
nl — Nonlinear least-squares estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
nl fits an arbitrary nonlinear regression function by least squares. With the interactive version of

the command, you enter the function directly on the command line or in the dialog box by using a

substitutable expression. If you have a function that you use regularly, you can write a substitutable

expression program and use the second syntax to avoid having to reenter the function every time. The

function evaluator program version gives you the most flexibility in exchange for increased complexity;

with this version, your program is given a vector of parameters and a variable list, and your program

computes the regression function.

When you write a substitutable expression program or function evaluator program, the first two letters

of the name must be nl. sexp prog and func prog refer to the name of the program without the first two

letters. For example, if you wrote a function evaluator program named nlregss, you would type nl
regss @ . . . to estimate the parameters.

Quick start
Linear model of y as a function of x1 and a constant

nl (y = {b0} + {b1}*x1)

Same as above, but defining the linear combination lc
nl (y = {lc: x1, xb})

Same as above, but specify starting values

nl (y = {b0=.5} + {b1=2}*x1)

Add variables x2 and x3 to the linear combination

nl (y = {lc: x1 x2 x3})

Same as above, but explicitly specify a constant term b0 with starting value

nl (y = {b0=.5} + {lc: x1 x2 x3, noconstant})

An exponential model

nl (y = {b0} + {b1}*{b2}^x1)

Same as above, but use nl’s built-in function exp3 to specify the model

nl exp3: y x1

Menu
Statistics > Linear models and related > Nonlinear least-squares estimation

1

https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressions
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressionprograms
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressionprograms

nl — Nonlinear least-squares estimation 2

Syntax
Interactive version

nl (depvar = <sexp>) [if] [in] [weight] [, options]

Programmed substitutable expression version

nl sexp prog : depvar [varlist] [if] [in] [weight] [, options]

Function evaluator program version

nl func prog @ depvar [varlist] [if] [in] [weight] ,

{ parameters(namelist) | nparameters(#)} [options]

where

depvar is the dependent variable;

<sexp> is a substitutable expression;

sexp prog is a substitutable expression program; and

func prog is a function evaluator program.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxweight
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxweight
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxweight
https://www.stata.com/manuals/rnl.pdf#rnlSyntaxoptions

nl — Nonlinear least-squares estimation 3

options Description

Model

define(name:<subexpr>) define a function of model parameters; this option may be repeated
(interactive version only)

∗ parameters(namelist) specify parameters in model (function evaluator program version only)
∗ nparameters(#) specify number of parameters in model

(function evaluator program version only)

variables(varlist) specify variables in model

sexp options options for substitutable expression program

func options options for function evaluator program

Model 2

lnlsq(#) use log least-squares where ln(depvar − #) is assumed to be
normally distributed

noconstant the model has no constant term; seldom used

hasconstant(name) use name as constant term; seldom used

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap,
jacknife, hac kernel, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)
leave create variables containing derivative of 𝐸(𝑦)
title(string) display string as title above the table of parameter estimates

title2(string) display string as subtitle

display options control column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

∗For the function evaluator program version, you must specify parameters(namelist) or nparameters(#).
bayesboot, bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap. vce(bootstrap) cannot be specified with weights.

aweights are not allowed with the jackknife prefix; see [R] jackknife. vce(jackknife) cannot be specified with
aweights.

vce(hac kernel) cannot be specified with weights.

vce(hc3) cannot be specified with pweights.
vce(), leave, and weights are not allowed with the svy prefix; see [SVY] svy.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/rnl.pdf#rnlOptionsparamdef
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/rnl.pdf#rnlOptionsvcetype
https://www.stata.com/manuals/rnl.pdf#rnlOptionskernel
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rnl.pdf#rnlOptionsdisplay_options
https://www.stata.com/manuals/rnl.pdf#rnlOptionsoptopts
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands

nl — Nonlinear least-squares estimation 4

Options

� � �
Model �

define(name:<subexpr>) defines a function of model parameters, <subexpr>, and labels it as name.

This option can be repeated to define multiple functions. The define() option is useful for expres-

sions that appear multiple times in the main nonlinear specification of the command: you define the

expression once and then simply refer to it by using {name}: in the nonlinear specification. This

option can be used for notational convenience. See Substitutable expressions for how to specify

<subexpr>.

parameters(namelist) specifies the names of the parameters in the model. This option applies only

to the function evaluator program version. The names of the parameters must adhere to the nam-

ing conventions of Stata’s variables; see [U] 11.3 Naming conventions. If parameters() and

nparameters() are both specified, the number in nparameters() must match the number of names

specified in parameters().

nparameters(#) specifies the number of parameters in the model. If you do not specify names with

the parameters() option, nl names them b1, b2, . . . , b#. This option applies only to the function

evaluator program version. If nparameters() and parameters() are both specified, the number in

nparameters() must match the number of names specified in parameters().

variables(varlist) specifies computational variables used in a function evaluator program other than

depvar and varlist. nl ignores observations for which any of these variables, in addition to variables

in depvar and varlist, have missing values. This option is necessary only for the function evaluator

program version and only when using variables other than depvar and varlist. In all other cases, the

substitutable expression parser considers all the variables in your expressions. If you do not declare

these extra computational variables in function evaluators programs, then nl exits with an error if the

computed depvar contains missing values.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.

� � �
Model 2 �

lnlsq(#) fits the model by using log least-squares, which we define as least squares with shifted log-

normal errors. In other words, ln(depvar−#) is assumed to be normally distributed. Sums of squares
and deviance are adjusted to the same scale as depvar.

noconstant indicates that the function does not include a constant term. By default, Stata will use

a parameter as a constant if the coefficient of variation (over observations) of the partial derivative

of our function with respect to the parameter is less than ltolerance(). The noconstant option

overrides this default and is generally not needed.

hasconstant(name) indicates that parameter name be treated as the constant term in the model and

that nl should not use its default algorithm to find a constant term. As with noconstant, this option
is seldom used.

constraints(constraints); see [R] Estimation options.

https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressions
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressions
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesSubstitutableexpressionprograms
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions

nl — Nonlinear least-squares estimation 5

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit

using Gauss–Newton regression.

nl also allows the following:

vce(hac kernel [#]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC) vari-

ance estimate be used. HAC refers to the general form for combining weighted matrices to form

the variance estimate. There are three kernels available for nl:

nwest | gallant | anderson

specifies the number of lags. If # is not specified, 𝑁 − 2 is assumed.

vce(hac kernel [#]) is not allowed if weights are specified.

vce(hc2) and vce(hc3) specify alternative bias corrections for the robust variance calculation.

vce(hc2) and vce(hc3) may not be specified with the svy prefix. By default, vce(robust)
uses 𝜎̂2

𝑗 = {𝑛/(𝑛 − 𝑘)}𝑢2
𝑗 as an estimate of the variance of the 𝑗th observation, where 𝑢𝑗 is

the calculated residual and 𝑛/(𝑛 − 𝑘) is included to improve the overall estimate’s small-sample
properties.

vce(hc2) instead uses 𝑢2
𝑗 /(1 − ℎ𝑗𝑗) as the observation’s variance estimate, where ℎ𝑗𝑗 is the 𝑗th

diagonal element of the hat (projection) matrix. This produces an unbiased estimate of the covari-

ance matrix if the model is homoskedastic. vce(hc2) tends to produce slightly more conservative

confidence intervals than vce(robust).

vce(hc3) uses 𝑢2
𝑗 /(1−ℎ𝑗𝑗)2 as suggested by Davidson andMacKinnon (1993 and 2004), who re-

port that this often produces better results when the model is heteroskedastic. vce(hc3) produces

confidence intervals that tend to be even more conservative.

See, in particular, Davidson and MacKinnon (2004, 239), who advocate the use of vce(hc2) or

vce(hc3) instead of the plain robust estimator for nonlinear least squares.

� � �
Reporting �

level(#); see [R] Estimation options.

leave leaves behind after estimation a set of new variables with the same names as the estimated pa-

rameters containing the derivatives of 𝐸(𝑦) with respect to the parameters. If the dataset contains an
existing variable with the same name as a parameter, then using leave causes nl to issue an error

message with return code 110.

leave may not be specified with vce(cluster clustvar) or the svy prefix.

title(string) specifies an optional title that will be displayed just above the table of parameter esti-

mates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in

title() and the table of parameter estimates. If title2() is specified but title() is not, title2()
has the same effect as title().

https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings

nl — Nonlinear least-squares estimation 6

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Esti-
mation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace, showstep, gradient, hessian,
showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance,
difficult, search(on | off[, rseed(#)]), from(init specs), epsilon(#), minderiv(#); see
[R]Maximize. Those that require special mention for nl are listed below.

ltolerance(#) specifies the tolerance for the residual sum of squares (RSS) of the Gauss–Newton al-

gorithm. When the relative change in the RSS from one (alternating) iteration to the next is less than

or equal to ltolerance(#), the RSS convergence is satisfied. The default is ltolerance(1e-7).

difficult specifies that a different stepping algorithm be used in nonconcave regions.

search(on | off[, rseed(#)]) specifies whether an initial value search should be done. The de-

fault is search(off). Use rseed(#) for reproducible results when searching for initial values.

search(on) manipulates the values of the entire coefficient vector and will replace any initial

values set in the expression.

epsilon(#) specifies the relative change in a parameter to be used in computing the numeric

derivatives. The centered derivative for parameter 𝛽𝑖 is computed as {𝑓(X, . . . , 𝛽𝑖 + 𝛿𝑖, . . .) −
𝑓(X, . . . , 𝛽𝑖 −𝛿𝑖, . . .)}/(2𝛿𝑖), where 𝛿𝑖 = 𝜖(|𝛽𝑖|+𝜖). The default is 𝜖 =c(epsdouble)1/3 (Press

et al. 2007).

minderiv(#) specifies the minimum value for the derivative step 𝛿𝑖 = 𝜖(|𝛽𝑖| + 𝜖). The default is 𝜖2.

The following option is available with nl but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Substitutable expressions
Substitutable expression programs
Built-in functions
Lognormal errors
Other uses
Weights
Potential errors
General comments on fitting nonlinear models
Function evaluator programs

nl fits an arbitrary nonlinear function by least squares. The interactive version allows you to enter

the function directly on the command line or dialog box using substitutable expressions. You can write

a substitutable expression program for functions that you fit frequently to save yourself time. Finally,

function evaluator programs give you the most flexibility in defining your nonlinear function, though

they are more complicated to use.

The next section explains the substitutable expressions that are used to define the regression function,

and the section thereafter explains how to write substitutable expression program files so that you do not

need to type in commonly used functions over and over. Later sections highlight other features of nl.

https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions

nl — Nonlinear least-squares estimation 7

The final section discusses function evaluator programs. If you find substitutable expressions ad-

equate to define your nonlinear function, then you can skip that section entirely. Function evaluator

programs are generally needed only for complicated problems, such as multistep estimators. The pro-

gram receives a vector of parameters at which it is to compute the function and a variable into which the

results are to be placed.

Substitutable expressions
You define the nonlinear function to be fit by nl by using a substitutable expression. Substitutable

expressions are just like any other mathematical expressions involving scalars and variables, such as

those you would use with Stata’s generate command, except that the parameters to be estimated are

bound in braces. See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For example, suppose that you wish to fit the function

𝑦𝑖 = 𝛽0(1 − 𝑒−𝛽1𝑥𝑖) + 𝜖𝑖

where 𝛽0 and 𝛽1 are the parameters to be estimated and 𝜖𝑖 is an error term. You would simply type

. nl (y = {b0}*(1 - exp(-{b1}*x)))

Youmust enclose the entire equation in parentheses. Because b0 and b1 are enclosed in braces, nl knows
that they are parameters in the model. nl will initialize b0 and b1 to zero by default. To request that nl
initialize b0 to 1 and b1 to 0.25, you would type

. nl (y = {b0=1}*(1 - exp(-{b1=0.25}*x)))

That is, inside the braces denoting a parameter, you put the parameter name followed by an equal sign

and the initial value. If a parameter appears in your function multiple times, you need only specify an

initial value only once (or never, if you wish to set the initial value to zero). If you do specify more than

one initial value for the same parameter, nl will use the last value given. Parameter names must follow

the same conventions as variable names. See [U] 11.3 Naming conventions.

Frequently, even nonlinear functions contain linear combinations of variables. As an example, sup-

pose that you wish to fit the function

𝑦𝑖 = 𝛽0 {1 − 𝑒−(𝛽1𝑥1𝑖+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖)} + 𝜖𝑖

nl allows you to declare the linear combination of variables by using the shorthand notation

. nl (y = {b0=1}*(1 - exp(-{lc: x1 x2 x3, noconstant})))

In the syntax {lc: x1 x2 x3, noconstant}, you are telling nl that you are declaring a linear combi-

nation named lc that is a function of three variables, x1, x2, and x3. nl will create three parameters,

named lc:x1, lc:x2, and lc:x3, and initialize them to zero. Instead of typing the previous command,

you could have typed

. nl (y = {b0=1}*(1 - exp(-({b1}*x1 + {b2}*x2 + {b3}*x3))))

or

. nl (y = {b0=1}*(1 - exp(-{lc:}))), define(lc: x1 x2 x3, noconstant)

and yielded the same result. Having defined this linear combination, you can refer to its individual

parameters elsewhere in the function by using {lc:x1}, {lc:x2}, and {lc:x3} or, more generally,

{eqname:varname}. When creating linear combinations, nl ensures that the parameter names it chooses
are unique and have not yet been used in the function.

https://www.stata.com/manuals/u13.pdf#u13.2Operators
https://www.stata.com/manuals/u13.pdf#u13.3Functions
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions

nl — Nonlinear least-squares estimation 8

You may also refer to a “subset” of a previously defined linear combination. For example, suppose

we wish to fit

𝑦𝑖 = 𝛽0 {1 − 𝑒−(𝛽1𝑥1𝑖+𝛽2𝑥2𝑖+𝛽3𝑥3𝑖)} + 𝛽1𝑥1𝑖 + 𝛽3𝑥3𝑖 + 𝜖𝑖

We can refer to it as

. nl (y = {b0=1}*(1 - exp(-{lc: x1 x2 x3, noconstant})) + {lc:x1}*x1 + {lc:x3}*x3)

To refer to an entire linear combination, you can simply use its name. For example, you can type

. nl (y = {b0=1}*(1 - exp(-{lc: x1 x2 x3, noconstant})) + {lc:})

The general syntax for defining a linear combination is

{ eqname: varspec[, xb noconstant]}

The xb option is used to distinguish between, on the one hand, a linear combination of only one vari-

able and, on the other, a free parameter that has the same name as its covariate and the same group name

as the linear combination. For example, {lc: x1, xb} is equivalent to {lc: cons} + {lc:x1}*x1,
whereas {lc:x1} refers to either a free parameter x1 with a group name lc or the coefficient of the x1
variable, if {lc:} has been previously defined in the expression as a linear combination that involves

variable x1. Thus, the xb option indicates that the specification is a linear combination rather than a

single parameter to be estimated.

In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value inside the

braces: {b0=1}, {param=3.571}, etc.

3. Linear combinations of variables can be included using the notation {eqname:varlist}, for ex-
ample, {xb: mpg price weight}, {score: w x z}, etc. Parameters of linear combinations are

initialized to zero.

If you specify initial values by using the from() option, they override whatever initial values are given

within the substitutable expression. Substitutable expressions are so named because, once values are

assigned to the parameters, the resulting expression can be handled by generate and replace.

nl — Nonlinear least-squares estimation 9

Example 1
We wish to fit the CES production function

ln𝑄𝑖 = 𝛽0 − 1
𝜌
ln {𝛿𝐾−𝜌

𝑖 + (1 − 𝛿)𝐿−𝜌
𝑖 } + 𝜖𝑖 (1)

where ln𝑄𝑖 is the log of output for firm 𝑖; 𝐾𝑖 and 𝐿𝑖 are firm 𝑖’s capital and labor usage, respectively;
and 𝜖𝑖 is a regression error term. Because 𝜌 appears in the denominator of a fraction, zero is not a feasible
initial value; for a CES production function, 𝜌 = 1 is a reasonable choice. Setting 𝛿 = 0.5 implies that

labor and capital have equal impacts on output, which is also a reasonable choice for an initial value. We

type

. use https://www.stata-press.com/data/r19/production

. summarize lnoutput, meanonly

. local b0 = round(r(mean),.1)

. di ”b0 = ‘b0’”
b0 = 3
. nl (lnoutput = {b0=‘b0’} - ln({capital:} + {labor:})/{rho=1}),
> define(capital:{delta=0.5}*capital^(-{rho}))
> define(labor:(1 - {delta})*labor^(-{rho}))
Iteration 0: Residual SS = 80.334811
Iteration 1: Residual SS = 29.387341
Iteration 2: Residual SS = 29.36601
Iteration 3: Residual SS = 29.365808
Iteration 4: Residual SS = 29.365806

Source SS df MS
Number of obs = 100

Model 91.144992 2 45.5724962 R-squared = 0.7563
Residual 29.365806 97 .302740263 Adj R-squared = 0.7513

Root MSE = .5502184
Total 120.5108 99 1.21728079 Res. dev. = 161.2538

lnoutput Coefficient Std. err. t P>|t| [95% conf. interval]

/b0 3.792143 .0996809 38.04 0.000 3.594303 3.989982
/delta .4823479 .0519785 9.28 0.000 .379185 .5855109

/rho 1.386944 .4725595 2.93 0.004 .4490446 2.324844

Note: Parameter b0 is used as a constant term during estimation.

nl will attempt to find a constant term in the model and, if one is found, mention it at the bottom of

the output. nl found b0 to be a constant because the partial derivative 𝜕 ln𝑄𝑖/𝜕b0 has a coefficient of

variation less than tolerance() in the estimation sample.

The elasticity of substitution for the CES production function is 𝜎 = 1/(1 + 𝜌); and, having fit the

model, we can use nlcom to estimate it:

. nlcom (1/(1 + _b[/rho]))
_nl_1: 1/(1 + _b[/rho])

lnoutput Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .4189457 .0829415 5.05 0.000 .2563833 .581508

See [R] nlcom and [U] 13.5 Accessing coefficients and standard errors for more information.

https://www.stata.com/manuals/rnlcom.pdf#rnlcom
https://www.stata.com/manuals/u13.pdf#u13.5Accessingcoefficientsandstandarderrors

nl — Nonlinear least-squares estimation 10

nl’s output closely mimics that of regress; see [R] regress for more information. The 𝑅2, sums

of squares, and similar statistics are calculated in the same way that regress calculates them. If no

“constant” term is specified, the usual caveats apply to the interpretation of the 𝑅2 statistic; see the

comments and references in Goldstein (1992). Unlike regress, nl does not report a model 𝐹 statistic,

because a test of the joint significance of all the parameters except the constant term may not be relevant

in a nonlinear model.

Substitutable expression programs
If you fit the same model often or if you want to write an estimator that will operate on whatever

variables you specify, then you will want to write a substitutable expression program. That program will

return a macro containing a substitutable expression that nl can then evaluate, and it may optionally

calculate initial values as well. The name of the program must begin with the letters nl.

To illustrate, suppose that you use the CES production function often in your work. Instead of typing

in the formula each time, you can write a program like this:

program nlces, rclass
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist(min=3 max=3) [if]
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’
// Initial value for b0 given delta=0.5 and rho=1
tempvar y
generate double ‘y’ = ‘logout’ + ln(0.5*‘capital’^-1 + 0.5*‘labor’^-1)
summarize ‘y’ ‘if’, meanonly
local b0val = r(mean)
// Terms for substitutable expression
local capterm ”{delta=0.5}*‘capital’^(-1*{rho})”
local labterm ”(1-{delta})*‘labor’^(-1*{rho})”
local term2 ”1/{rho=1}*ln(‘capterm’ + ‘labterm’)”
// Return substitutable expression and title
return local eq ”‘logout’ = {b0=‘b0val’} - ‘term2’”
return local title ”CES ftn., ln Q=‘logout’, K=‘capital’, L=‘labor’”

end

The program accepts three variables for log output, capital, and labor, and it accepts an if exp qualifier to

restrict the estimation sample. All programs that you write to use with nl must accept an if exp qualifier

because, when nl calls the program, it passes a binary variable that marks the estimation sample (the

variable equals one if the observation is in the sample and zero otherwise). When calculating initial

values, you will want to restrict your computations to the estimation sample, and you can do so by using

if with any commands that accept if exp qualifiers. Even if your program does not calculate initial

values or otherwise use the if qualifier, the syntax statement must still allow it. See [P] syntax for

more information on the syntax command and the use of if.

As in the previous example, reasonable initial values for 𝛿 and 𝜌 are 0.5 and 1, respectively. Condi-

tional on those values, (1) can be rewritten as

𝛽0 = ln𝑄𝑖 + ln(0.5𝐾−1
𝑖 + 0.5𝐿−1

𝑖) − 𝜖𝑖 (2)

so a good initial value for 𝛽0 is the mean of the right-hand side of (2) ignoring 𝜖𝑖. Lines 7–10 of the

function evaluator program calculate that mean and store it in a local macro. Notice the use of if in the

summarize statement so that the mean is calculated only for the estimation sample.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesex1_nl

nl — Nonlinear least-squares estimation 11

The final part of the program returns two macros. The macro title is optional and defines a short

description of the model that will be displayed in the output immediately above the table of parameter

estimates. The macro eq is required and defines the substitutable expression that nl will use. If the

expression is short, you can define it all at once. However, because the expression used here is somewhat

lengthy, defining local macros and then building up the final expression from them is easier.

To verify that there are no errors in your program, you can call it directly and then use return list:

. use https://www.stata-press.com/data/r19/production

. nlces lnoutput capital labor
(output omitted)

. return list
macros:

r(title) : ”CES ftn., ln Q=lnoutput, K=capital, L=labor”
r(eq) : ”lnoutput = {b0=3.711606264663641} - 1/{rho=1}*

> ln({delta=0.5}*capital^(-1*{rho}) + (1-{delta})*labor^(-1*{rho}))”

The macro r(eq) contains the same substitutable expression that we specified at the command line in the
preceding example, except for the initial value for b0. In short, an nl substitutable expression program

should return in r(eq) the same substitutable expression you would type at the command line. The only

difference is that when writing a substitutable expression program, you do not bind the entire expression

inside parentheses.

Having written the program, you can use it by typing

. nl ces: lnoutput capital labor

(There is a space between nl and ces.) The output is identical to that shown in example 1, save for the
title defined in the function evaluator program that appears immediately above the table of parameter

estimates.

Technical note
You will want to store nlces as an ado-file called nlces.ado. The alternative is to type the code into

Stata interactively or to place the code in a do-file. While those alternatives are adequate for occasional

use, if you save the program as an ado-file, you can use the function anytime you use Stata without

having to redefine the program. When nl attempts to execute nlces, if the program is not in Stata’s

memory, Stata will search the disk(s) for an ado-file of the same name and, if found, automatically load

it. All you have to do is name the file with the .ado suffix and then place it in a directory where Stata

will find it. You should put the file in the directory Stata reserves for user-written ado-files, which,

depending on your operating system, is c:\ado\personal (Windows), ~ /ado/personal (Unix), or

~:ado:personal (Mac). See [U] 17 Ado-files.

Sometimes you may want to pass additional options to the substitutable expression program. You can

modify the syntax statement of your program to accept whatever options you wish. Then when you call

nl with the syntax

. nl func prog: varlist, options

any options that are not recognized by nl (see the table of options at the beginning of this entry) are

passed on to your function evaluator program. The only other restriction is that your program cannot

accept an option named at because nl uses that option with function evaluator programs.

https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesex1_nl
https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesex1_nl
https://www.stata.com/manuals/u17.pdf#u17Ado-files

nl — Nonlinear least-squares estimation 12

Built-in functions
Some functions are used so often that nl has them built in so that you do not need to write them

yourself. nl automatically chooses initial values for the parameters, though you can use the initial()
option to override them.

Three alternatives are provided for exponential regression with one asymptote:

exp3 𝑦𝑖 = 𝛽0 + 𝛽1𝛽𝑥𝑖
2 + 𝜖𝑖

exp2 𝑦𝑖 = 𝛽1𝛽𝑥𝑖
2 + 𝜖𝑖

exp2a 𝑦𝑖 = 𝛽1(1 − 𝛽𝑥𝑖
2) + 𝜖𝑖

For instance, typing nl exp3: ras dvl fits the three-parameter exponential model (parameters 𝛽0, 𝛽1,

and 𝛽2) using 𝑦𝑖 = ras and 𝑥𝑖 = dvl.

Two alternatives are provided for the logistic function (symmetric sigmoid shape; not to be confused

with logistic regression):

log4 𝑦𝑖 = 𝛽0 + 𝛽1/[1 + exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

log3 𝑦𝑖 = 𝛽1/[1 + exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

Finally, two alternatives are provided for the Gompertz function (asymmetric sigmoid shape):

gom4 𝑦𝑖 = 𝛽0 + 𝛽1 exp[− exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

gom3 𝑦𝑖 = 𝛽1 exp[− exp{−𝛽2(𝑥𝑖 − 𝛽3)}] + 𝜖𝑖

Lognormal errors
Anonlinear model with errors that are independent and identically distributed normal may be written

as

𝑦𝑖 = 𝑓(x𝑖,β) + 𝑢𝑖, 𝑢𝑖 ∼ 𝑁(0, 𝜎2) (3)

for 𝑖 = 1, . . . , 𝑛. If the 𝑦𝑖 are thought to have a 𝑘-shifted lognormal instead of a normal distribution—that

is, ln(𝑦𝑖 − 𝑘) ∼ 𝑁(𝜁𝑖, 𝜏2), and the systematic part 𝑓(x𝑖,β) of the original model is still thought appro-
priate for 𝑦𝑖—the model becomes

ln(𝑦𝑖 − 𝑘) = 𝜁𝑖 + 𝑣𝑖 = ln{𝑓(x𝑖,β) − 𝑘} + 𝑣𝑖, 𝑣𝑖 ∼ 𝑁(0, 𝜏2) (4)

This model is fit if lnlsq(𝑘) is specified.

If model (4) is correct, the variance of (𝑦𝑖 − 𝑘) is proportional to {𝑓(x𝑖,β) − 𝑘}2
. Probably the

most common case is 𝑘 = 0, sometimes called “proportional errors” because the standard error of 𝑦𝑖
is proportional to its expectation, 𝑓(x𝑖,β). Assuming that the value of 𝑘 is known, (4) is just another

nonlinear model in β, and it may be fit as usual. However, we may wish to compare the fit of (3) with
that of (4) using the residual sum of squares (RSS) or the deviance 𝐷, 𝐷 = −2 × log-likelihood, from

each model. To do so, we must allow for the change in scale introduced by the log transformation.

nl — Nonlinear least-squares estimation 13

Assuming, then, the 𝑦𝑖 to be normally distributed, Atkinson (1985, 85–87, 184), by considering the

Jacobian ∏ |𝜕 ln(𝑦𝑖−𝑘)/𝜕𝑦𝑖|, showed that multiplying both sides of (4) by the geometric mean of 𝑦𝑖 − 𝑘, ̇𝑦,
gives residuals on the same scale as those of 𝑦𝑖. The geometric mean is given by

̇𝑦 = 𝑒𝑛−1 ∑ ln(𝑦𝑖−𝑘)

which is a constant for a given dataset. The residual deviance for (3) and for (4) may be expressed as

𝐷(β̂) = {1 + ln(2𝜋𝜎̂2)}𝑛 (5)

where β̂ is the maximum likelihood estimate (MLE) of β for each model and 𝑛𝜎̂2 is the RSS from (3), or

that from (4) multiplied by ̇𝑦2.

Because (3) and (4) are models with different error structures but the same functional form, the arith-

metic difference in their RSS or deviances is not easily tested for statistical significance. However, if the

deviance difference is large (>4, say), we would naturally prefer the model with the smaller deviance. Of

course, the residuals for each model should be examined for departures from assumptions (nonconstant

variance, nonnormality, serial correlations, etc.) in the usual way.

Alternatively, consider modeling

𝐸(𝑦𝑖) = 1/(𝐶 + 𝐴𝑒𝐵𝑥𝑖) (6)

𝐸(1/𝑦𝑖) = 𝐸(̃𝑦𝑖) = 𝐶 + 𝐴𝑒𝐵𝑥𝑖 (7)

where 𝐶, 𝐴, and 𝐵 are parameters to be estimated. Using the data (𝑦, 𝑥) = (0.04, 5), (0.06, 12),
(0.08, 25), (0.1, 35), (0.15, 42), (0.2, 48), (0.25, 60), (0.3, 75), and (0.5, 120) (Danuso 1991), fitting

the models yields

Model 𝐶 𝐴 𝐵 RSS Deviance

(6) 1.781 25.74 −0.03926 −0.001640 −51.95

(6) with lnlsq(0) 1.799 25.45 −0.04051 −0.001431 −53.18

(7) 1.781 25.74 −0.03926 8.197 24.70

(7) with lnlsq(0) 1.799 27.45 −0.04051 3.651 17.42

There is little to choose between the two versions of the logistic model (6), whereas for the exponen-

tial model (7), the fit using lnlsq(0) is much better (a deviance difference of 7.28). The reciprocal

transformation has introduced heteroskedasticity into ̃𝑦𝑖, which is countered by the proportional errors

property of the lognormal distribution implicit in lnlsq(0). The deviances are not comparable between
the logistic and exponential models because the change of scale has not been allowed for, although in

principle it could be.

Other uses
Even if you are fitting linear regression models, you may find that nl can save you some typing.

Because you specify the parameters of yourmodel explicitly, you can impose constraints on them directly.

nl — Nonlinear least-squares estimation 14

Example 2
In example 2 of [R] cnsreg, we showed how to fit the model

mpg = 𝛽0 + 𝛽1price + 𝛽2weight + 𝛽3displ + 𝛽4gear ratio + 𝛽5foreign +
𝛽6length + 𝑢

subject to the constraints

𝛽1 = 𝛽2 = 𝛽3 = 𝛽6

𝛽4 = −𝛽5 = 𝛽0/20

An alternative way is to use nl:

. use https://www.stata-press.com/data/r19/auto, clear
(1978 automobile data)
. nl (mpg = {b0} + {b1}*price + {b1}*weight + {b1}*displ +
> {b0}/20*gear_ratio - {b0}/20*foreign + {b1}*length)
Iteration 0: Residual SS = 36008
Iteration 1: Residual SS = 1578.5223
Iteration 2: Residual SS = 1578.5223

Source SS df MS
Number of obs = 74

Model 34429.478 2 17214.7389 R-squared = 0.9562
Residual 1578.5223 72 21.9239203 Adj R-squared = 0.9549

Root MSE = 4.682299
Total 36008 74 486.594595 Res. dev. = 436.4562

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

/b0 26.52229 1.375178 19.29 0.000 23.78092 29.26365
/b1 -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172

The point estimates and standard errors for 𝛽0 and 𝛽1 are identical to those reported in example 2 of

[R] cnsreg. To get the estimate for 𝛽4, we can use nlcom:

. nlcom _b[/b0]/20
_nl_1: _b[/b0]/20

mpg Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 1.326114 .0687589 19.29 0.000 1.191349 1.460879

The advantage to using nl is that we do not need to use the constraint command six times.

nl is also a useful tool when doing exploratory data analysis. For example, you may want to run a

regression of y on a function of x, though you have not decided whether to use sqrt(x) or ln(x). You can
use nl to run both regressions without having first to generate two new variables:

. nl (y = {b0} + {b1}*ln(x))

. nl (y = {b0} + {b1}*sqrt(x))

Poi (2008) shows the advantages of using nl when marginal effects of transformed variables are

desired as well.

https://www.stata.com/manuals/rcnsreg.pdf#rcnsregRemarksandexamplesex2_cnsreg
https://www.stata.com/manuals/rcnsreg.pdf#rcnsreg
https://www.stata.com/manuals/rcnsreg.pdf#rcnsregRemarksandexamplesex2_cnsreg
https://www.stata.com/manuals/rcnsreg.pdf#rcnsreg

nl — Nonlinear least-squares estimation 15

Weights
Weights are specified in the usual way—analytic and frequency weights as well as iweights are

supported; see [U] 20.24Weighted estimation. Use of analytic weights implies that the 𝑦𝑖 have different

variances. Therefore, model (3) may be rewritten as

𝑦𝑖 = 𝑓(x𝑖,β) + 𝑢𝑖, 𝑢𝑖 ∼ 𝑁(0, 𝜎2/𝑤𝑖) (3a)

where 𝑤𝑖 are (positive) weights, assumed to be known and normalized such that their sum equals the

number of observations. The residual deviance for (3a) is

𝐷(β̂) = {1 + ln(2𝜋𝜎̂2)}𝑛 − ∑ ln(𝑤𝑖) (5a)

[compare with (5)], where

𝑛𝜎̂2 = RSS = ∑ 𝑤𝑖{𝑦𝑖 − 𝑓(x𝑖, β̂)}2

Defining and fitting a model equivalent to (4) when weights have been specified as in (3a) is not straight-

forward and has not been attempted. Thus, deviances using and not using the lnlsq() option may not

be strictly comparable when analytic weights (other than 0 and 1) are used.

You do not need to modify your substitutable expression in any way to use weights. If, however, you

write a substitutable expression program, then you should account for weights when obtaining initial

values. When nl calls your program, it passes whatever weight expression (if any) was specified by the

user. Here is an outline of a substitutable expression program that accepts weights:

program nl name, rclass
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist [aw fw iw pw] if
...
// Obtain initial values allowing weights
// Use the syntax [‘weight’‘exp’]. For example,
summarize varname [‘weight’‘exp’] ‘if’
regress depvar varlist [‘weight’‘exp’] ‘if’
...
// Return substitutable expression
return local eq ”substitutable expression”
return local title ”description of estimator”

end

For details on how the syntax command processes weight expressions, see [P] syntax.

Potential errors
nl is reasonably robust to the inability of your nonlinear function to be evaluated at some parameter

values. nl does assume that your function can be evaluated at the initial values of the parameters. If your

function cannot be evaluated at the initial values, an error message is issued with return code 480. Recall

that if you do not specify an initial value for a parameter, then nl initializes it to zero. Many nonlinear

functions cannot be evaluated when some parameters are zero, so in those cases specifying alternative

initial values is crucial.

Thereafter, as nl changes the parameter values, it monitors your function for unexpected missing

values. If these are detected, nl backs up. That is, nl finds a point between the previous, known-to-be-

good parameter vector and the new, known-to-be-bad vector at which the function can be evaluated and

continues its iterations from that point.

https://www.stata.com/manuals/u20.pdf#u20.24Weightedestimation
https://www.stata.com/manuals/psyntax.pdf#psyntax

nl — Nonlinear least-squares estimation 16

nl requires that once a parameter vector is found where the predictions can be calculated, small

changes to the parameter vector be made to calculate numeric derivatives. If a boundary is encountered

at this point, an error message is issued with return code 481.

When specifying lnlsq(), an attempt to take logarithms of 𝑦𝑖 − 𝑘 when 𝑦𝑖 ≤ 𝑘 results in an error

message with return code 482.

If iterate() iterations are performed and estimates still have not converged, results are presented

with a warning, and the return code is set to 430.

If you use the programmed substitutable expression version of nl with a function evaluator program,

or vice versa, Stata issues an error message. Verify that you are using the syntax appropriate for the

program you have.

General comments on fitting nonlinear models
Achieving convergence is often problematic. For example, a unique minimum of the sum-of-squares

function may not exist. Much literature exists on different algorithms that have been used, on strate-

gies for obtaining good initial parameter values, and on tricks for parameterizing the model to make

its behavior as linear-like as possible. Selected references are Kennedy and Gentle (1980, chap. 10) for

computational matters and Ross (1990) and Ratkowsky (1983) for all three aspects. Ratkowsky’s book is

particularly clear and approachable, with useful discussion on the meaning and practical implications of

intrinsic and parameter-effects nonlinearity. An excellent text on nonlinear estimation is Gallant (1987).

Also see Davidson and MacKinnon (1993 and 2004).

To enhance the success of nl, pay attention to the form of the model fit, along the lines of Ratkowsky

and Ross. For example, Ratkowsky (1983, 49–59) analyzes three possible three-parameter yield-density

models for plant growth:

𝐸(𝑦𝑖) =
⎧{
⎨{⎩

(𝛼 + 𝛽𝑥𝑖)−1/𝜃

(𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥2
𝑖)−1

(𝛼 + 𝛽𝑥𝜙
𝑖)−1

All three models give similar fits. However, he shows that the second formulation is dramatically more

linear-like than the other two and therefore has better convergence properties. In addition, the param-

eter estimates are virtually unbiased and normally distributed, and the asymptotic approximation to the

standard errors, correlations, and confidence intervals is much more accurate than for the other models.

Even within a given model, the way the parameters are expressed (for example, 𝜙𝑥𝑖 or 𝑒𝜃𝑥𝑖) affects the

degree of linearity and convergence behavior.

Function evaluator programs
Occasionally, a nonlinear function may be so complex that writing a substitutable expression for it

is impractical. For example, there could be many parameters in the model. Alternatively, if you are

implementing a two-step estimator, writing a substitutable expression may be altogether impossible.

Function evaluator programs can be used in these situations.

nl — Nonlinear least-squares estimation 17

nl will pass to your function evaluator program a list of variables, a weight expression, a variable

marking the estimation sample, and a vector of parameters. Your program is to replace the dependent

variable, which is the first variable in the variables list, with the values of the nonlinear function evaluated

at those parameters. As with substitutable expression programs, the first two letters of the name must be

nl.

To focus on the mechanics of the function evaluator program, again let’s compare the CES production

function to the previous examples. The function evaluator program is

program nlces2
version 19.5 // (or version 19 if you do not have StataNow)
syntax varlist(min=3 max=3) if, at(name)
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’

// Retrieve parameters out of at matrix
tempname b0 rho delta
scalar ‘b0’ = ‘at’[1, 1]
scalar ‘rho’ = ‘at’[1, 2]
scalar ‘delta’ = ‘at’[1, 3]

tempvar kterm lterm
generate double ‘kterm’ = ‘delta’*‘capital’^(-1*‘rho’) ‘if’
generate double ‘lterm’ = (1-‘delta’)*‘labor’^(-1*‘rho’) ‘if’

// Fill in dependent variable
replace ‘logout’ = ‘b0’ - 1/‘rho’*ln(‘kterm’ + ‘lterm’) ‘if’

end

Unlike the previous nlces program, this one is not declared to be r-class. The syntax statement again

accepts three variables: one for log output, one for capital, and one for labor. An if exp is again required

because nl will pass a binary variable marking the estimation sample. All function evaluator programs

must accept an option named at() that takes a name as an argument—that is how nl passes the parameter
vector to your program.

The next part of the program retrieves the output, labor, and capital variables from the variables list.

It then breaks up the temporary matrix at and retrieves the parameters b0, rho, and delta. Pay careful
attention to the order in which the parameters refer to the columns of the at matrix because that will

affect the syntax you use with nl. The temporary names you use inside this program are immaterial,

however.

The rest of the program computes the nonlinear function, using some temporary variables to hold

intermediate results. The final line of the program then replaces the dependent variable with the values

of the function. Notice the use of ‘if’ to restrict attention to the estimation sample. nl makes a copy of

your dependent variable so that when the command is finished your data are left unchanged.

To use the program and fit your model, you type

. use https://www.stata-press.com/data/r19/production, clear

. nl ces2 @ lnoutput capital labor, parameters(b0 rho delta)
> initial(b0 0 rho 1 delta 0.5)

The output is again identical to that shown in example 1. The order inwhich the parameters were specified

in the parameters() option is the same in which they are retrieved from the at matrix in the program.

To initialize them, you simply list the parameter name, a space, the initial value, and so on.

https://www.stata.com/manuals/rnl.pdf#rnlRemarksandexamplesex1_nl

nl — Nonlinear least-squares estimation 18

If you use the nparameters() option instead of the parameters() option, the parameters are named
b1, b2, . . . , b𝑘, where 𝑘 is the number of parameters. Thus, you could have typed

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(b1 0 b2 1 b3 0.5)

With that syntax, the parameters called b0, rho, and delta in the program will be labeled b1, b2, and b3,
respectively. In programming situations or if there are many parameters, instead of listing the parameter

names and initial values in the initial() option, you may find it more convenient to pass a column

vector. In those cases, you could type

. matrix myvals = (0, 1, 0.5)

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(myvals, copy)

or by name

. matrix colnames myvals = b1 b2 b3

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(myvals)

In summary, a function evaluator program receives a list of variables, the first of which is the depen-

dent variable that you are to replace with the values of your nonlinear function. Additionally, it must

accept an if exp, as well as an option named at that will contain the vector of parameters at which nl
wants the function evaluated. You are then free to do whatever is necessary to evaluate your function

and replace the dependent variable.

If you wish to use weights, your function evaluator program’s syntax statement must accept them.

If your program consists only of, for example, generate statements, you need not do anything with the

weights passed to your program. However, if in calculating the nonlinear function you use commands

such as summarize or regress, then you will want to use the weights with those commands.

As with substitutable expression programs, nl will pass to it any options specified that nl does not

accept, providing you with a way to pass more information to your function.

Technical note
Before version 9 of Stata, the nl command used a different syntax, which required you to write an

nlfcn program, and it did not have a syntax for interactive use other than the seven functions that were

built-in. The old syntax of nl still works, and you can still use those nlfcn programs. If nl does not see a

colon, an at sign, or a set of parentheses surrounding the equation in your command, it assumes that the

old syntax is being used.

The current version of nl uses scalars and matrices to store intermediate calculations instead of local

and global macros as the old version did, so the current version produces more accurate results. In

practice, however, any discrepancies are likely to be small.

nl — Nonlinear least-squares estimation 19

Stored results
nl stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq model) number of equations in overall model test; always 0
e(df m) model degrees of freedom

e(df r) residual degrees of freedom

e(df t) total degrees of freedom

e(mss) model sum of squares

e(rss) residual sum of squares

e(tss) total sum of squares

e(mms) model mean square

e(msr) residual mean square

e(ll) log likelihood assuming i.i.d. normal errors

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(rmse) root mean squared error

e(dev) residual deviance

e(sum w) sum of weights

e(N clust) number of clusters

e(lnlsq) value of lnlsq if specified

e(log t) 1 if lnlsq specified, 0 otherwise

e(gm 2) square of geometric mean of (𝑦 − 𝑘) if lnlsq, 1 otherwise

e(cons j) position of constant in e(b) or 0 if no constant

e(minderiv) minimum value for derivative step

e(epsilon) relative change used to compute derivatives

e(rank) rank of e(V)
e(ic) number of iterations

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) nl
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title 2) secondary title in estimation output

e(clustvar) name of cluster variable

e(hac kernel) HAC kernel

e(hac lag) HAC lag

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(type) sexpress: interactively entered expression
sexpprog: substitutable expression program
funcprog: function evaluator program

e(sexp) substitutable expression

e(expressions) expression names

e(expr name) expression named name

e(params) names of parameters

e(funcprog) function evaluator program

e(varlist) independent variables

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins

nl — Nonlinear least-squares estimation 20

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(from) initial values vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The derivation here is based on Davidson and MacKinnon (2004, chap. 6). Let β denote the 𝑘 × 1

vector of parameters, and write the regression function using matrix notation as y = f(x,β) + u so that

the objective function can be written as

SSR(β) = {y − f(x,β)}′
D {y − f(x,β)}

The D matrix contains the weights and is defined in [R] regress; if no weights are specified, then D is

the 𝑁 × 𝑁 identity matrix. Taking a second-order Taylor series expansion centered at β0 yields

SSR(β) ≈ SSR(β0) + g′(β0)(β − β0) + 1
2

(β − β0)′H(β0)(β − β0) (8)

where g(β0) denotes the 𝑘 × 1 gradient of SSR(β) evaluated at β0 andH(β0) denotes the 𝑘 × 𝑘 Hessian

of SSR(β) evaluated at β0. Letting X denote the 𝑁 × 𝑘 Jacobian matrix, the matrix of derivatives of

f(x,β) with respect to β, the gradient g(β) is

g(β) = −2X′Du (9)

X and u are obviously functions of β, though for notational simplicity that dependence is not shown

explicitly. The (𝑚, 𝑛) element of the Hessian can be written as

𝐻𝑚𝑛(β) = −2
𝑖=𝑁
∑
𝑖=1

𝑑𝑖𝑖 [𝜕2𝑓𝑖
𝜕𝛽𝑚𝜕𝛽𝑛

𝑢𝑖 − 𝑋𝑖𝑚𝑋𝑖𝑛] (10)

where 𝑑𝑖𝑖 is the 𝑖th diagonal element of D. As discussed in Davidson and MacKinnon (2004, chap. 6),

the first term inside the brackets of (10) has expectation zero, so the Hessian can be approximated as

H(β) = 2X′DX (11)

https://www.stata.com/manuals/rregress.pdf#rregress

nl — Nonlinear least-squares estimation 21

Differentiating the Taylor series expansion of SSR(β) shown in (8) yields the first-order condition for
a minimum

g(β0) + H(β0)(β − β0) = 0

which suggests the iterative procedure

β𝑗+1 = β𝑗 − 𝛼H−1(β𝑗)g(β𝑗) (12)

where 𝛼 is a “step size” parameter chosen at each iteration to improve convergence. Using (9) and (11),

we can write (12) as

β𝑗+1 = β𝑗 + 𝛼(X′DX)−1X′Du (13)

whereX and u are evaluated atβ𝑗. Apart from the scalar 𝛼, the second term on the right-hand side of (13)

can be computed via a (weighted) regression of the columns ofX on the errors. This is implemented using

Mata’s moptimize() function and the Gauss–Newton algorithm. Derivatives are computed numerically
using Mata’s deriv() function. Convergence is declared when mreldif(β𝑗+1,β𝑗)< tolerance() or

reldif(SSR(β𝑗+1), SSR(β𝑗))< ltolerance(), and g′
𝑗+1 (H𝑗+1)−1

g𝑗+1 < nrtolerance().

As derived, for example, in Davidson and MacKinnon (2004, chap. 6), an expedient way to obtain

the covariance matrix is to compute u and the columns of X at the final estimate β̂ and then regress that

u on X. The covariance matrix of the estimated parameters of that regression serves as an estimate of

Var(β̂). If that regression employs a robust covariance matrix estimator, then the covariance matrix for
the parameters of the nonlinear regression will also be robust.

All other statistics are calculated analogously to those in linear regression, except that the nonlinear

function 𝑓(x𝑖,β) plays the role of the linear function x′
𝑖β. See [R] regress.

This command supports estimation with survey data. For details on VCEs with survey data, see

[SVY] Variance estimation.

Acknowledgments
The original version of nl was written by Patrick Royston of the MRC Clinical Trials Unit, London,

and coauthor of the Stata Press book Flexible Parametric SurvivalAnalysis Using Stata: Beyond the Cox

Model. Francesco Danuso’s menu-driven nonlinear regression program (1991) provided the inspiration.

References
Atkinson, A. C. 1985. Plots, Transformations, and Regression: An Introduction to Graphical Methods of Diagnostic Regres-

sion Analysis. Oxford: Oxford University Press.

Canette, I. 2011. A tip to debug your nl/nlsur function evaluator program. The Stata Blog: Not Elsewhere Classified.

https://blog.stata.com/2011/12/05/a-tip-to-debug-your-nlnlsur-function-evaluator-program/.

Danuso, F. 1991. sg1: Nonlinear regression command. Stata Technical Bulletin 1: 17–19. Reprinted in Stata Technical

Bulletin Reprints, vol. 1, pp. 96–98. College Station, TX: Stata Press.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. NewYork: Oxford University Press.

———. 2004. Econometric Theory and Methods. New York: Oxford University Press.

Gallant, A. R. 1987. Nonlinear Statistical Models. New York: Wiley. https://doi.org/10.1002/9780470316719.

Goldstein, R. 1992. srd7: Adjusted summary statistics for logarithmic regressions. Stata Technical Bulletin 5: 17–21.

Reprinted in Stata Technical Bulletin Reprints, vol. 1, pp. 178–183. College Station, TX: Stata Press.

Kennedy, W. J., Jr., and J. E. Gentle. 1980. Statistical Computing. New York: Dekker. https://doi.org/10.1201/

9780203738672.

https://www.stata.com/manuals/m-5moptimize.pdf#m-5moptimize()
https://www.stata.com/manuals/m-5deriv.pdf#m-5deriv()
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/svyvarianceestimation.pdf#svyVarianceestimation
https://www.stata-press.com/books/fpsaus.html
https://www.stata-press.com/books/fpsaus.html
https://blog.stata.com/2011/12/05/a-tip-to-debug-your-nlnlsur-function-evaluator-program/
https://www.stata.com/products/stb/journals/stb1.pdf
https://www.stata.com/bookstore/eie.html
https://doi.org/10.1002/9780470316719
https://www.stata.com/products/stb/journals/stb5.pdf
https://doi.org/10.1201/9780203738672
https://doi.org/10.1201/9780203738672

nl — Nonlinear least-squares estimation 22

Poi, B. P. 2008. Stata tip 58: nl is not just for nonlinear models. Stata Journal 8: 139–141.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific Com-

puting. 3rd ed. New York: Cambridge University Press.

Ratkowsky, D. A. 1983. Nonlinear Regression Modeling: A Unified Practical Approach. New York: Dekker.

Ross, G. J. S. 1987.MLP User Manual, Release 3.08. Oxford: Numerical Algorithms Group.

———. 1990. Nonlinear Estimation. New York: Springer. https://doi.org/10.1007/978-1-4612-3412-8.

Also see
[R] nl postestimation — Postestimation tools for nl

[R] gmm — Generalized method of moments estimation

[R] ml — Maximum likelihood estimation

[R] mlexp — Maximum likelihood estimation of user-specified expressions

[R] nlcom — Nonlinear combinations of parameters

[R] nlsur — Estimation of nonlinear system of equations

[R] regress — Linear regression

[ME] menl — Nonlinear mixed-effects regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata-journal.com/article.html?article=st0141
https://doi.org/10.1007/978-1-4612-3412-8
https://www.stata.com/manuals/rnlpostestimation.pdf#rnlpostestimation
https://www.stata.com/manuals/rgmm.pdf#rgmm
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/rmlexp.pdf#rmlexp
https://www.stata.com/manuals/rnlcom.pdf#rnlcom
https://www.stata.com/manuals/rnlsur.pdf#rnlsur
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/svysvyestimation.pdf#svysvyestimation
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

