you to estimate covariate effects and other counterfactuals related to the unknown mean function

after estimation.

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
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The word “nonparametric” refers to the fact that the parameter of interest—the mean as a function of

the covariates—is given by the unknown function 𝑔(x𝑖), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,

𝐸(𝑦𝑖|x𝑖) = 𝑓(x𝑖,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (Shao 2003).

The nonparametric regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖
is given by

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. Equations (1) and (2) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

Once we account for the information in the covariates, the error term provides no information about the

mean of our outcome. The conditional mean function is therefore given by 𝑔(x𝑖).
The mean estimate we obtain using nonparametric series estimation has the same form of the mean

function estimate we obtain using linear regression. The regressors, however, are not variables in the

data but functions of the variables. An example would be a 𝑘th-order polynomial. Suppose we have one
covariate. The elements of the polynomial in this case would be (𝑥𝑖, 𝑥2

𝑖 , . . . , 𝑥𝑘
𝑖 ). If we define z𝑖 as a

vector with elements (𝑥𝑖, 𝑥2
𝑖 , . . . , 𝑥𝑘

𝑖 ), we may write the estimate of the mean function as

z′
𝑖β̂

where β̂ has the form of an ordinary least-squares estimate.

npregress series allows us to specify other functional forms for z𝑖 depending on the basis we

select: B-spline, piecewise polynomial spline, or polynomial. SeeMethods and formulas for the formulas

for each basis.

Although the estimate of the mean function has the form of a linear regression, the individual coeffi-

cients are not easily interpretable. For instance, in our 𝑘th-order polynomial example, if 𝑥𝑖 is continuous,

the marginal effect of 𝑥𝑖 is not a single coefficient but rather is a function of 𝑘 elements of β and the

covariate 𝑥𝑖.

In the example above, we had only one covariate, 𝑥𝑖. If we have more than one covariate, we approx-

imate the mean function by using interactions of the terms in the basis function for each covariate. For

instance, a polynomial of 𝑥𝑖 and 𝑤𝑖 would have terms (𝑥𝑖, 𝑤𝑖, 𝑥𝑖𝑤𝑖, 𝑥2
𝑖 , 𝑤2

𝑖 , . . . , 𝑤𝑘
𝑖 𝑥𝑘

𝑖 ). As the number
of covariates increases, the number of terms in the basis function increases exponentially. This is referred

to in the literature as the curse of dimensionality.

npregress series allows us to reduce the dimensionality by using the nointeract() option to

request that some covariates not be interacted with others. For the example above, this is equivalent to

specifying a model of the form

𝑦𝑖 = 𝑔1 (𝑥𝑖) + 𝑔2 (𝑤𝑖) + 𝜀𝑖 (3)

In (3), 𝑔1 (𝑥𝑖) and 𝑔2 (𝑤𝑖) are unknown functions, but there are no interactions between 𝑥𝑖 and 𝑤𝑖.

This ameliorates the curse of dimensionality but imposes more structure to the model.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulas
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You may also want to reduce the curse of dimensionality by requesting a parametric component, by

using the asis() option, to fit models like this:

𝑦𝑖 = 𝑔 (𝑥𝑖) + 𝑤𝑖β + 𝜀𝑖 (4)

In (4), 𝑔 (𝑥𝑖) is unknown but we assume that 𝑤𝑖 enters the model linearly.

As mentioned above, the regression coefficients are not easily interpretable. We can, however, esti-

mate marginal effects, as reported in the npregress series output, and use margins to answer specific

questions about the effects of covariates on the conditional mean, 𝑔 (x𝑖). We demonstrate this in the ex-

amples below.

For detailed introductions to series estimators and the methods implemented by npregress series,
see de Boor (2001), Schumaker (2007), Eubank (1999), Schoenberg (1969), Newey (1997), and Chen

(2007).

Estimation and effects

Example 1: Nonparametric series regression estimation
dui.dta contains information about the number of monthly drunk driving citations in a local juris-

diction (citations). Suppose we want to know the effect of increasing fines on the number of citations.

Because citations is a count variable, we could consider fitting the model with poisson or nbreg.
However, both of these estimators make assumptions about the distribution of the data. If these assump-

tions are not true, we will obtain inconsistent estimates.

By using npregress series, we do not have to make any assumptions about how citations is

distributed. We use npregress series to estimate the averagemarginal effect of drunk driving penalties
(fines) on citations.

. use https://www.stata-press.com/data/r19/dui
(Fictional data on monthly drunk driving citations)
. npregress series citations fines
Computing approximating function
Minimizing cross-validation criterion
Iteration 0: Cross-validation criterion = 55.15697
Iteration 1: Cross-validation criterion = 55.11413
Computing average derivatives
Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 3

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -8.020769 .464836 -17.26 0.000 -8.931831 -7.109707

Note: Effect estimates are averages of derivatives.

The iteration log first tells us that the approximating function is being computed. At this stage, the

number of knots of the cubic B-spline is selected using cross-validation. Three knots were selected.
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After the approximating function is computed, average marginal effects are computed. This second

step is computationally expensive. The computation time increases with the number of elements in the

basis function, which in turn increases with the complexity of themean function we are trying to compute.

The table reports that the average marginal effect of fines on the mean number of citations is −8.02.

Increasing fines, on average, reduces the number of citations.

npregress series generates a system variable for each element of the basis function. Additionally,

variables are generated with the rescaled values of the continuous covariates used to construct the basis

function. To see the variables that npregress series generated for example 1, we type

. describe *_*, fullnames
Variable Storage Display Value

name type format label Variable label

__x1rs double %10.0g fines rescaled to [0,1]
_x1__b1 double %10.0g Basis term 1 for fines
_x1__b2 double %10.0g Basis term 2 for fines
_x1__b3 double %10.0g Basis term 3 for fines
_x1__b4 double %10.0g Basis term 4 for fines
_x1__b5 double %10.0g Basis term 5 for fines
_x1__b6 double %10.0g Basis term 6 for fines
_x1__b7 double %10.0g Basis term 7 for fines

To specify a name for each of the elements of the basis function, we can use the basis() option with

a stub.

. npregress series citations fines, basis(basis)
(output omitted )

We get the following set of names for the elements of the basis function:

. describe basis*, fullnames
Variable Storage Display Value

name type format label Variable label

basis1 double %10.0g Basis term 1 for fines
basis2 double %10.0g Basis term 2 for fines
basis3 double %10.0g Basis term 3 for fines
basis4 double %10.0g Basis term 4 for fines
basis5 double %10.0g Basis term 5 for fines
basis6 double %10.0g Basis term 6 for fines
basis7 double %10.0g Basis term 7 for fines

We may also modify the name of the rescaled variable by using the rescale() option.

. npregress series citations fines, rescale(rescaled)
(output omitted )

This will give us

. describe rescaled*, fullnames
storage display value

variable name type format label variable label

rescaled1 double %10.0g fines rescaled to [0,1]

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesRemarksandexamplesex1
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Example 2: Estimation with more than one regressor
We now extend example 1. In addition to fines, we model citations as a function of whether

the jurisdiction is small, medium, or large (csize) and whether there is a college in the jurisdiction

(college).

. npregress series citations fines i.csize i.college
Computing approximating function
Minimizing cross-validation criterion
Iteration 0: Cross-validation criterion = 30.26251
Computing average derivatives
Cubic B-spline estimation Number of obs = 500
Criterion: cross-validation Number of knots = 1

Robust
citations Effect std. err. z P>|z| [95% conf. interval]

fines -7.787386 .2917941 -26.69 0.000 -8.359292 -7.215481

csize
(Medium

vs
Small) 4.732592 .5087968 9.30 0.000 3.735368 5.729815
(Large

vs
Small) 10.91757 .5350892 20.40 0.000 9.868813 11.96632

college
(College

vs
Not coll..) 6.514286 .5958949 10.93 0.000 5.346353 7.682218

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.

The average marginal effect of fines is −7.79, slightly less in magnitude than the −8.02 that we

estimated in example 1. The output also shows effects for the variables csize and college. In these

categorical variables, the effects are differences instead of derivatives. For example, if every jurisdiction

in the population were a college town, we would expect 6.51 more citations than if none were college

towns.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesRemarksandexamplesex1
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Example 3: Expected citations for different levels of fines
The npregress series command reported that the average marginal effect of fines on number of

citations is negative. We can use margins to further explore the relationship between level of fines and

expected number of citations. What would we expect if all jurisdictions set fines to $8,000? What if they

all set fines to $9,000? $10,000? $11,000? We use the at(fines=(8 9 10 11)) option with margins
to estimate these expected values.

. margins, at(fines=(8 9 10 11))
Predictive margins Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 49.58234 1.47392 33.64 0.000 46.69351 52.47117
2 28.35154 .5730302 49.48 0.000 27.22842 29.47466
3 20.40163 .3320855 61.43 0.000 19.75075 21.0525
4 14.78085 .4297201 34.40 0.000 13.93862 15.62309

There appears to be a dramatic drop in the expected number of citations as fines increase from $8,000

to $9,000. We can visualize these results if we type marginsplot.

10

20

30

40

50

M
ea

n 
fu

nc
tio

n

8 9 10 11
Drunk driving fines in thousands of dollars

Predictive margins with 95% CIs

Figure 1.
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Are there significant differences in the expected number of citations as we increase fines in increments

of $1,000? If we use the reverse-adjacent contrast operator, ar., with margins, we can estimate these
differences and perform tests.

. margins, at(fines=(8 9 10 11)) contrast(atcontrast(ar._at) nowald effects)
Contrasts of predictive margins Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11
Expression: Mean function, predict()
1._at: fines = 8
2._at: fines = 9
3._at: fines = 10
4._at: fines = 11

Delta-method
Contrast std. err. z P>|z| [95% conf. interval]

_at
(2 vs 1) -21.2308 1.610261 -13.18 0.000 -24.38685 -18.07475
(3 vs 2) -7.94991 .7085254 -11.22 0.000 -9.338595 -6.561226
(4 vs 3) -5.620773 .5683614 -9.89 0.000 -6.734741 -4.506806

When fines are increased from $8,000 to $9,000, we expect a decrease of 21.23 in the number of

citations. Smaller but still statistically significant decreases in the number of citations are expected as

fines are increased from $9,000 to $10,000 and from $10,000 to $11,000.

Example 4: Estimating the effect for different levels of jurisdiction size
Now, we estimate the effect of increasing fines for different jurisdiction sizes.

. margins csize, dydx(fines)
Average marginal effects Number of obs = 500
Model VCE: Robust
Expression: Mean function, predict()
dy/dx wrt: fines

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

fines
csize

Small -5.992484 .4491224 -13.34 0.000 -6.872747 -5.11222
Medium -7.740284 .4366709 -17.73 0.000 -8.596144 -6.884425
Large -10.20492 .564166 -18.09 0.000 -11.31067 -9.099178

If all jurisdictions were small but other characteristics were as they are observed, then we expect that

the marginal effect of fines would be −5.99. We see that the effect is more extreme as the size of the

jurisdiction increases. If all jurisdictions were large, we expect that the average marginal effect of fines
would be −10.20.
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We can further explore the effects of fines for different jurisdiction sizes by estimating the expected

number of citations with fines at specific levels.

. margins csize, at(fines=(8(1)11))
(output omitted )

To visualize the effect, we type marginsplot.
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Figure 2.

For each jurisdiction size, we see that on average higher fines result in fewer citations. We also see

that the effect of changing fine levels is nonlinear and differs across the counterfactual jurisdiction size.

For instance, as fines increase from $8,000 to $9,000, the expected number of citations decreases faster

for small jurisdictions than for medium ones.

Stored results
npregress series stores the following in e():

Scalars

e(N) number of observations

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(converged) 1 if converged, 0 otherwise

e(order) order of basis function

e(rank) rank of e(V)

Macros

e(cmd) npregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(basis) bsplines, splines, or polynomials
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(knots) number of knots selected

e(datasignaturevars) variables used in calculation of checksum

e(datasignature) the checksum
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e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(properties) b V
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command

e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of estimators

e(V modelbased) model-based variance

e(ilog) iteration log (up to 20 iterations)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Overview
Polynomials
Piecewise polynomial splines
B-splines
Model selection

Cross-validation
Generalized cross-validation
Mallows’s C𝑝
AIC and BIC

Overview
The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 was defined in

(1) and (2) of Remarks and examples and is repeated here:

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (1)

and (2) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)
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As discussed in Remarks and examples, series estimators have the form of ordinary least squares.

Thus, we can write the estimate of the mean function as

𝐸 (𝑦𝑖|x𝑖) = z (x𝑖) β̂ (5)

where z(x𝑖) is a known 𝑞-dimensional vector for which every one of the 𝑞 terms is a function of the

𝑘-dimensional vector of covariates x𝑖. Let 𝑛 be the sample size. If we define Z as the 𝑛 × 𝑞 matrix

formed by the z(x𝑖) for each individual 𝑖, then the 𝑞-dimensional coefficient vector β̂ is the ordinary

least-squares vector that comes from regressing the 𝑛 × 1 outcome vector y on Z and has the known

form

β̂ = (Z′Z)−1 (Z′y) (6)

Each one of the series estimators has a different form for z(x𝑖). Below, we define z(x𝑖) for polynomials,
piecewise polynomial splines, and B-splines.

Polynomials
For a polynomial of order 1 with 𝑘 continuous covariates, x𝑖 ≡ (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘), z(x𝑖) is

z (x𝑖) = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘) (𝑃1)

For notational convenience, we will refer to the polynomial above as 𝑃1, which also corresponds to the
name we gave to the equation. More formally, we could have written (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑘) ≡ 𝑃1. We will

maintain this notational convention below.

A polynomial of order 2 with 𝑘 continuous covariates includes 𝑃1 and second-order terms:

z (x𝑖) = (𝑃1, 𝑥2
𝑖1, 𝑥𝑖1𝑥𝑖2, . . . , 𝑥𝑖1𝑥𝑖𝑘, 𝑥𝑖2𝑥𝑖3, . . . , 𝑥2

𝑖𝑘) (𝑃2)

A third-order polynomial with 𝑘 continuous covariates includes the terms in 𝑃2 (which already includes

𝑃1) and third-order terms:

z (x𝑖) = (𝑃2, 𝑥3
𝑖1, 𝑥2

𝑖1𝑥𝑖2, . . . , 𝑥2
𝑖1𝑥𝑖𝑘, 𝑥𝑖1𝑥𝑖2𝑥𝑖3, . . . , 𝑥3

𝑖𝑘) (𝑃3)

This recursive relationship continues. Thus, fourth-order polynomials includes the terms in 𝑃3 (which

already includes 𝑃1 and 𝑃2) plus fourth-order terms.
For the polynomials above and all series estimators below, discrete covariates enter the model in

levels, and each level is interacted with all other covariates in the model.

Piecewise polynomial splines
Piecewise polynomial splines are formed by a polynomial and functions of the form

max(𝑥𝑖𝑘 − 𝑡1𝑘, 0)

In the expression above, 𝑡1𝑘 is a constant that is called a knot. The subscript of 𝑡1𝑘 indicates that it is

the first knot of the continuous covariate x𝑘. The max(⋅) function is 0 when 𝑥𝑖𝑘 < 𝑡1𝑘 and is 𝑥𝑖𝑘 − 𝑡1𝑘
otherwise. npregress series selects a set of knots for each one of the continuous covariates.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesRemarksandexamplesOverview
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The regressors for npregress series using a piecewise polynomial spline of order 3 with one con-

tinuous covariate, x1, and 𝑘 knots, 𝑡11 < 𝑡21 < · · · < 𝑡𝑘1, are given by

z (𝑥𝑖1) = {𝑥𝑖1, 𝑥2
𝑖1, 𝑥3

𝑖1, max (𝑥𝑖1 − 𝑡11, 0)3 , max (𝑥𝑖1 − 𝑡21, 0)3 , . . . ,

max (𝑥𝑖1 − 𝑡𝑘1, 0)3}
(𝑆1)

Equivalently, for another continuous covariate, x2, and 𝑘 knots, 𝑡12 < 𝑡22 < · · · < 𝑡𝑘2, we have

z (𝑥𝑖2) = {𝑥𝑖2, 𝑥2
𝑖2, 𝑥3

𝑖2, max (𝑥𝑖2 − 𝑡12, 0)3 , max (𝑥𝑖2 − 𝑡22, 0)3 , . . . ,

max (𝑥𝑖2 − 𝑡𝑘2, 0)3 }
(𝑆2)

To get z (𝑥𝑖1, 𝑥𝑖2) for x1 and x2 and 𝑘 knots, we include all terms in 𝑆1 and 𝑆2 as well as all the terms
that result from the interaction of their terms. We write it succinctly as

z (𝑥𝑖1, 𝑥𝑖2) = {𝑆1, 𝑆2, (𝑆1)(𝑆2)} (𝑆12)

The description above refers to the default third-order piecewise polynomial spline. Below, we de-

scribe the cases for piecewise polynomial splines of order 1 and order 2. Going back to the one covariate

case, if we want a piecewise polynomial spline of order 1 with 𝑘 knots, we have

z (𝑥𝑖1) = {𝑥𝑖1, max (𝑥𝑖1 − 𝑡11, 0) , max (𝑥𝑖1 − 𝑡21, 0) , . . . , max (𝑥𝑖1 − 𝑡𝑘1, 0)}

And for order 2 with 𝑘 knots and one covariate, we have

z (𝑥𝑖1) = {𝑥𝑖1, 𝑥2
𝑖1, max (𝑥𝑖1 − 𝑡11, 0)2 , max (𝑥𝑖1 − 𝑡21, 0)2 , . . . , max (𝑥𝑖1 − 𝑡𝑘1, 0)2}

If we have more than one covariate, the logic of interacting the expressions for each covariate is the

same as the logic we used for the third-order piecewise polynomial spline in (𝑆1).
To construct z (x𝑖), continuous covariates are rescaled to be between 0 and 1 with the expression

{x𝑖 − min(x𝑖)} { 1
max(x𝑖) − min(x𝑖)

}

This rescaling is used to construct the piecewise polynomial spline and B-spline bases.
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B-splines
To construct a B-spline basis, we need to define knots that are on the interior of the range of the

covariates and knots that are at the upper and lower limits of the range or outside the range. The number

of knots that are not in the interior differs depending on the order of the B-spline. For a B-spline of

order 1 with 𝑘 interior knots, 𝑡1, 𝑡2, . . . , 𝑡𝑘, we need 4 additional knots. The set of knots for a first-order

B-spline is therefore

𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2

We added 𝑡−1, 𝑡0, 𝑡𝑘+1, and 𝑡𝑘+2 to the interior knots. By convention, 𝑡−1 = 𝑡0 and 𝑡𝑘+1 = 𝑡𝑘+2.

For a B-spline of order 2 with 𝑘 interior knots, we need 6 additional knots. The set of knots is

𝑡−2, 𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2, 𝑡𝑘+3

For a B-spline of order 3, the set of knots is

𝑡−3, 𝑡−2, 𝑡−1, 𝑡0, 𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, 𝑡𝑘+2, 𝑡𝑘+3, 𝑡𝑘+4

We first define a first-order B-spline for one continuous covariate xwith 𝑘 interior knots. Let t𝑗 denote
an 𝑛 × 1 vector for which all elements take the value of the 𝑗th knot 𝑡𝑗. The B-spline basis is formed by

𝑘 + 2 functions of the form

𝐵𝑗,1 =
(x − 𝑡𝑗)
𝑡𝑗+1 − 𝑡𝑗

1 (t𝑗 ≤ x < t𝑗+1) +
(𝑡𝑗+2 − x)
𝑡𝑗+2 − 𝑡𝑗+1

1 (t𝑗+1 ≤ x < t𝑗+2)

𝑗 = −1, 0, 1, 2, . . . , 𝑘
(7)

Above, we use the indicator function 1(⋅), which is 1 when the condition inside the parentheses is

satisfied and is 0 otherwise. Also, any term for which 𝑡𝑗+1 = 𝑡𝑗 or 𝑡𝑗+2 = 𝑡𝑗+1 is considered to be a

vector of 0s.

The function z (x) used to estimate 𝑔 (x) is given by

z (x) = (𝐵−1,1, 𝐵0,1, 𝐵1,1, . . . , 𝐵𝑘,1)

We now define a second-order B-spline for one continuous covariate x with 𝑘 interior knots. The

basis is constructed using the relationship given by

𝐵𝑗,2 =
(x − 𝑡𝑗)
𝑡𝑗+2 − 𝑡𝑗

𝐵𝑗,1 +
(𝑡𝑗+3 − x)
𝑡𝑗+3 − 𝑡𝑗+1

𝐵𝑗+1,1

𝑗 = −2, −1, 0, 1, 2, . . . , 𝑘

where 𝐵𝑗,1 and 𝐵𝑗+1,1 come from (7) above. Thus, second-order B-splines are a function of first-order

B-splines, and as we will see below, third-order B-splines are a function of second-order B-splines. This

recursion continues into higher orders, but npregress series stops at B-splines of order 3.
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The function z (x) for the second-order B-spline is given by

z (x) = (𝐵−2,2, 𝐵−1,2, 𝐵0,2, 𝐵1,2, . . . , 𝐵𝑘,2)

The terms of the basis for a third-order B-spline are given by

𝐵𝑗,3 =
(x − 𝑡𝑗)
𝑡𝑗+3 − 𝑡𝑗

𝐵𝑗,2 +
(𝑡𝑗+4 − x)
𝑡𝑗+4 − 𝑡𝑗+1

𝐵𝑗+1,2

𝑗 = −3, −2, −1, 0, 1, 2, . . . , 𝑘

and the function z (x) for the third-order B-spline is

z (x) = (𝐵−3,3, 𝐵−2,3, 𝐵−1,3, 𝐵0,3, 𝐵1,3, . . . , 𝐵𝑘,3) (𝐵1)

Aswas the case with piecewise polynomial splines, when there is more than one covariate, you include

all functions of the form (𝐵1) and their interactions to form expressions like the one in (𝑆1).

Model selection
Below, we define the criteria used for model selection. In the case of B-splines and piecewise poly-

nomial splines, npregress series selects the number of knots to be used for estimation. In the case of

a polynomial basis, npregress series selects the order of the polynomial.

Let us first define the squared residuals, 𝑒2
𝑖 , where 𝑒𝑖 = 𝑦𝑖 − ̂𝑔 (x𝑖) and ̂𝑔(⋅) is the mean function

estimate defined in (5). We denote the residuals for the regressions below as 𝑒𝑖 (t𝑘) instead of 𝑒𝑖 to

signal that the estimates we obtain are a function of the set of knots, t𝑘, used. In the case of polynomials,

t𝑘 will refer to the degree of the polynomial instead of knots.

Cross-validation

The cross-validation criterion, CV (t𝑘), is defined by

CV (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2

(1 − ℎ𝑖𝑖)
2 (8)

In (8), ℎ𝑖𝑖 are the diagonal elements of the matrix Z (Z′Z)Z′, where 𝑍 is defined in (6) above and 𝑛
is the size of the estimation sample.

npregress series computes CV (t𝑘) for different sets of knots, t1, t2, . . . , t𝑘, . . . , where t1 ⊂ t2 ⊂
. . . ⊂ t𝑘 ⊂ . . . , and then selects the model with the smallest value for the cross-validation criterion.
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Generalized cross-validation

The generalized cross-validation criterion, GCV (t𝑘), is given by

GCV (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2

{1 − (𝐾/𝑛)}2

where 𝐾 is the number of estimated parameters and the other arguments are equivalent to those defined

in (8). As with cross-validation, GCV (t𝑘) is computed for a set of models with an increasing number of
nested knots, in the case of piecewise polynomial splines and B-splines, and of polynomial order in the

case of polynomials. The minimum of the sequence is the selected model.

Mallows’s C𝑝

Mallows (t𝑘) = 1
𝑛

𝑛
∑
𝑖=1

𝑒𝑖 (t𝑘)2 (1 + 2𝐾
𝑛

)

As with cross-validation, Mallows (t𝑘) is computed for a set of models with an increasing number of
nested knots, and the minimum of the sequence is the selected model.

AIC and BIC

See Methods and formulas in [R] estat ic.
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