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Description
npregress kernel performs nonparametric local–linear and local–constant kernel regression. Like

linear regression, nonparametric regression models the mean of the outcome conditional on the covari-

ates, but unlike linear regression, it makes no assumptions about the functional form of the relationship

between the outcome and the covariates. npregress kernel may be used to model the mean of a con-

tinuous, count, or binary outcome.

Quick start
Nonparametric regression of y on x and discrete covariate a using the Epanechnikov kernel for x and the

Li–Racine kernel for a
npregress kernel y x i.a

Same as above, but use 500 replications and compute bootstrap standard errors and percentile confidence

intervals

npregress kernel y x i.a, reps(500)

Same as above, but use a Gaussian kernel for x
npregress kernel y x i.a, reps(500) kernel(gaussian)

Same as above, but use the improved AIC to find the optimal bandwidth

npregress kernel y x i.a, reps(500) kernel(gaussian) imaic

Same as above, but additionally specify that only the mean of the outcome be computed

npregress kernel y x i.a, reps(500) kernel(gaussian) imaic noderivatives

Specify h as the vector of bandwidths

npregress kernel y x i.a, bwidth(h)

Menu
Statistics > Nonparametric analysis > Nonparametric kernel regression
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Syntax
npregress kernel depvar indepvars [ if ] [ in ] [ , options ]

options Description

Model

estimator(linear | constant) use the local-linear or local-constant kernel estimator

kernel(kernel) kernel density function for continuous covariates

dkernel(dkernel) kernel density function for discrete covariates

predict(prspec) store predicted values of the mean and derivatives using
variable names specified in prspec

noderivatives suppress derivative computation

imaic use improved AIC instead of cross-validation to compute
optimal bandwidth

unidentsample(newvar) specify name of variable that marks identification problems

Bandwidth

bwidth(specs) specify kernel bandwidth for all predictions

meanbwidth(specs) specify kernel bandwidth for the mean

derivbwidth(specs) specify kernel bandwidth for the derivatives

SE
∗ vce(vcetype) vcetype may be none or bootstrap

reps(#) equivalent to vce(bootstrap, reps(#))
seed(#) set random-number seed to #; must also specify reps(#)
bwreplace vary bandwidth with each bootstrap replication; seldom used

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

citype(citype) method to compute bootstrap confidence intervals;
default is citype(percentile)

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, and jackknife are allowed; see [U] 11.1.10 Prefix commands.
∗ vce(bootstrap) reports percentile confidence intervals instead of the normal-based confidence intervals reported when

vce(bootstrap) is specified with other estimation commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/r.pdf#rnpregresskernelSyntaxkernel
https://www.stata.com/manuals/r.pdf#rnpregresskernelSyntaxdkernel
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionsprspec
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rnpregresskernelOptionsspec
https://www.stata.com/manuals/r.pdf#rnpregresskernelOptionsspec
https://www.stata.com/manuals/r.pdf#rnpregresskernelOptionsspec
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionsdisplay_options
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelSyntaxcitype
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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kernel Description

epanechnikov Epanechnikov kernel function; the default

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

dkernel Description

liracine Li–Racine kernel function; the default

cellmean cell means kernel function

citype Description

percentile percentile confidence intervals; the default

bc bias-corrected confidence intervals

normal normal-based confidence intervals

Options

� � �
Model �

estimator(linear | constant) specifies whether the local-constant or local-linear kernel estimator

should be used. The default is estimator(linear).

kernel(kernel) specifies the kernel density function for continuous covariates for use in calculating the

local-constant or local-linear estimator. The default is kernel(epanechnikov).

dkernel(dkernel) specifies the kernel density function for discrete covariates for use in calculating the

local-constant or local-linear estimator. The default is dkernel(liracine); seeMethods and formu-

las for details on the Li–Racine kernel. When dkernel(cellmean) is specified, discrete covariates

are weighted by their cell means.

predict(prspec) specifies that npregress kernel store the predicted values for the mean and deriva-

tives of the mean with the specified names. prspec is the following:

predict(varlist | stub* [ , replace noderivatives ])
The option takes a variable list or a stub. The first variable name corresponds to the predicted outcome

mean. The second name corresponds to the derivatives of the mean. There is one derivative for each

indepvar.

When replace is used, variables with the names in varlist or stub* are replaced by those in the

new computation. If noderivatives is specified, only a variable for the mean is created. This will

increase computation speed but will add to the computation burden if you want to obtain marginal

effects after estimation.

noderivatives suppresses the computation of the derivatives. In this case, only the mean function is

computed.

https://www.stata.com/manuals/r.pdf#rnpregresskernelSyntaxkernel
https://www.stata.com/manuals/r.pdf#rnpregresskernelSyntaxdkernel
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelMethodsandformulas
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelMethodsandformulas
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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imaic specifies to use the improved AIC instead of cross-validation to compute optimal bandwidths.

unidentsample(newvar) specifies the name of a variable that is 1 if the observation violates the

model identification assumptions and is 0 otherwise. By default, this variable is a system variable

( unident sample).

npregress kernel computes a weighted regression for each observation in our data. An observation
violates identification assumptions if the regression cannot be performed at that point. The regression

formula, which is discussed in detail in Methods and formulas, is given by

𝛄̂ = (Z′WZ)−1
Z′Wy

npregress kernel verifies that the matrix (Z′WZ) is full rank for each observation to determine

identification. Identification problems commonly arise when the bandwidth is too small, resulting in

too few observations within a bandwidth. Independent variables that are collinear within the band-

width can also cause a problem with identification at that point.

Observations that violate identification assumptions are reported as missing for the predicted means

and derivatives.

� � �
Bandwidth �

bwidth(specs) specifies the half-width of the kernel at each point for the computation of the mean and

the derivatives of the mean function. If no bandwidth is specified, one is chosen by minimizing the

integrated mean squared error of the prediction.

specs specifies bandwidths for the mean and derivative for each indepvar in one of three ways: by

specifying the name of a vector containing the bandwidths (for example, bwidth(H), where H is a

properly labeled vector); by specifying the equation and coefficient names with the corresponding

values (for example, bwidth(Mean:x1=0.5 Effect:x1=0.9)); or by specifying a list of values for
the means, standard errors, and derivatives for indepvars given in the order of the corresponding

indepvars and specifying the copy suboption (for example, bwidth(0.5 0.9, copy)).

skip specifies that any parameters found in the specified vector that are not also found in the model

be ignored. The default action is to issue an error message.

copy specifies that the list of values or the vector be copied into the bandwidth vector by position

rather than by name.

meanbwidth(specs) specifies the half-width of the kernel at each point for the computation of the mean

function. If no bandwidth is specified, one is chosen by minimizing the integrated mean squared

error of the prediction. For details on how to specify the bandwidth, see the description of bwidth(),
above.

derivbwidth(specs) specifies the half-width of the kernel at each point for the computation of the

derivatives of the mean. If no bandwidth is specified, one is chosen by minimizing the integrated

mean squared error of the prediction. For details on how to specify the bandwidth, see the description

of bwidth(), above.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which may be either that no standard er-

rors are reported (none; the default) or that bootstrap standard errors are reported (bootstrap); see
[R] vce option.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelMethodsandformulas
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rnpregresskernelOptionsspec
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionsbwidth
https://www.stata.com/manuals/r.pdf#rnpregresskernelOptionsspec
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionsbwidth
https://www.stata.com/manuals/rvce_option.pdf#rvce_option


npregress kernel — Nonparametric kernel regression 5

We recommend that you select the number of replications using reps(#) instead of specifying

vce(bootstrap), which defaults to 50 replications. Be aware that the number of replications needed
to produce good estimates of the standard errors varies depending on the problem.

When vce(bootstrap) is specified, npregress kernel reports percentile confidence intervals as

recommended by Cattaneo and Jansson (2018) instead of reporting the normal-based confidence in-

tervals that are reported when vce(bootstrap) is specified with other commands. Other types of

confidence intervals can be obtained by using the citype(citype) option.

reps(#) specifies the number of bootstrap replications to be performed. Specifying this option is equiv-

alent to specifying vce(bootstrap, reps(#)).

seed(#) sets the random-number seed. You must specify reps(#) with seed(#).

bwreplace computes a different bandwidth for each bootstrap replication. The default is to compute the

bandwidth once and keep it fixed for each bootstrap replication. This option is seldom used.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

citype(citype) specifies the type of confidence interval to be computed. By default, bootstrap percentile
confidence intervals are reported as recommended by Cattaneo and Jansson (2018). citype may be

one of percentile, bc, or normal.

� � �
Maximization �

maximize options: iterate(#), [no]log, trace, showstep, tolerance(#), ltolerance(#),
from(init specs); see [R]Maximize. These options are seldom used.

The following option is available with npregress kernel but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
This entry assumes that you are already familiar with nonparametric regression. For an introduction

to the nonparametric kernel regression methods used in npregress kernel, see [R] npregress intro.

Remarks are presented under the following headings:

Overview
Estimation and effects
Visualizing covariate effects

Overview
npregress kernel implements local-constant and local-linear regression. The covariates may be

continuous or discrete. You can use npregress kernel to nonparametrically estimate a conditional

mean. npregress kernel also allows you to estimate covariate effects after estimation and, in models

with one covariate, to plot the mean function by using npgraph after estimation.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelOptionscitype_ds
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
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The word “nonparametric” refers to the fact that the parameter of interest, the mean as a function of

the covariates, is given by the unknown function 𝑔(x𝑖), which is an element of an infinite-dimensional
space of functions. In contrast, in a parametric model, the mean for a given value of the covariates,

𝐸(𝑦𝑖|x𝑖) = 𝑓(x𝑖,β), is a known function that is fully characterized by the parameter of interest, β,
which is a finite-dimensional real vector (Shao 2003).

The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 is given by

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (1)

𝐸 (𝜀𝑖|x𝑖) = 0 (2)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (1)

and (2) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

Once we account for the information in the covariates, the error term provides no information about

the mean of our outcome. The conditional mean function is therefore given by 𝑔(x𝑖). By estimating

𝐸(𝑦𝑖|x𝑖 = x) for all points x in our data, we obtain an estimate of 𝐸(𝑦𝑖|x𝑖).
npregress kernel, by default, estimates a local-linear regression. Local-linear regression estimates

a regression for a subset of observations for each point in our data. See Fan and Gijbels (1996) for a good

reference on local-linear regression. Local-linear regression, for each point x, solves the minimization

problem given by

min𝛄
𝑛

∑
𝑖=1

{𝑦𝑖 − 𝛾0 − 𝛄′
1 (x𝑖 − x)}2 𝐾(x𝑖, x,h) (3)

where 𝛄 = (𝛾0, 𝛄′
1)′.

Equation (3) and its solution are similar to parametric ordinary least squares. The slope and the

constant in (3), however, have a different interpretation. The constant in (3), 𝛾0, is the conditional mean

at a specific point x. The slope parameter, 𝛄1, is the derivative of the mean function with respect to x.

The solution to this least-squares problem gives us the mean function and its derivative for each one of

the elements of x. Repeating this optimization for each point x gives us the entire mean function and its

derivatives.

Another difference between (3) and the minimization problem of parametric ordinary least squares is

how the optimization is weighted. The weights are given by the kernel function 𝐾(x𝑖, x,h). The kernel
function assigns weights to observations x𝑖 based on how much they differ from x and based on the

bandwidth, h. The smaller h is, the larger the weight assigned to points between x𝑖 and x.

The bandwidth also determines the bias and variance of the mean function estimator. npregress
kernel selects the bandwidth using cross-validation, as suggested by Li and Racine (2004), or if the

imaic option is specified, with the improvedAIC proposed by Hurvich, Simonoff, and Tsai (1998). Both

methods minimize the tradeoff between bias and variance.

npregress kernel computes a conditional mean for each observation in the data and, for each one of
these computations, verifies whether identification conditions are fulfilled. The observations for which

the regression identification assumptions are not satisfied are dropped from the estimation sample. Ad-

ditionally, whenever there is a violation of the identification assumption, npregress kernel generates

a system variable or a variable with a name provided in noidsample(newvar). This variable is 1 for

observations violating the identification assumption and is 0 otherwise. npregress kernel also issues

a warning, letting you know the number of observations for which the identification assumption is not

satisfied.
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Estimation and effects
The output of npregress kernel reports averages of the mean function and the effects of the mean

function. An average effect from nonparametric regression may be either 1) an average marginal effect,

in the case of the mean of derivatives for continuous covariates or 2) the mean of contrasts for discrete

covariates.

Some well-established literature estimates these average effects directly and uses an optimal band-

width for this computation; see Powell, Stock, and Stoker (1989) and Powell and Stoker (1996). By

taking averages of the local-linear estimates, npregress kernel is more in line with the approach in

Li, Lu, and Ullah (2003). Intuitively, choosing the optimal bandwidth for the derivative produces a more

efficient estimator than using the bandwidth that is optimal for the function. Both estimators are con-

sistent for the average effect. Cattaneo and Jansson (2018) formally justify the average effect using the

function-optimal bandwidth.

npregress kernel also reports an approximation of 𝑛|h| as the expected kernel observations. This
statistic rounds the product of the continuous kernel bandwidth values and the number of observations

used for estimation. For instance, if the estimation sample was 500 and the bandwidth was 0.246, the

expected kernel observations would be 123 (= 500 × 0.246). The expected kernel observation number

of 123 tells us that, on average, 123 observations are used to compute each one of the 500 regressions

performed by npregress kernel.

Example 1: Nonparametric regression estimation and graphing
dui.dta contains information about the number of monthly drunk driving citations in a local juris-

diction (citations). Suppose we want to know the effect of increasing fines on the number of citations.

Because citations is a count variable, we could consider fitting the model with poisson or nbreg.
However, both of these estimators make assumptions about the distribution of the data. If these assump-

tions are not true, we will obtain inconsistent estimates.
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By using npregress kernel, we do not have to make any assumptions about how citations is

distributed. We use npregress kernel to estimate the mean of citations as a function of the value

of the fines imposed for drunk driving (fines).

. use https://www.stata-press.com/data/r19/dui
(Fictional data on monthly drunk driving citations)
. npregress kernel citations fines
Computing mean function

Minimizing cross-validation function:

Iteration 0: Cross-validation criterion = 35.478784
Iteration 1: Cross-validation criterion = 4.0147129
Iteration 2: Cross-validation criterion = 4.0104176
Iteration 3: Cross-validation criterion = 4.0104176
Iteration 4: Cross-validation criterion = 4.0104176
Iteration 5: Cross-validation criterion = 4.0104176
Iteration 6: Cross-validation criterion = 4.0104006

Computing optimal derivative bandwidth

Iteration 0: Cross-validation criterion = 6.1648059
Iteration 1: Cross-validation criterion = 4.3597488
Iteration 2: Cross-validation criterion = 4.3597488
Iteration 3: Cross-validation criterion = 4.3597488
Iteration 4: Cross-validation criterion = 4.3597488
Iteration 5: Cross-validation criterion = 4.3597488
Iteration 6: Cross-validation criterion = 4.3595842
Iteration 7: Cross-validation criterion = 4.3594713
Iteration 8: Cross-validation criterion = 4.3594713
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

citations Estimate

Mean
citations 22.33999

Effect
fines -7.692388

Note: Effect estimates are averages of derivatives.
Note: You may compute standard errors using vce(bootstrap) or reps().

The first table displays the bandwidths used to estimate the mean function and the derivative of the

mean function. Each of these bandwidths is estimated by minimizing a function that trades off bias and

variance; the corresponding iteration logs are displayed also. The expected number of observations used

to estimate the mean function at each point is reported in E(Kernel obs) as 282.
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Unlike other estimation commands, npregress kernel does not report standard errors, test statistics,
and confidence intervals by default. In example 2, we demonstrate how to obtain these statistics and

further discuss the output.

Example 2: Bootstrapping standard errors
We can estimate the standard errors by using the bootstrap; see Cattaneo and Jansson (2018) for

formal results. We use the reps(400) option, which is equivalent to vce(bootstrap, reps(400))
and specifies that 400 bootstrap replications be used instead of the default 50 replications that are used

when we specify vce(bootstrap).

Each estimation problem requires a different number of replications to produce good estimates of the

standard errors. In example 3, we explain how we decided to use 400 replications. Note that nonpara-

metric estimation and the bootstrap are computationally intensive, so running this example and others

that compute bootstrap standard errors will take a while.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)
Bootstrap replications (400): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300......
> ...310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The coefficient table now reports the average of the predicted means and the average of the predicted

derivatives of the mean function with bootstrap standard errors. The average of the observation-level

predicted (citations) is 22.34. The average of the observation-level marginal effects is −7.69, which

indicates that increasing fines reduces the mean number of citations.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex2
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex3
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We use npgraph to graph the estimated conditional mean function.

. npgraph
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The graph shows the negative association between fines and the number of drunk driving citations.

npregress kernel generates system variables for the mean function and the derivative of the mean

function. To see the variables that npregress kernel generated for example 1, we type

. describe *_*, fullnames
Variable Storage Display Value

name type format label Variable label

_Mean_citations double %10.0g Mean function
_d_Mean_citations_dfines

double %10.0g derivative of mean function w.r.t
fines

To specify a name for each system variable, we can use the predict() option.

. npregress kernel citations fines, predict(mean deriv)
(output omitted )

. describe mean deriv
Variable Storage Display Value

name type format label Variable label

mean double %10.0g Mean function
deriv double %10.0g derivative of mean function w.r.t

fines

Alternatively, we can use the same stub for all the variable names by typing predict(hatvar*),
which would generate variables hatvar1 and hatvar2.

You may add noderivatives to the option, as in predict(hatvar*, noderivatives), to specify
that no derivatives be generated. You save memory when you use noderivatives, but you add to

the computational burden. As you will see below, an important feature of npregress kernel is the

availability of the margins command after estimation. margins must compute the derivatives and their

optimal bandwidth.

https://www.stata.com/manuals/rnpregresskernelpostestimation.pdf#rnpregresskernelpostestimation
https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex1
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Example 3: Selecting the number of bootstrap replications
We start by fitting the model using 200 bootstrap replications. We want to find the number of repli-

cations for which the confidence intervals do not change much.

. npregress kernel citations fines, reps(200) seed(12)
(running npregress on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4769389 46.84 0.000 21.49744 23.42156

Effect
fines -7.692388 .5088819 -15.12 0.000 -8.742081 -6.77816

Note: Effect estimates are averages of derivatives.

For 200 replications, the confidence interval for the mean ranges from 21.50 to 23.42. For the effect of

fines, this range is −8.74 to −6.78.

We repeat the estimation using 300 replications and the same seed as in the previous case.

. npregress kernel citations fines, reps(300) seed(12)
(running npregress on estimation sample)
Bootstrap replications (300): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300 done
Bandwidth

Mean Effect

fines .5631079 .924924



npregress kernel — Nonparametric kernel regression 12

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4570611 48.88 0.000 21.49359 23.36299

Effect
fines -7.692388 .4981956 -15.44 0.000 -8.673813 -6.720508

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. For the effect of fines, this range is

−8.67 to −6.72. There are some differences so we try estimation with 400 replications.

. npregress kernel citations fines, reps(400) seed(12)
(running npregress on estimation sample)
Bootstrap replications (400): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200.........210.........220.........230.........240.
> ........250.........260.........270.........280.........290.........300......
> ...310.........320.........330.........340.........350.........360.........37
> 0.........380.........390.........400 done
Bandwidth

Mean Effect

fines .5631079 .924924

Local-linear regression Number of obs = 500
Kernel : epanechnikov E(Kernel obs) = 282
Bandwidth: cross-validation R-squared = 0.4380

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.33999 .4588298 48.69 0.000 21.48622 23.35956

Effect
fines -7.692388 .491884 -15.64 0.000 -8.693068 -6.757721

Note: Effect estimates are averages of derivatives.

The confidence interval for the mean ranges from 21.49 to 23.36. In the case of the effect of fines,

these ranges are −8.69 to −6.76. The changes are small so we decide to use 400 replications.
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Example 4: Estimating the effect of a percentage change in a covariate
Nonparametric estimation and the bootstrap are computationally intensive, so we use only 200 repli-

cations here.

We now extend example 2. In addition to fines, we model citations as a function of whether the

jurisdiction taxes alcoholic beverages (taxes); whether the city is small, medium, or large (csize); and
whether there is a college in the jurisdiction (college).

. npregress kernel citations fines i.taxes i.csize i.college, nolog
> reps(200) seed(12)
(running npregress on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Bandwidth

Mean Effect

fines .4471373 .6537197
taxes .4375656 .4375656
csize .3938759 .3938759

college .554583 .554583

Local-linear regression Number of obs = 500
Continuous kernel : epanechnikov E(Kernel obs) = 224
Discrete kernel : liracine R-squared = 0.8010
Bandwidth : cross-validation

Observed Bootstrap Percentile
citations estimate std. err. z P>|z| [95% conf. interval]

Mean
citations 22.26306 .4642464 47.96 0.000 21.46204 23.2516

Effect
fines -7.332833 .3316656 -22.11 0.000 -8.013487 -6.741899

taxes
(Tax

vs
No tax) -4.502718 .5012 -8.98 0.000 -5.437733 -3.544934

csize
(Medium

vs
Small) 5.300524 .2687413 19.72 0.000 4.758121 5.797119
(Large

vs
Small) 11.05053 .502633 21.99 0.000 10.00169 11.94311

college
(College

vs
Not coll..) 5.953188 .461057 12.91 0.000 5.086511 6.88612

Note: Effect estimates are averages of derivatives for continuous covariates
and averages of contrasts for factor covariates.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex2
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The mean number of citations predicted by the mean estimates is 22.26. The average marginal

effect of fines is −7.33, slightly less in magnitude than the −7.69 that we estimated in example 2.

The average marginal effect tells us the result of an infinitesimal change in fines on citations.
Instead of talking about infinitesimal changes, we want to know the effect of increasing fines by 15%.

We can use margins to estimate the mean number of citations that would occur if fines were increased

by 15%.

. margins, at(fines=generate(fines*1.15)) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()
At: fines = fines*1.15

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_cons 14.00818 .866694 16.16 0.000 11.39967 15.00145

The estimated mean number of citations with the new level of fines is 14.01, which is smaller

than the mean 22.26 that was estimated with the observed fines. We can formally compare this estimate

with the mean at the original level of fines. We use the contrast() option with margins to estimate

the difference in these means.

. margins, at(fines=generate(fines)) at(fines=generate(fines*1.15))
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = fines
2._at: fines = fines*1.15

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -8.254875 .8058215 -10.44121 -7.381583

We find that increasing fines by 15% reduces the average number of drunk driving citations by 8.25.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex2
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Example 5: Estimating the effect of a change in level
Now, we estimate the effect of increasing fines from $10,000 to $11,000 for fixed levels of the other

covariates. The other covariate values identify a jurisdiction with a set of characteristics of interest: of

medium size, with a college, and taxes alcohol.

First, we use margins to estimate the means for a jurisdiction with the characteristics of interest for

the two levels of fines.

. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Adjusted predictions Number of obs = 500

Replications = 200
Expression: Mean function, predict()
1._at: fines = 10

taxes = 1
csize = 2
college = 1

2._at: fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_at
1 23.17242 .5746008 40.33 0.000 21.95222 24.30412
2 15.90157 .972558 16.35 0.000 13.87449 17.7134

For a medium-sized jurisdiction that taxes alcohol and has a college, the estimated mean of citations

when fines are $10,000 is 23.17, and the estimated mean of citations when fines are $11,000 is 15.90.



npregress kernel — Nonparametric kernel regression 16

We now use margins to estimate the difference in these means.

. margins, at(fines=10 taxes=1 csize=2 college=1)
> at(fines=11 taxes=1 csize=2 college=1)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = 10

taxes = 1
csize = 2
college = 1

2._at: fines = 11
taxes = 1
csize = 2
college = 1

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -7.270858 1.003861 -9.096777 -5.162513

In these jurisdictions, increasing fines from $10,000 to $11,000 reduces the average number of citations

by 7.27.

Example 6: Population-averaged covariate effects
In example 5, we estimated the means for two values of fines for a medium-sized jurisdiction with a

college and taxes on alcohol. We specified values for each covariate in our model. In this example, we

will now estimate population-averaged means instead of means at specific levels of all covariates.

We first estimate the means for two levels of fines. We do not specify values for csize, college,
or taxes, so the estimated means are unconditional on these covariates. We use margins to estimate

means of citations when fines are $10,000 and when fines are $11,000:

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex5
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. margins, at(fines=10) at(fines=11) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()
1._at: fines = 10
2._at: fines = 11

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

_at
1 20.50161 .3281821 62.47 0.000 19.90257 21.08954
2 14.97432 .3815647 39.24 0.000 14.14858 15.59955

The estimated mean of citations when fines are $10,000 is 20.50, and the estimated mean of citations

when fines are $11,000 is 14.97. We now use margins to estimate the difference in these means:

. margins, at(fines=10) at(fines=11)
> contrast(atcontrast(r) nowald) reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins

Number of obs = 500
Replications = 200

Expression: Mean function, predict()
1._at: fines = 10
2._at: fines = 11

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

_at
(2 vs 1) -5.527288 .3529352 -6.277903 -4.925523

When fines increase from $10,000 to $11,000, the mean number of citations is estimated to decrease by

5.53.
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Next, we consider the effect of taxing alcoholic beverages. We first estimate the population-averaged

number of citations with and without such taxes.

. margins taxes, reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()

Observed Bootstrap Percentile
margin std. err. z P>|z| [95% conf. interval]

taxes
No tax 25.47052 .6445729 39.52 0.000 24.17515 26.6114

Tax 20.96781 .4448277 47.14 0.000 20.17071 21.88565

The estimated mean number of citations is 25.47 when there are no alcohol taxes and 20.97 when

there are alcohol taxes. We again use margins to estimate the difference in these means.

. margins r.taxes, reps(200) seed(12)
(running margins on estimation sample)
Bootstrap replications (200): .........10.........20.........30.........40.....
> ....50.........60.........70.........80.........90.........100.........110...
> ......120.........130.........140.........150.........160.........170........
> .180.........190.........200 done
Contrasts of predictive margins Number of obs = 500

Replications = 200
Expression: Mean function, predict()

df chi2 P>chi2

taxes 1 80.71 0.0000

Observed Bootstrap Percentile
contrast std. err. [95% conf. interval]

taxes
(Tax vs No tax) -4.502719 .5011999 -5.437733 -3.544934

The mean number of citations is estimated to decrease by 4.50 when alcohol sales are taxed.
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Visualizing covariate effects

Example 7: Using margins to visualize the mean function and covariate effects
We can also estimate the mean function for the jurisdiction with characteristics of interest over a range

of observed fines. We simply add a range of fines to our margins specification from example 4.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1) reps(200) seed(12)
(output omitted )

We graph these results using marginsplot.

. marginsplot
(output omitted )
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We estimated the mean when fines are $8,000, $8,500, and so on. From these estimated means, we

can estimate the effect of a $500 increase for each of these levels of fines.

We simply reissue our margins command and specify a reverse adjacent contrast that subtracts the

current level from the next level for each level of fines.

. margins, at(fines=(8(0.5)12) taxes=1 csize=2 college=1)
> contrast(atcontrast(ar)) reps(200) seed(12)
(output omitted )

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex4
https://www.stata.com/manuals/rmarginsplot.pdf#rmarginsplot
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We again graph the results, adding a reference line at 0 that designates no change in citations:

. marginsplot, yline(0)
(output omitted )
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For each level of fines between $8,500 and $11,500, the effect of a $500 increase reduces the mean

number of drunk driving incidents. Between $11,500 and $12,000, the difference of a $500 increase is

not statistically different from 0.

It would be easy to construct a similar graph for the population-averaged effects in example 6. Simply

omit the terms that set the other covariates at fixed values.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesex6
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Stored results
npregress kernel stores the following in e():

Scalars

e(N) number of observations

e(mean) mean of mean function

e(r2) 𝑅2

e(nh) expected kernel observations

e(converged effect) 1 if effect optimization converged, 0 otherwise

e(converged mean) 1 if mean optimization converged, 0 otherwise

e(converged) 1 if effect and mean optimization converged, 0 otherwise

Macros

e(cmd) npregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(estimator) linear or constant
e(kname) name of continuous kernel

e(dkname) name of discrete kernel

e(bselector) criterion function for bandwidth selection

e(title) title in estimation output

e(vce) vcetype specified in vce()
e(properties) b (or b V if reps() specified)

e(datasignaturevars) variables used in calculation of checksum

e(datasignature) the checksum

e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsprop) signals to the margins command

Matrices

e(b) coefficient vector

e(bwidth) bandwidth for all predictions

e(derivbwidth) bandwidth for the derivative

e(meanbwidth) bandwidth for the mean

e(ilog mean) iteration log for mean (up to 20 iterations)

e(ilog effect) iteration log for effects (up to 20 iterations)

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
The regression model of outcome 𝑦𝑖 given the 𝑘-dimensional vector of covariates x𝑖 was defined in

(1) and (2) of Remarks and examples and repeated here:

𝑦𝑖 = 𝑔 (x𝑖) + 𝜀𝑖 (4)

𝐸 (𝜀𝑖|x𝑖) = 0 (5)

where 𝜀𝑖 is the error term. The covariates may include discrete and continuous variables. Equations (4)

and (5) imply that

𝐸 (𝑦𝑖|x𝑖) = 𝑔 (x𝑖)

npregress kernel, by default, estimates a local-linear regression; see Fan and Gijbels (1996) for

a good reference on local-linear regression. As we discussed in Remarks and examples, local-linear

regression estimates a regression for a subset of observations for each point in our data and solves the

minimization problem given by

min𝛄
𝑛

∑
𝑖=1

{𝑦𝑖 − 𝛾0 − 𝛄′
1 (x𝑖 − x)}2 𝐾(x𝑖, x,h) (6)

where 𝛄 = (𝛾0, 𝛄′
1)′ and 𝐾(x𝑖, x,h) is the product of the kernels for each covariate.

𝐾(x𝑖, x,h) =
𝑘

∏
𝑗=1

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗)

The kernel for a continuous covariate is of the form

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗) = 𝑘𝑗 (
𝑥𝑖𝑗 − 𝑥𝑗

ℎ𝑗
)

where 𝑘𝑗(⋅) is one of the kernels listed in [R] kdensity. For discrete covariates, npregress kernel uses

the Li–Racine kernel given by

𝐾𝑗(𝑥𝑖𝑗, 𝑥𝑗, ℎ𝑗) = {1 if 𝑥𝑖𝑗 = 𝑥𝑗
ℎ𝑗 otherwise

By estimating 𝐸(𝑦𝑖|x𝑖 = x) for all points x in our data, we obtain an estimate of 𝐸(𝑦𝑖|x𝑖). For a given
x, the solution to the minimization problem in (6) is given by

𝛄̂ = (Z′WZ)−1
Z′Wy

where 𝛄̂ = ( ̂𝛾0, 𝛄̂′
1)′, Z is an 𝑛 × (𝑘 + 1) matrix with an 𝑖th row given by {1, (x𝑖 − x)′}′,W is an 𝑛 × 𝑛

diagonal matrix with an 𝑖th diagonal given by 𝐾(x𝑖, x,h), and y is the 𝑛 × 1 outcome vector. ̂𝛾0 is an

estimate of 𝑔(x), whereas 𝛄̂1 is an estimate of the derivative of 𝑔(x) with respect to x. When the matrix

(Z′WZ) is not full rank, the parameter 𝛄 is not identified. The observations for which this is true are

dropped from the estimation sample.

https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernelRemarksandexamplesOverview
https://www.stata.com/manuals/rkdensity.pdf#rkdensitySyntaxkernel
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
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The local-constant estimator of 𝑔(x) is a special case of (6) with 𝛄1 = 0. In this case, the solution to

the optimization problem is given by

∑𝑛
𝑖=1 𝑦𝑖𝐾(x𝑖, x,h)

∑𝑛
𝑖=1 𝐾(x𝑖, x,h)

This is also known as the Nadaraya–Watson kernel estimator, for Nadaraya (1965) and Watson (1964).

npregress kernel and margins, when used after npregress kernel, use a bootstrap estimate of
the standard errors for all the estimated effects and report percentile confidence intervals by default.

Cattaneo and Jansson (2018) formally justify this use of the bootstrap and provide a definitive reference

for semiparametric estimation and inference using kernel-based estimators. Their work demonstrates that

the percentile bootstrap provides better coverage than a normal-based confidence interval for statistics

based on kernel estimates. See Methods and formulas in [R] bootstrap for confidence interval formulas.

The rate of convergence of nonparametric regression estimates is given by the product of the sample

size and the bandwidths √𝑛|h|, where |h| is the product of the bandwidths for each covariate. As the

sample size increases, the bandwidth decreases. Thus, the rate of convergence of the estimator is slower

than the parametric rate
√

𝑛. Another way of thinking about 𝑛|h| is that, because we are not using all

our observations to estimate the mean at each point, we require more data to get more reliable estimates;

the convergence rate is thus slower. The rate of convergence also decreases as the number of covariates

increases, because |h| decreases. This is referred to as the curse of dimensionality; see Li and Racine

(2007, chap. 2) and Stinchcombe and Drukker (2013) for details.

The convergence rate for the derivative of the mean function is different from the convergence rate of

the mean function. Therefore, the bandwidth and bandwidth computation for the derivative are different.

npregress kernel computes the bandwidth for the derivative function by using cross-validation, as

suggested by Henderson et al. (2015).
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